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Introduction Diffusion model Coalescent model Summary

The basic problem (Computing likelihoods)
For a given population genetics model, what is the probability of
observing a sample of DNA sequences randomly drawn from a
population?

Haplotype 1 = AACTAGG......CCGTGACC......ACAGCTAT
Haplotype 2 = AACTAGG......CCGTAACC......ACAGCTAT
Haplotype 3 = AACTGGG......CCGTGACC......ACAGCTAT
Haplotype 4 = AACTGGG......CCGTAACC......ACAGTTAT
Haplotype 5 = AACTAGG......CCGTGACC......ACAGTTAT

Applications

Estimating evolutionary parameters: L(θ, ρ) = P(D | θ, ρ)

Ancestral inference
Disease gene mapping
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Introduction Diffusion model Coalescent model Summary

Closed-form one-locus likelihood functions

n = (n1, . . . ,nK ), where ni = number of samples with allele i .
q(n), probability of an ordered sample with configuration n.
θ = 4Nu, mutation parameter.

Finite alleles, parent-independent mutation (PIM) model
Mutation transition matrix satisfies Pij = Pj .
Wright’s sampling formula (1949):

qWSF(n) =

∏K
i=1 θPi(θPi + 1) . . . (θPi + ni − 1)

θ(θ + 1) . . . (θ + n − 1)

Infinite alleles model

Ewens sampling formula (1972): qESF(n) =
θK ∏K

i=1(ni − 1)!

θ(θ + 1) . . . (θ + n − 1)
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Crossover Recombination

Parent 1: 

Child: 

Parent 2: 
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Crossover Recombination

Parent 1: 

Child: 

Parent 2: 

Multi-locus models
Ancestral recombination graph (ARG)
Wright-Fisher diffusion with recombination
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Introduction Diffusion model Coalescent model Summary

Crossover Recombination

Parent 1: 

Child: 

Parent 2: 

Multi-locus models with recombination
Obtaining an exact, analytic likelihood function under these models
has so far remained a challenging open problem, even for just two
loci.
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Introduction Diffusion model Coalescent model Summary

Problem setup
A two-locus sample configuration, c = (cij)

2 1
1 0
1 0

Row sums: cA = (ci·) = (3,1,1)
Column sums: cB = (c·j) = (4,1)

Goal: Compute the
sampling distribution, q(c).
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Previous work
Key Idea: Asymptotic Series (Jenkins & Song, 2009, 2010, 2012)

Write
q(c; ρ) = q0(c) +

q1(c)

ρ
+

q2(c)

ρ2 + . . . ,

where q0,q1, . . . are independent of the recombination parameter,
ρ (= 4Nr) (but implicitly depend on θA, θB). Now recursively solve for
q0, q1, . . . .

q0(c)

q0(c) is the exact sampling distribution when the two loci are
unlinked (ρ =∞).

Infinite alleles: q0(c) = qA
ESF(cA)qB

ESF(cB)
Finite alleles, parent-independent mutation:

q0(c) = qA
WSF(cA)qB

WSF(cB)

Key property: q0(c) is expressible in terms of the relevant
one-locus sampling distributions.
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Higher order terms (Jenkins & Song, 2012)

We have developed a systematic and automatable method to
compute higher order terms: q1(c),q2(c),q3(c), . . ..

A technique known as Padé summation guarantees that our
asymptotic series converges exactly to the truth, for any ρ.
The method generalizes to handle missing alleles.
The method generalizes to incorporate selection at one locus.

Before Padé summation

Example

c =
(10

2
7
1
)
, θA = θB = 0.01

(symmetric mutation).
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Before Padé summation

Example

c =
(10

2
7
1
)
, θA = θB = 0.01

(symmetric mutation).
0 20 40 60 80 100

0

1

2

3

4

ρ

L
ik

e
lih

o
o

d
 (

1
0

−
1

5
)

 0

1

6 / 37



Introduction Diffusion model Coalescent model Summary

Higher order terms (Jenkins & Song, 2012)

We have developed a systematic and automatable method to
compute higher order terms: q1(c),q2(c),q3(c), . . ..
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Intriguing observation
Reminder: Asymptotic expansion

q(c) = q0(c) +
q1(c)

ρ
+

q2(c)

ρ2 + . . . ,

Reminder: q0(c)

q0(c) = qA(cA)qB(cB) is a simple linear combination of products of
one-locus sampling distributions, and universal—independent of the
assumed mutation model.
Observation: The same is true of q1(c).

q1(c) =

(
c
2

)
qA(cA)qB(cB) +

∑
i,j

(
cij

2

)
qA(cA − ei)qB(cB − ej)

− qB(cB)
∑

i

(
ci·
2

)
qA(cA − ei)− qA(cA)

∑
j

(
c·j
2

)
qB(cB − ej).

[ei = (0 . . . ,0,1,0, . . . ,0)T , a unit vector with a 1 in the i th position.]
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1 2 3 4 

The standard coalescent with recombination
For large recombination rates, ARGs are typically very complicated,
containing many recombination events.
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1 2 3 4 

Counterintuitive
However, we in fact expect the dynamics to be easier to study for
large recombination rates, since the loci under consideration would
then be less dependent.
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1 2 3 4 

Conjecture
There exists a simpler stochastic process that describes the
important dynamics of the ARG for large recombination rates, with
q1(c) capturing its sampling distribution.
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Duality

Time 

Frequency 

1 

0 

Conjecture
Furthermore, we should be able to make a similar statement about
the Wright-Fisher diffusion, via duality.
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A new diffusion model
Goal: Derive a diffusion model which is

simple to describe, with
a closed-form sampling distribution, which
agrees with the “truth” [up to O(ρ−2)]: q0(c) + q1(c)/ρ .

Outline of approach

1 Start with a two-locus Moran model.
2 Change coordinates from haplotype frequencies to marginal

allele frequencies and coefficients of linkage disequilibrium
(cf. Ohta & Kimura, 1969).

3 Suppose that ρβ = 4Nβr is fixed as N →∞, where
0 < β < 1—instead of the usual β = 1.

4 Take the diffusion limit of the fluctuations of the coordinates
about the deterministic limit.
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0 < β < 1—instead of the usual β = 1.

4 Take the diffusion limit of the fluctuations of the coordinates
about the deterministic limit.

11 / 37



Introduction Diffusion model Coalescent model Summary

The Wright-Fisher diffusion

dX = µ(X )dt + σ(X )dW ,

X = (Xij), i , j ,∈ {A,C,G,T}.
Time 

Frequency, X 
1 

0 

The (two-locus) Wright-Fisher diffusion

State space: ∆ =

x = (xij) ∈ [0,1]K×L |
∑
i,j

xij = 1

.

Drift coefficient

µij(x) = −ρ
2

(xij − xi·x·j) + (mutation terms; θA, θB)

Diffusion coefficient: σ2
ij,kl(x) = xij(δij,kl − xkl).
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The Wright-Fisher diffusion

dX = µ(X )dt + σ(X )dW ,

X = (Xij), i , j ,∈ {A,C,G,T}.
Time 

Frequency, X 
1 

0 

Sampling distribution

q(c) = E

∏
i,j

X cij
ij

 .
Using a standard result: E[Lf (X )] = 0, we get a linear system
of equation for the moments of X .
But this system grows exponentially in the sample size.
So we need an approximation.
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Introduction Diffusion model Coalescent model Summary

How to derive this diffusion?

Classical approach
Start from a finite population model of size N.
Let N →∞ (possibly after a rescaling of time).
Rates of mutation and recombination are assumed to be such
that they occur at O(1) in the diffusion limit.

Population size, N


Time −→
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Introduction Diffusion model Coalescent model Summary

1. Moran model
1 

2 

3 

4 

5 

6 

7 

Time 

Rates

Resampling N2/2
Mutation (locus A) θA/2
Mutation (locus B) θB/2
Recombination ρ/2
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Introduction Diffusion model Coalescent model Summary

2. Change coordinates (Ohta & Kimura, 1969)

Old system
(

X (N)
ij

)
, i ∈ {1,2, . . . ,K}, j ∈ {1,2, . . . ,L}

New system
(

(X (N)
i· ), (X (N)

·j ), (D(N)
ij )

)
, D(N)

ij := X (N)
ij − X (N)

i· X (N)
·j .

Diffusion limit

E[∆X (N)
i· | X ] =

[
θA

2

K∑
k=1

PA
kiX

(N)
k · −

θA

2
X (N)

i·

]
dt + o(dt),

E[∆X (N)
·j | X ] =

[
θB

2

L∑
l=1

PB
lj X (N)
·l − θB

2
X (N)
·j

]
dt + o(dt),

E[∆D(N)
ij | X ] =

[
−ρ

2
D(N)

ij − D(N)
ij +

θA

2

K∑
k=1

PA
kiD

(N)
kj −

θA

2
D(N)

ij

+
θB

2

L∑
l=1

PB
lj D(N)

il − θB

2
D(N)

ij + O(N−1)

]
dt + o(dt)
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3. Rescale recombination, ρ

Suppose ρβ = ρNβ−1 = 4Nβr is fixed as N →∞, where 0 < β < 1.
Rescale time to capture this fast behaviour: tnew = N1−βtold.

Diffusion limit

E[∆X (N)
i· | X ] =
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PA
kiX

(N)
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4. Seek a diffusion limit

Diffusion limit

E[∆X (N)
i· | X ] = O

(
1

N1−β

)
dt + o(dt),

E[∆X (N)
·j | X ] = O

(
1

N1−β

)
dt + o(dt),

E[∆D(N)
ij | X ] =

[
−
ρβ
2

D(N)
ij + O

(
1

N1−β

)]
dt + o(dt)

The description is completed by finding the limiting covariance
matrix.
But—on this timescale it is 0!
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Diffusion limits
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Introduction Diffusion model Coalescent model Summary

Summary so far

If
M(N) =

(
(X (N)

i· ), (X (N)
·j ), (D(N)

ij = Xij − X (N)
i· X (N)

·j )
)

then

M(N) d→ M :=
{

((Xi·(0)), (X·j(0)), (Dij(0)e−ρβ t/2)′ : t ≥ 0
}
,

as N →∞.

This is a law-of-large-numbers result. (Baake & Herms, 2008)

We really want a central limit theorem.
So we should be asking: what is the diffusion limit of

U(N)(t) := N(1−β)/2[M(N)(t)−M(t)]?
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Introduction Diffusion model Coalescent model Summary

CLTs for density-dependent population processes
Theorem [Ethier & Kurtz, 1986, Ch. 11; Kang et al., 2014]

Suppose that U(N)(0)→ U(0) as N →∞, and M(t) the solution to

dM(t)
dt

= w(M(t))

exists, for some w .

Then [under some regularity conditions]

sup
s≤t
|M(N)(s)−M(s)| d→ 0,

and U(N) d→ U, where

U(t) = U(0) +

∫ t

0
[∇w(M(s))]U(s)ds +

∫ t

0
σ(M(s))dW (s),

and σ is such that

N1−β[M(N)]t −
∫ t

0
σ(M(N)(s))σ(M(N)(s))′ds d→ 0.
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Introduction Diffusion model Coalescent model Summary

Main aim

Find the diffusion limit of U(N)(t) = N(1−β)/2[M(N)(t)−M(t)].

Goals

1 Identify w , which supplies the drift part of U.
2 Identify σ, which supplies the diffusion part of U.
3 [Check regularity requirements.]

Sketch proof.
Recall: E[∆Xi· | X ] = o(dt),

E[∆X·j | X ] = o(dt),

E[∆Dij | X ] =
[
−
ρβ
2

Dij

]
dt + o(dt)

So: Drift of M : w(M) =
(

0,0,−
ρβ
2

D
)′

Drift of M(N) : w (N)(M) =
(

0,0,−
ρβ
2

D
)′

+ O(Nβ−1)
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Sketch proof.
Recall: E[∆Xi· | X ] = o(dt),

E[∆X·j | X ] = o(dt),

E[∆Dij | X ] =
[
−
ρβ
2

Dij

]
dt + o(dt)

So: Drift of M : w(M) =
(

0,0,−
ρβ
2

D
)′

Drift of M(N) : w (N)(M) =
(

0,0,−
ρβ
2

D
)′

+ O(Nβ−1)
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Find the diffusion limit of U(N)(t) = N(1−β)/2[M(N)(t)−M(t)].

Sketch proof (cont.).

Consider: U(N)(t) = N(1−β)/2
[

]
,
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Sketch proof (cont.).

Consider: U(N)(t) = N(1−β)/2
[
[M(N)(0)−M(0)]

+

∫ t

0
[w (N)(M(N)(s))−w(M(s))]ds

]
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]
,

where R(N)(t) := M(N)(t)−M(N)(0)−
∫ t

0
w (N)(M(N)(s))ds.
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]
,

where R(N)(t) := M(N)(t)−M(N)(0)−
∫ t

0
w (N)(M(N)(s))ds.

1st term

We assumed U(N)(0)→ U(0) as N →∞.
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+
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[w (N)(M(N)(s))−w(M(s))]ds + R(N)(t)

]
,

where R(N)(t) := M(N)(t)−M(N)(0)−
∫ t

0
w (N)(M(N)(s))ds.

2nd term

N(1−β)/2
∫ t

0
[w (N)

3 (M(N)(s))−w3(M(s))]ds

= N(1−β)/2
∫ t

0

[
−
ρβ
2

[D(N)(s)− D(s)] + O(Nβ−1)
]

ds

=

∫ t

0

[
−
ρβ
2

U(N)
3 (s) + O(N(β−1)/2)

]
ds

d→ −
ρβ
2

∫ t

0
U3(s)ds, N →∞.
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Main aim

Find the diffusion limit of U(N)(t) = N(1−β)/2[M(N)(t)−M(t)].

Sketch proof (cont.).

Consider: U(N)(t) = N(1−β)/2
[
[M(N)(0)−M(0)]

+

∫ t

0
[w (N)(M(N)(s))−w(M(s))]ds + R(N)(t)

]
,

where R(N)(t) := M(N)(t)−M(N)(0)−
∫ t

0
w (N)(M(N)(s))ds.

3rd term
“The difference between the evolution of the Moran process and
its expectation.” Key observation: R(N)(t) is a martingale.
Appeal to the martingale CLT to characterise its limit.
In other words: we know σ(M(t)).
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Main aim

Find the diffusion limit of U(N)(t) = N(1−β)/2[M(N)(t)−M(t)].

Putting all this together:

U(N)(t)→
[
U(0)−

ρβ
2

∫ t

0
(0,0,1)′ ◦ U(s)ds +

∫ t

0
σ(M(s))dW (s)

]
.

Apart from a (complicated, time-evolving) covariance term, Dij(t)
follows an Ornstein-Uhlenbeck process!

Retracing our steps. . .

D(N)(t) ≈ D(0)e−ρβ t/2 + N(β−1)/2UD(t).

−1
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Introduction Diffusion model Coalescent model Summary

Stationary distribution
Tracing our steps backwards, we can derive an approximate
stationary distribution:

D ∼ Normal
(

0,
1
ρ

[Xi·(0)X·j(0)(δik − Xk ·(0))(δjl − X·l(0))]ij,kl

)
.

Sampling distribution
Tracing our steps further, we can obtain a sampling distribution:

qGaussian(c) = E

∏
i,j

X cij
ij

 = E

∏
i,j

(Dij + Xi·X·j)cij

 = . . . .

= q0(c) +
q1(c)

ρ
+ . . . .

24 / 37



Introduction Diffusion model Coalescent model Summary

Stationary distribution
Tracing our steps backwards, we can derive an approximate
stationary distribution:

D ∼ Normal
(

0,
1
ρ

[Xi·(0)X·j(0)(δik − Xk ·(0))(δjl − X·l(0))]ij,kl

)
.

Sampling distribution
Tracing our steps further, we can obtain a sampling distribution:

qGaussian(c) = E

∏
i,j

X cij
ij

 = E

∏
i,j

(Dij + Xi·X·j)cij

 = . . . .

= q0(c) +
q1(c)

ρ
+ . . . .

24 / 37



Introduction Diffusion model Coalescent model Summary

Stationary distribution
Tracing our steps backwards, we can derive an approximate
stationary distribution:

D ∼ Normal
(

0,
1
ρ

[Xi·(0)X·j(0)(δik − Xk ·(0))(δjl − X·l(0))]ij,kl

)
.

Sampling distribution
Tracing our steps further, we can obtain a sampling distribution:

qGaussian(c) = E

∏
i,j

X cij
ij

 = E

∏
i,j

(Dij + Xi·X·j)cij

 = . . . .

= q0(c) +
q1(c)

ρ
+ . . . .

24 / 37



Introduction Diffusion model Coalescent model Summary

Accuracy

“Truth”: q(c) ≈ q0(c) +
q1(c)

ρ
+

q2(c)

ρ2 + . . .+
qλ(x)

ρλ
,

Gaussian model: q(G)(c) ≈ q0(c) +
q1(c)

ρ
+

q(G)
2 (c)

ρ2 + . . .+
q(G)
λ (x)

ρλ
.

ρ = 100 ρ = 200
Type

λ of sum Φ(1) Φ(10) Φ(100) Φ(1) Φ(10) Φ(100)

0 True 0.50 0.72 1.00 0.54 0.95 1.00
Gaussian 0.50 0.72 1.00 0.54 0.95 1.00

1 True 0.74 0.95 1.00 0.90 0.99 1.00
Gaussian 0.74 0.95 1.00 0.90 0.99 1.00

2 True 0.95 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.85 1.00 1.00

4 True 1.00 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.83 1.00 1.00

6 True 1.00 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.83 1.00 1.00
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Accuracy

“Truth”: q(c) ≈ q0(c) +
q1(c)

ρ
+

q2(c)

ρ2 + . . .+
qλ(x)

ρλ
,

Gaussian model: q(G)(c) ≈ q0(c) +
q1(c)

ρ
+

q(G)
2 (c)

ρ2 + . . .+
q(G)
λ (x)

ρλ
.

ρ = 25 ρ = 50
Type

λ of sum Φ(1) Φ(10) Φ(100) Φ(1) Φ(10) Φ(100)

0 True 0.39 0.58 1.00 0.49 0.63 1.00
Gaussian 0.39 0.58 1.00 0.49 0.63 1.00

1 True 0.51 0.75 0.96 0.59 0.84 0.99
Gaussian 0.51 0.75 0.96 0.59 0.84 0.99

2 True 0.59 0.91 0.97 0.77 0.98 1.00
Gaussian 0.50 0.73 0.97 0.50 0.86 1.00

4 True 0.83 0.99 1.00 0.95 1.00 1.00
Gaussian 0.51 0.72 1.00 0.50 0.80 1.00

6 True 0.89 0.99 1.00 0.99 1.00 1.00
Gaussian 0.49 0.71 0.99 0.50 0.79 1.00
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Introduction Diffusion model Coalescent model Summary

Remarks
No dependence on β in these expressions.

Reduced a difficult likelihood computation to the moments of a
Normal distribution.
This strong recombination result complements analogous
results for strong mutation and strong selection

(Feder et al., 2014; Feller, 1951; Norman, 1972, 1975; Kaplan et
al., 1988; Nagylaki, 1986, 1990; Wakeley & Sargsyan, 2009).

Wright-Fisher model

One could obtain the same diffusion limit starting from a
Wright-Fisher model.
CLTs for the Wright-Fisher model have been studied extensively
by Norman (1972, 1975) and Nagylaki (1986, 1990).
Additional complication: the Wright-Fisher model in continuous
time is non-Markovian.
Q: Are there simple, general CLTs for non-Markovian
density-dependent population processes?
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A new coalescent model
Question
Can we give a similar treatment to the ancestral recombination
graph?

Yes—via a coupling argument.

1 2 3 4 
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Reminder: q0(c)

q0(c) = qA(cA)qB(cB) corresponds to unlinked loci (ρ =∞).
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q0(c) = qA(cA)qB(cB) corresponds to unlinked loci (ρ =∞).
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Introduction Diffusion model Coalescent model Summary

A new coalescent model

What about q1(c)?

Consider what happens if we start to reduce ρ down from∞.

There is a short delay going backwards
before lineages all recombine apart.
Some lineages may recoalesce further
back in time.

q1(c) represents the effects of any single
nontrivial event in the ARG that could
distinguish its sampling distribution from
that of two independent coalescent
trees.
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A new coalescent model

Possible “nontrivial events”
1 A coalescence prior to the first time

all lineages have recombined (T ).

2 A coalescence that would have
happened had the marginal trees
been coalescing independently, but
could not have happened in our
ARG before time T . (Call these
“prohibited coalescences”.)

1 2 3 4 

T 

In fact, these are the only events (or nonevents) of relevance.
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Trivial event

Another “nontrivial” event?
1 First coalescence: O(1).

2 Second coalescence: O(ρ−1).
3 Third coalescence: O(ρ−1).

Overall probability of this event is
O(ρ−2)—i.e. negligible.

1 2 3 4 

A coupling between the ARG and a pair of independent
coalescent trees can make these arguments rigorous.
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Coupling argument (outline)

1 2 3 4 

T 

F1: Type 1 failure

1 2 3 4 

F2: Type 2 failure

1 2 3 4 

F3: Type 3 failure

Outline of argument

Show that:

P(F1) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F2) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F3) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(Fi ∩ Fj) = O
(

1
ρ2

)
, i 6= j ,

P(any other type of failure)

= O
(

1
ρ2

)
.

32 / 37



Introduction Diffusion model Coalescent model Summary

Coupling argument (outline)

1 2 3 4 

T 

F1: Type 1 failure

1 2 3 4 

F2: Type 2 failure

1 2 3 4 

F3: Type 3 failure

Outline of argument

Show that:

P(F1) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F2) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F3) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(Fi ∩ Fj) = O
(

1
ρ2

)
, i 6= j ,

P(any other type of failure)

= O
(

1
ρ2

)
.

32 / 37



Introduction Diffusion model Coalescent model Summary

Coupling argument (outline)

1 2 3 4 

T 

F1: Type 1 failure

1 2 3 4 

F2: Type 2 failure

1 2 3 4 

F3: Type 3 failure

Outline of argument

Show that:

P(F1) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F2) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F3) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(Fi ∩ Fj) = O
(

1
ρ2

)
, i 6= j ,

P(any other type of failure)

= O
(

1
ρ2

)
.

32 / 37



Introduction Diffusion model Coalescent model Summary

Coupling argument (outline)

1 2 3 4 

T 

F1: Type 1 failure

1 2 3 4 

F2: Type 2 failure

1 2 3 4 

F3: Type 3 failure

Outline of argument

Show that:

P(F1) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F2) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(F3) = 1
ρ

(c
2

)
+ O

(
1
ρ2

)
,

P(Fi ∩ Fj) = O
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)
, i 6= j ,

P(any other type of failure)
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Outline of argument (cont.)

q(c; ρ) = P(F1)q(c | F1; ρ) + P(F {
1 )q(c | F {

1 ; ρ)

= P(F1)q(c | F1; ρ) + P(F {
1 )q(c | (F2 ∪ F3){;∞)

q(c | F1; ρ) =
∑
i,j

(cij
2

)(c
2

) q(c − eij ;∞),

q(c | F2; ρ) =
∑

i

(ci·
2

)(c
2

) q(cA − ei ;∞)q(cB;∞),

q(c | F3; ρ) =
∑

j

(c·j
2

)(c
2

) q(cA;∞)q(cB − ej ;∞),

q(c | (F2 ∪ F3){;∞) =

[
1

1− P(F2)− P(F3)

]
[q(c;∞)

− P(F2)q(c | F2;∞)− P(F3)q(c | F3;∞)] .
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Theorem.
The sampling distribution of the loose linkage coalescent is

q(c) = q0(c) +
q1(c)

ρ
+ O

(
1
ρ2

)
.

Explanation for the simple form of q1(c)

q1(c) =

A randomly chosen pair of haplotypes
coalesces before time T︷ ︸︸ ︷∑
i,j

(
cij

2

)
qA(cA − ei)qB(cB − ej)

+

Otherwise, the trees
are independent︷ ︸︸ ︷(
c
2

)
qA(cA)qB(cB)

− qB(cB)
∑

i

(
ci·
2

)
qA(cA − ei)− qA(cA)

∑
j

(
c·j
2

)
qB(cB − ej)︸ ︷︷ ︸

. . . with the restriction that no “prohibited coalescences” occur before time T

.
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A new “loose linkage” coalescent
The previous decomposition picks out the important events in
the ARG.

We can define a new coalescent process which keeps only
these events.

Algorithm: Loose linkage coalescent

1 With probability 1
ρ

(c
2

)
:

Choose a pair (uniformly) from the c haplotypes to coalesce.
Every lineage undergoes recombination until time T , with this
sole coalescence inserted randomly into the sequence of
recombinations.
Simulate the rest as two independent coalescent trees.

2 Otherwise:
Simulate from two independent coalescent trees conditioned not
to have any prohibited coalescences before time T , as described
earlier.
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Summary
1 Both the Wright-Fisher diffusion with recombination and the

ARG possess a deep and regular structure when the
recombination rate increases, which we have described.

2 This structure can be exploited to derive simple approximations
to these models.

3 Our work also provides the first closed-form extension of Ewens
sampling formula for multilocus models.

Future work

Further generalizations:
More than two loci
Natural selection

Better tools:
Duality between the two models?
“Separation of timescales” (cf. Möhle, 1998)
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Appendix

Covariances of the Moran model

lim
dt→0

(dt)−1E[∆M(N)(τ) | M(N)(τ) = m]

= Nβ−1 lim
dτ→0

(dτ)−1E[∆M(N)(τ) | M(N)(τ) = m] =: w (N)(m),

lim
dt→0

(dt)−1cov[∆M(N)(τ) | M(τ) = m]

= Nβ−1 lim
dτ→0

(dτ)−1cov[∆M(N)(τ) | M(N)(τ) = m] =: Nβ−1s(N)(m),

Thus, with m = (x1, . . . , xK , y1, . . . , yL,d11, . . . ,dKL), we have

w (N)(m) = w(m) + O(Nβ−1),

where w(m) =
(

0, . . .0︸ ︷︷ ︸
K

,0, . . .0︸ ︷︷ ︸
L

,−
ρβ
2

d11, . . . ,−
ρβ
2

dKL︸ ︷︷ ︸
K×L

)′
,
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Appendix

Covariances of the Moran model (II)

s(N)(m) = s(m) + O(N−β) is determined in a similar fashion:

s(m) =

sXX(m) sXY(m) sXD(m)
sXY(m) sYY(m) sYD(m)
sXD(m) sYD(m) sDD(m)

 ,
where

[sXX(m)]ik = xi(δik − xk ),

[sYY(m)]jl = yj(δjl − yl),

[sXY(m)]ij = dij ,

[sXD(m)]i,kl = dkl(δik − xi)− xkdil ,

[sYD(m)]j,kl = dkl(δjl − yj)− yldkj ,

[sDD(m)]ij,kl = xiyj(δik − xk )(δjl − yl) + dkjxiyl + dilxkyj

+ dij(xkyl − δikyl − δjlxk )

+ dkl(xiyj − δikyj − δjlxi) + dij(δikδjl − dkl). 37 / 37
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