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Abstract

It is well known under the name of ‘periodic homogenization’ that, under a centering condition of the
drift, a periodic diffusion process on Rd converges, under diffusive rescaling, to a d-dimensional Brownian
motion. Existing proofs of this result all rely on uniform ellipticity or hypoellipticity assumptions on the
diffusion. In this paper, we considerably weaken these assumptions in order to allow for the diffusion
coefficient to even vanish on an open set. As a consequence, it is no longer the case that the effective
diffusivity matrix is necessarily non-degenerate. It turns out that, provided that some very weak regularity
conditions are met, the range of the effective diffusivity matrix can be read off the shape of the support of
the invariant measure for the periodic diffusion. In particular, this gives some easily verifiable conditions
for the effective diffusivity matrix to be of full rank. We also discuss the application of our results to the
homogenization of a class of elliptic and parabolic PDEs.
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1. Introduction

Our goal is to study, by a probabilistic method, the limit as ε → 0 of the solution uε(t, x) of
an elliptic PDE in the regular bounded domain D ⊂ Rd

⎧⎨
⎩Lεu

ε(x) + f

(
x,

x

ε

)
uε(x) = 0, x ∈ D,

uε(x) = g(x), x ∈ ∂D,

(1.1)

where f is bounded from above, and g is continuous, as well as the limit of uε(t, x), the solution
of a parabolic PDE of the form

⎧⎨
⎩

∂uε(t, x)

∂t
= Lεu

ε(t, x) +
(

1

ε
e

(
x

ε

)
+ f

(
x,

x

ε

))
uε(t, x),

uε(0, x) = g(x), x ∈ Rd .

(1.2)

In both cases, the linear operator Lε is assumed to be a second order differential operator with
rapidly oscillating coefficients given by

Lε = 1

2

d∑
i,j=1

aij

(
x

ε

)
∂2

∂xi∂xj

+
d∑

i=1

[
1

ε
bi

(
x

ε

)
+ ci

(
x

ε

)]
∂

∂xi

.

The novelty of our result lies in the fact that we allow the matrix a to degenerate (and even pos-
sibly to vanish) in some open subset D of Rd . There is by now quite a vast literature concerning
the homogenization of second order elliptic and parabolic PDEs with a possibly degenerating
matrix of second order coefficients a, see among others [2,3,6,7,19]. But, as far as we know, in
all of these works, either the coefficient a is allowed to degenerate in certain directions only, or
else it may vanish on sets of Lebesgue measure zero only. There is quite an extensive literature
covering homogenisation of perforated domains [1,5] (which one could interpret as having a

vanish inside the perforations), but it seems that the present work is the first to cover situations
where the domain on which the matrix a is nondegenerate has no unbounded component. The
main technical difficulty that we have to overcome is the lack of regularisation since we do not
assume Lε to be hypoelliptic (not even on a set of full measure). However, it turns out that it is
possible to show nevertheless that under very weak assumptions, its resolvent maps C 1 into C 1

(see Lemma 2.6), which provides a C1 solution to certain Poisson equations, and is sufficient to
make an approximation argument work (see Lemma 3.2).

Because of the high degree of degeneracy allowed by our approach, it is no longer obvious
that the effective diffusivity A of the homogenized operator

L0 = 1

2

d∑
i,j=1

Aij

∂2

∂xi∂xj

+
d∑

i=1

Ci

∂

∂xi

(1.3)

is non-degenerate. We shall therefore also seek to characterize the image of the homogenized
diffusion matrix. It turns out that this can be done in terms of the support of the invariant measure
of the diffusion process on the torus Td with drift b and diffusion matrix a.
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The paper is organized as follows. Section 2 contains our assumptions and several important
preliminary results. Section 3 presents the homogenization result, in probabilistic terms. Sec-
tion 4 contains our characterization of the image of the homogenized diffusion matrix A, and
Sections 5 and 6 present the application to elliptic and parabolic PDEs. Finally, Section 7 con-
tains a few concrete example that illustrate the scope of the results in this paper and highlight the
differences with the existing literature.

2. Assumptions and preliminary results

Given ε � 0, x ∈ Rd , let {Xx,ε
t } denote the solution of the SDE

X
x,ε
t = x +

t∫
0

[
1

ε
b

(
X

x,ε
s

ε

)
+ c

(
X

x,ε
s

ε

)]
ds +

m∑
j=1

t∫
0

σj

(
X

x,ε
s

ε

)
dW

j
s , (2.1)

where b, c, and σ are periodic, of period one in each direction, and the process {Wt =
(W 1

t , . . . ,Wm
t ), t � 0} is a standard m-dimensional Brownian motion.

Define X̃
x,ε
t = 1

ε
X

x,ε

ε2t
. Then there exists a standard m-dimensional Brownian motion {Wt }, de-

pending on ε (but we forget that dependence since it has no incidence on the law of the process),
such that

X̃
x,ε
t = x

ε
+

t∫
0

[
b
(
X̃x,ε

s

)+ εc
(
X̃x,ε

s

)]
ds +

m∑
j=1

t∫
0

σj

(
X̃x,ε

s

)
dW

j
s . (2.2)

In the sequel, we shall consider the solution of (2.2), as taking values in the torus Td . We will
also consider the same equation starting from x, but without the term εc in the drift, namely

X̃x
t = x +

t∫
0

b
(
X̃x

s

)
ds +

m∑
j=1

t∫
0

σj

(
X̃x

s

)
dW

j
s . (2.3)

We denote by J x
t the Jacobian of the stochastic flow associated to X̃x

t , that is {J x
t , t � 0}, the

d × d-matrix valued stochastic process solving

dJ x
t = Db

(
X̃x

t

)
J x

t dt +
m∑

j=1

Dσj

(
X̃x

t

)
J x

t dW
j
t , J x

0 = I. (2.4)

To the SDE satisfied by the process {X̃x· }, we associate, inspired by Stroock–Varadhan’s sup-
port theorem, the following controlled ODE ( from now on, we adopt the convention of summation
over repeated indices). For each x ∈ Td , u ∈ L2

loc(R+;Rm), let {zx
u(t), t � 0} denote the solution

of ⎧⎨
⎩

dzi

dt
(t) = bi

(
z(t)
)− 1

2

[
∂σij

∂xk

σkj

](
z(t)
)+ σij

(
z(t)
)
uj (t), (2.5)
z(0) = x.
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We shall also need the controlled ODE with b replaced by b + εc, namely we shall denote by
{zx,ε

u (t), t � 0} the solution of

⎧⎨
⎩

dzi

dt
(t) = [bi + εci]

(
z(t)
)− 1

2

[
∂σij

∂xk

σkj

](
z(t)
)+ σij

(
z(t)
)
uj (t),

z(0) = x.

(2.6)

We will throughout this paper make the following assumptions on the drift and the diffusion
coefficient.

Assumption H.1. The functions σ , b, and c are of class C∞ and periodic of period 1 in each
direction.

Consider now b and the σj as vector fields on the torus Td . We say that the strong Hörmander
condition holds at some point x ∈ Td if the Lie algebra generated by {σj }mj=1 spans the whole

tangent space of Td at x. We furthermore say that the parabolic Hörmander condition holds at
x if the Lie algebra generated by {∂t + b} ∪ {σj }mj=1 spans the whole tangent space of R × Td at
(0, x).

Assumption H.2. There exists a non-empty, open and connected subset U of Td on which
the strong Hörmander condition holds. Furthermore, there exist t0 > 0 and ε0 such that, for all
x ∈ Td , 0 � ε � ε0, one has

inf
u∈L2(0,t0;Rm)

{‖u‖L2; zx,ε
u (t0) ∈ U

}
< ∞.

Note that, by upper semicontinuity, the supremum over x ∈ Td and 0 � ε � ε0 of the above
infimum is bounded by a universal constant K .

Whenever X is a random variable and A an event, we shall use the notation

E(X;A) = E(XχA) = E(X | A)P(A).

Assumption H.3. One has

inf
t>0

sup
x∈Td

E
(∣∣J x

t

∣∣;{τx
V � t

})
< 1,

where V denotes the subset of Td where the parabolic Hörmander condition holds and τx
V is the

first hitting time of V by the process {X̃x
t }.

Remark 2.1. One simple criteria for this assumption to hold is the existence of a time t2 such
that P(τ x

V � t2) = 1 for all x ∈ Td .

Denote by pε(t;x,A) the transition probabilities of the Td -valued Markov process {X̃ε,x
t }.

(Note that ε = 0 is allowed and corresponds to the process {X̃x} defined in (2.3).)
t
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Lemma 2.2. Under Assumptions H.1 and H.2, the following Doeblin condition is satisfied: there
exist t1 > 0, 0 < ε1 � ε0, β > 0 and ν a probability measure on Td which is absolutely contin-
uous with respect to Lebesgue’s measure, such that for all 0 � ε � ε1, x ∈ Td , A, Borel subset
of Td ,

pε(t1;x,A) � βν(A). (2.7)

Proof. It is well known since the works of Malliavin, Bismut, Stroock et al. [4,12–15] that H.1
and H.2 imply that the transition probabilities starting from x ∈ U have a C∞ density with respect
to the Lebesgue measure, and that this density is also smooth in the initial condition and in ε.
In particular this implies that, for every t > 0, (ε, x) 	→ pε(t;x, ·) is continuous from [0,1] × U

into the set of probability measures on Td , equipped with the total variation distance. Let now
x0 ∈ U be arbitrary. It follows that there exist an open neighbourhood U0 ⊂ U of x, 0 < ε1 � ε0
and a probability measure ν such that pε(t;x, ·) � 1

2ν for every 0 � ε � ε1, x ∈ U0. Since the
measures pε(t;x, ·) are absolutely continuous, ν must also be absolutely continuous with respect
to Lebesgue’s measure.

Since U0 ⊂ U and since Assumption H.2 implies that (2.5) is locally controllable in U , it
follows from the support theorem that, for every s > t0 and every x ∈ Td , 0 � ε � ε1, one has
pε(s;x,U0) > 0. Since the Markov semigroup generated by the solutions of (2.3) is Feller and
since U0 is open, the function (ε, x) 	→ pε(s;x,U0) is lower semicontinuous and therefore at-
tains its lower bound β ′ on [0, ε1]×Td . The claim follows by taking β = β ′/2 and t1 = s+ t . �

In the sequel we shall denote by {Pε,t , t � 0} the Markov semigroup associated to the
Td -valued diffusion process {X̃ε,x

t , t � 0}. We shall also write Pt for the Markov semigroup
associated to {X̃x

t , t � 0}.

Corollary 2.3. Under Assumptions H.1 and H.2, for each 0 � ε � ε1, {X̃ε
t } possesses a unique

invariant probability measure με , which is absolutely continuous with respect to Lebesgue’s
measure. Moreover, there exist constants C and ρ > 0 such that

sup
x∈Td , 0�ε�ε1

∥∥pε(t;x, ·) − με

∥∥
TV � Ce−ρt , (2.8)

for every t � 0.

Proof. It follows from (2.7) that for all 0 � ε � ε1, one has∥∥pε(t1;x, ·) − pε(t1;y, ·)∥∥TV � 2 − 2β,

uniformly over x, y ∈ Td . Given now any two probability measures μ1 and μ2 on Td , we recall
from the definition of the total variation distance that there exists a positive measure ν with mass
δ := 1 − 1

2‖μ1 −μ2‖ such that both μ1 − ν and μ2 − ν are positive measures of mass 1 − δ. One
therefore has the bound

‖Pε,t1μ1 − Pε,t1μ2‖TV = ∥∥Pε,t1(μ1 − ν) − Pε,t1(μ2 − ν)
∥∥

TV

=
∥∥∥∥
∫
d

pε(t1;x, ·)(μ1 − ν)(dx) −
∫
d

pε(t1;y, ·)(μ2 − ν)(dy)

∥∥∥∥
TV
T T
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= 1

1 − δ

∥∥∥∥
∫
Td

∫
Td

(
pε(t1;x, ·) − pε(t1;y, ·))(μ1 − ν)(dx)(μ2 − ν)(dy)

∥∥∥∥
TV

� 1

1 − δ

∫
Td

∥∥pε(t1;x, ·) − pε(t1;y, ·)∥∥TV(μ1 − ν)(dx)(μ2 − ν)(dy)

� 1

1 − δ
(2 − 2β)(1 − δ)2 = (1 − β)(2 − 2δ)

� (1 − β)‖μ1 − μ2‖TV. (2.9)

This immediately implies the existence and uniqueness of an invariant probability measure με

for X̃ε
t .

To see that με is absolutely continuous with respect to Lebesgue’s measure, note that one can
decompose the transition semigroup Pε,t for t = t1 as

Pε,t1 = βν + (1 − β)P̄ε (2.10)

for some Markov operator P̄ε . It follows from the fact that the solutions of (2.2) generate flows of
diffeomorphisms [11], that P̄ n

ε ν is absolutely continuous with respect to the Lebesgue measure
for every n. Fix now an arbitrary set A with Lebesgue measure 0. It follows from the invariance
of με that με = (P ∗

ε,t1
)nμε for every n > 0. From this, (2.10), and the absolute continuity of ν, it

follows that με(A) � (1 − β)n for every n, and therefore that με(A) = 0.
Finally (2.8) follows from iterating (2.9) with μ2 = με . �
We shall need the

Lemma 2.4. Denote by μ = μ0 the invariant measure for (2.3). As ε → 0, one has με → μ

weakly.

Proof. The tightness is obvious, since Td is compact. Hence from any sequence εn converging
to 0, we can extract a further subsequence, which we still denote by {εn}, such that

μεn → μ̃.

Now if f ∈ C(Td), t > 0, clearly Pεn,t f (x) → Pt f (x) as n → ∞, uniformly for x ∈ Td , hence

∫
Td

Pεn,t f (x)μεn(dx) →
∫
Td

Pt f (x) μ̃(dx).

But the left-hand side equals ∫
Td

f (x)μεn(dx) →
∫
Td

f (x) μ̃(dx).

Consequently μ̃ is invariant under P ∗
t for all t > 0, hence μ̃ = μ, and με → μ weakly, as

ε → 0. �
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We can now deduce from (2.8), using also Lemma 2.4, exactly as in [17, Proposition 2.4], the
following corollary.

Corollary 2.5. Whenever f ∈ L∞(Td), for any t > 0,

t∫
0

f

(
X

x,ε
s

ε

)
ds → t

∫
Td

f (y)μ(dy)

in probability, as ε → 0.

We finally assume that

Assumption H.4. The drift b satisfies the centering condition
∫

Td b(x)μ(dx) = 0.

Denoting by

L = 1

2
aij (x)

∂2

∂xixj

+ bi(x)
∂

∂xi

with a(x) = σσ ∗(x) the infinitesimal generator of the Td -valued diffusion process {X̃x
t , t � 0},

it follows from Lemma 2.6 below that under Assumptions H.1–H.4, there exists a unique
C 1(Td ;Rd) solution of the Poisson equation

Lb̂(x) + b(x) = 0, x ∈ Td .

This solution is given by [18]

b̂(x) =
∞∫

0

Pt b(x) dt.

It is not clear a priori that b̂ is differentiable, however the following result shows that since b

belongs to C 1(Td), so does b̂.

Lemma 2.6. Under Assumption H.1, the semigroup Pt generated by (2.3) maps C 1(Td) into
itself. If furthermore H.2 and H.3 hold, then there exist positive constants C and γ such that

‖Pt f ‖C 1(Td ) � Ce−γ t‖f ‖C 1(Td ), (2.11)

for every f ∈ C 1(Td) such that
∫

f (x)μ(dx) = 0, and for every t > 0.

Proof. The proof relies on the techniques developed in [9]. Suppose that we can find a time t2
such that there exist a constant C and δ > 0 with

‖DPt f ‖L∞ � C‖f ‖L∞ + (1 − δ)‖Df ‖L∞, (2.12)
2
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for every test function f ∈ C 1(Td). It follows from [9, Section 2] that this, together with the
Doeblin condition given by Lemma 2.2, implies that (2.11) holds.

It remains to show that (2.12) does indeed hold. The set V can be defined as

V =
{
x; ∃�: Q�(x) :=

∑
Y∈Y�

Y (x) ⊗ Y(x) > 0

}
,

where Y� denotes the set of vector fields consisting of the σj ’s, their brackets and their brackets
with b, the number of those being bounded by �. The inequality Q�(x) > 0 means that the
quadratic form Q�(x) is strictly positive definite. Writing V as a union of compact sets, we see
that one can find a sequence �k such that V =⋃k�1 Vk , where Vk is the set of points where

Q�k
(x) > k−1I .

We now want to take advantage of the fact that as soon as the process X̃x hits Vk , its Malliavin
matrix becomes invertible. However, we face the problem that the hitting time of Vk does not
necessarily have a Malliavin derivative. This is the motivation for the next construction. Let Ω

and Ω̄ be two independent copies of the m-dimensional Wiener space, and denote by B and B̄

the corresponding canonical processes. We first consider the auxiliary SDE

dy = b(y) dt +
m∑

j=1

σj (y) dB
j
t , y(0) = x,

and define τ̃ x
k as the hitting time of Vk by the process y. Let t2 > 0 be such that

sup
x∈Td

E
(∣∣J x

t2

∣∣;{τx
V � t2

})
< 1, (2.13)

and

τx
k =

{
τ̃ x
k , when τ̃ x

k < t2,

+∞, otherwise.

We now define a process W by

Wt =
{

Bt for t � τx
k ,

Bτx
k

+ B̄t−τx
k

for t � τx
k .

Since τx
k is a stopping time, W is again an m-dimensional Wiener process. We can (and will

between now and the end of this proof) therefore consider the process X̃x
t to be driven by the

process W that was just constructed.
Consider (see (2.4)) the (d × d)-matrix valued SDE

dJ x
t = Db

(
X̃x

t

)
J x

t dt +
m∑

j=1

(
Dσj

(
X̃x

t

)
J x

t

)
dW

j
t , J0 = I.

We next define the (random) linear map Ax :L2([0,1];Rm) → Rd by
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Axu =
m∑

j=1

τx
k +1∫

τx
k

(
J x

s

)−1
σj

(
Xx

s

)
uj

(
s − τx

k

)
ds,

with the convention that Ax = 0 on the set {τx
k = +∞}. Define the (random) map Cx : Rd → Rd

by Cx = AxA
∗
x . It then follows from [16] and the strong Markov property that

Proposition 2.7. For every x ∈ Td , the matrix Cx is almost surely invertible on the set {τx
k <

+∞}. Furthermore, for every k and every p there exists a constant Kk,p such that E(‖C−p
x ‖ |

τx
k < ∞) � Kk,p .

Fix now an arbitrary vector ξ ∈ Rd and define a stochastic process v : [0,1] → Rm by

v = A∗
xC

−1
x ξ.

(We set as before v = 0 on the set {τx
k = +∞}.) The reason for performing this construction is

that we are now going to use Malliavin calculus on the probability space Σ = Ω × Ω̄ equipped
with the canonical Gaussian subspace generated by the Wiener process B̄ . It is then straightfor-
ward to check [16] that one has v ∈ D1,2. Note however that since the stopping time τx

k is not
Malliavin differentiable in general, it is not necessarily true that v ∈ D1,2 if we equip Σ with the
Gaussian structure inherited from W .

This construction yields the following equality, valid for every f ∈ C 1(Td) and for t = t2 + 1:

t∫
0

Ds

(
f
(
X̃x

t

))
vs ds =

{
(Df )(X̃x

t )J x
t ξ if τx

k < ∞,

0 if τx
k = ∞,

where D stands for the Malliavin derivative with respect to B̄ . It then follows from the integration
by parts formula [16, Section 1.3] that

DPt f (x)ξ = E

(
f
(
X̃x

t

) 1∫
0

v(s) dB̄s

)
− E

(
(Df )

(
X̃x

t

)
J x

t ξ ; τx
k = ∞),

where the integral is to be understood in the Skorokhod sense. It follows from [16, p. 39] that

‖DPt2f ‖∞ � ‖Df ‖∞E
(∣∣J x

t2

∣∣;{τx
k = ∞})+ ‖f ‖∞E

( 1∫
0

‖vs‖2 ds +
1∫

0

1∫
0

‖Dsvr‖2 dr ds

)
.

Since, for every k, the second term is bounded uniformly in x ∈ Td , it remains to show that we
can choose k such that

sup
x

E
(∣∣J x

t2

∣∣;{τx
k = ∞})< 1.

Assume this is not the case. Then to each k, we can associate a point xk such that

E
(∣∣J xk

t

∣∣;{τxk � t2
})

� 1.

2 k
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We can assume (up to extracting a subsequence) that xk → x. For all � ∈ N,

1 � lim sup
k→∞

E
(∣∣J xk

t2

∣∣;{τxk

k � t2
})

� lim sup
k→∞

E
(∣∣J xk

t2

∣∣;{τxk

� � t2
})

� E
(∣∣J x

t2

∣∣;{τx
� � t2

})
,

since the mapping x → χ{τx
� �t2} is a.s. upper semicontinuous, as the indicator function of a

closed subset of trajectories. Since

lim
�→∞χ{τx

� �t2} = χ{τx
V �t2} a.s.,

this contradicts (2.13). �
Remark 2.8. We claim that Assumption H.3 is close to being sharp for the conclusion of
Lemma 2.6 to hold. The simplest example (which is however not a diffusion on the torus) on
which this can be seen is as follows. Let τ be an exponential random variable with parameter
b > 0, and

Xx
t =

{
eatx, if t < τ,

0, otherwise.

In this case

E
(∣∣J x

t

∣∣; {τ > t})= e(a−b)t ,

and

‖DPt f ‖∞ = e(a−b)t‖Df ‖∞,

so that ‖Pt f ‖C 1 → 0 if and only if H.3 holds.

3. The homogenization result

The goal of this section is to show the

Theorem 3.1. We have that, in the sense of weak convergence on the space C(R+) equipped with
the topology of uniform convergence on compact sets,

Xx,ε ⇒ Xx, where Xx
t = x + Ct + A1/2Wt,

as ε → 0. Here, {Wt, t � 0} is a standard Brownian motion, and the homogenized coefficients C

and A are given by

C =
∫
Td

(I + ∇b̂)c(x)μ(dx),

A =
∫
Td

(I + ∇b̂)a(I + ∇b̂)∗(x)μ(dx).
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In order to prove this theorem, we need to get rid of the term of order ε−1 in the SDE (2.1).
The trick is to replace X

x,ε
t by

X̂
x,ε
t := X

x,ε
t + εb̂

(
X

x,ε
s

ε

)
,

and to take advantage of the

Lemma 3.2. The following equality holds almost surely:

X̂
x,ε
t = x + εb̂

(
x

ε

)
+

t∫
0

(I + ∇b̂)c

(
X

x,ε
s

ε

)
ds +

t∫
0

(I + ∇b̂)σ

(
X

x,ε
s

ε

)
dWs.

Proof. Let ρ : Rd → R+ be a smooth function with compact support, such that∫
Rd

ρ(x) dx = 1,

and define ρn(x) = ndρ(nx). We regularize b̂ by convolution

b̂n = b̂ ∗ ρn.

We now deduce from Itô’s formula that

X̂
ε,n
t := X

x,ε
t + εb̂n

(
X

x,ε
t

ε

)

= x + εb̂n

(
x

ε

)
+ ε−1

t∫
0

(Lb̂n + b)

(
X

x,ε
s

ε

)
ds +

t∫
0

(I + ∇b̂n)c

(
X

x,ε
s

ε

)
ds

+
t∫

0

(I + ∇b̂n)σ

(
X

x,ε
s

ε

)
dWs.

We want next to let n → ∞. Clearly b̂n → b̂ and ∇b̂n → ∇b̂ pointwise, and the two sequences
are bounded, uniformly with respect to n and x ∈ Td . It remains to treat the term containing the
second order derivatives. One has

Lb̂n = (Lb̂) ∗ ρn + ϕn,

and since b̂ is a weak solution of the Poisson equation,

(Lb̂) ∗ ρn = −b ∗ ρn → −b,

the sequence being again uniformly bounded. It remains to study the sequence ϕn. Using again
the convention of summation over repeated indices, we have
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ϕn(x) = 1

2

∫
Rd

[
aij (x) − aij (x − y)

] ∂2b̂

∂xi∂xj

(x − y)ndρ(ny)dy

+
∫

Rd

[
bi(x) − bi(x − y)

] ∂b̂

∂xi

(x − y)ndρ(ny)dy. (3.1)

The fact that the second integral in (3.1) converges to 0 and is uniformly bounded is easily
established. We now integrate by parts the first integral, yielding

∫
Rd

[
aij (x) − aij (x − y)

] ∂2b̂

∂xi∂xj

(x − y)ndρ(ny)dy

=
∫

Rd

∂aij

∂xi

(x − y)
∂b̂

∂xj

(x − y)ndρ(ny)dy

+
∫

Rd

[
aij (x) − aij (x − y)

] ∂b̂

∂xj

(x − y)nd+1ρ′
i (ny) dy.

The first term on the right-hand side is uniformly bounded and converges to

∂aij

∂xi

(x)
∂b̂

∂xj

(x).

The second term is equal to

∫
Rd

y · ∇aij (x − y′) ∂b̂

∂xj

(x − y)nd+1ρ′
i (ny) dy,

where |y′| � |y|. This last quantity is equal to a bounded sequence converging to 0, plus

∂aij

∂xk

(x)
∂b̂

∂xj

(x)

∫
ykn

d+1ρ′
i (ny) dy = −∂aij

∂xi

(x)
∂b̂

∂xj

(x).

The lemma is established. �
We now proceed with the

Proof of Theorem 3.1. Recall that, as in the statement of the theorem, we use ⇒ to denote weak
convergence for laws of processes on the space C(R+) equipped with the topology of uniform
convergence on compact sets. We first note that since

∣∣X̂x,ε
t − X

x,ε
t

∣∣� Cε,
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the theorem will follow if we prove that, as ε → 0,

X̂x,ε ⇒ Xx.

But since

X̂
x,ε
t = x +

t∫
0

(I + ∇b̂)c

(
X

x,ε
s

ε

)
ds + Mε

t ,

one has

〈〈
Mε
〉〉
t
=

t∫
0

(I + ∇b̂)a(I + ∇b̂)∗
(

X
x,ε
s

ε

)
ds,

and the result follows from Corollary 2.5 and the martingale central limit theorem, see e.g. [8,
Theorem 7.1.4]. �

We conclude this section with the following result, which extends the averaging result of
Corollary 2.5. It is going to be needed in the applications of Sections 5 and 6.

Proposition 3.3. Let f ∈ C(Rd × Td). Then for every t > 0, the following convergence holds in
law as ε → 0:

t∫
0

f

(
Xx,ε

s ,
X

x,ε
s

ε

)
ds ⇒

t∫
0

f̄
(
Xx

s

)
ds,

where

f̄ (x) :=
∫
Td

f (x, y)μ(dy).

Proof. It is easily checked that f̄ is continuous, hence

t∫
0

f̄
(
Xx,ε

s

)
ds ⇒

t∫
0

f̄
(
Xx

s

)
ds,

as ε → 0. It then suffices to show that∣∣∣∣∣
t∫

0

f

(
Xx,ε

s ,
X

x,ε
s

ε

)
ds −

t∫
0

f̄
(
Xx,ε

s

)
ds

∣∣∣∣∣→ 0

in probability, as ε → 0. This is proved by exploiting the tightness in C(R+) of the collection of
processes {Xx,ε· , ε > 0}, and Corollary 2.5. For the details, see the proof of Lemma 4.2 in [17]
(there is a misprint in the statement of that lemma). �
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4. Characterization of the image of the homogenized diffusion matrix

The aim of this section is to give a characterisation of the range of A which can very easily
be read off the support of the invariant measure μ. We first state all of our results and then prove
them in the following subsection.

4.1. Statements of the results

It will be convenient in our statements to choose an arbitrary particular point x0 ∈ U . We
define the set Γ , consisting of loops on Td , starting and ending at x0, which take the form

γ (s) = zx0
u (s), 0 � s � t,

with arbitrary t > 0 and u ∈ L2(0, t;Rm). We call loops in Γ admissible. It follows from H.2
that the set of admissible loops does not depend on the particular choice of x0.

We next define a mapping g :Γ → Zd as follows. Lifting each loop γ , so as to transform it
into a curve γ̄ in Rd , we define

g(γ ) = γ̄ (t) − γ̄ (0),

where t is the end time of the loop γ . The first step in our characterization of the image of A is
to show that

Theorem 4.1. Under Assumptions H.1–H.4, g(Γ ) ⊂ ImA.

The converse to this result takes the following form:

Theorem 4.2. Under Assumptions H.1–H.4, for each e ∈ ImA, with |e| = 1, and for every δ > 0,
there exists a loop γ ∈ Γ such that ∣∣∣∣ g(γ )

|g(γ )| − e

∣∣∣∣� δ.

It follows immediately from the above theorems that under the same assumptions,

Corollary 4.3. ImA = span{g(γ ), γ ∈ Γ }.

Corollary 4.4. The matrix A is non-degenerate if and only if there exists a collection of admissi-
ble loops {γ1, . . . , γd} ⊂ Γ such that

span
{
g(γ1), . . . , g(γd)

}= Rd .

The next corollary is slightly less obvious and will be shown in the next subsection. It will
mainly be useful in the proof of Theorem 4.6 below, but since it is not a priori an obvious fact,
we state it separately.

Corollary 4.5. The set G = {g(γ ), γ ∈ Γ } is a subgroup of Zd .
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We denote by S the interior of the support of the invariant measure μ. It follows from H.2 that
the support of μ is then the closure of S. It turns out that as far as the characterisation of ImA is
concerned, we can replace admissible loops by arbitrary loops in S. This may sound somewhat
surprising at first sight, since it is certainly not true in general that every loop in S is admissible.
One has however

Theorem 4.6. Every admissible loop γ satisfies γ ⊂ S. Conversely, for every loop ρ ⊂ S, one
can find an admissible loop γ with g(ρ) = g(γ ).

Remark 4.7. Combining Theorem 4.6 with Corollary 4.3, we find that ImA is completely char-
acterised by the topology of the set S. This is however not necessarily true if we drop the
regularity conditions H.2–H.3. In particular, it follows from Corollary 4.3 that one can find a
basis for ImA which has rational coordinates. A ‘counterexample’ (with d = 2 and m = 1) to
this claim is given by taking b = c = 0 and σ1 = (1,

√
2), so that ImA is the vector space gen-

erated by (1,
√

2). Of course, this example satisfies neither H.2 nor H.3 and does therefore not
contradict our results.

Remark 4.8. The argument in [10, p. 264] shows that A is non-degenerate whenever the set
span{g(γ ), γ ∈ S0} is equal to Rd , where S0 is a connected subset of the support of the invariant
measure μ where a is elliptic. Clearly the result presented here is stronger.

4.2. Proofs of the results

We start with the

Proof of Theorem 4.1. Let ξ ∈ Rd be such that 〈Aξ, ξ 〉 = 0. We will prove that for any γ ∈ Γ ,
〈g(γ ), ξ 〉 = 0. We shall make use of the notation bξ (x) = 〈b(x), ξ 〉, and of the three following
facts:

• b̂ξ solves the Poisson equation

Lb̂ξ (x) + bξ (x) = 0, x ∈ Td ; (4.1)

• 〈Aξ, ξ 〉 = 0, which, when we explicit the matrix A, amounts to the fact that

〈∇b̂ξ , σ·j 〉 + 〈σ·j , ξ 〉 = 0, 1 � j � d, for μ a.e. x. (4.2)

Note that (4.2) holds true μ-almost everywhere. It can be noted that the trajectories of the
solutions of (2.5) starting from the point x0 remain in the interior of the support of μ, which
is absolutely continuous with respect to the Lebesgue measure. Hence (4.2) holds true almost
everywhere in the neighbourhood of such a trajectory, consequently everywhere there, due
to continuity.

• We can now differentiate (4.2) with respect to xk , and multiply the resulting identity by σkj ,
from which we deduce that

σkj (x)
∂

∂xk

(
σij

∂b̂ξ

∂xi

)
(x) = −ξi

(
σkj

∂σij

∂xk

)
(x), x ∈ Td . (4.3)
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Choose a loop γ ∈ Γ , and denote by t its end time. We now have, for 0 < s < t ,

d

ds
b̂ξ

(
γ (s)

)= ∇b̂ξ

(
γ (s)

)dγ

ds
(s)

= 〈b,∇b̂ξ 〉
(
γ (s)

)− 1

2

[
∂b̂ξ

∂xi

∂σij

∂xk

σkj

](
γ (s)

)+ [∂b̂ξ

∂xi

σij

](
γ (s)

)
uj (s)

= −bξ

(
γ (s)

)− 1

2

[
aij

∂2b̂ξ

∂xi∂xj

+ σkj

∂σij

∂xk

∂b̂ξ

∂xi

](
γ (s)

)− ξiσij

(
γ (s)

)
uj (s)

= −bξ

(
γ (s)

)+ 1

2
ξi

[
σkj

∂σij

∂xk

](
γ (s)

)− ξiσij

(
γ (s)

)
uj (s)

= −
〈
dγ

ds
(s), ξ

〉
,

where we have used (4.1) and (4.2) for the third equality, and (4.3) for the fourth equality. Inte-
grating from s = 0 to s = t , we deduce that

〈
g(γ ), ξ

〉+ 〈b̂ξ

(
γ̄ (t)

)− b̂ξ

(
γ̄ (0)

)
, ξ
〉= 0,

from which it follows, since b̂ is periodic, that 〈g(γ ), ξ 〉 = 0. The result follows. �
Proof of Theorem 4.2. Let e ∈ ImA with |e| = 1 and α > 0. We denote by B(x,α) the ball in
Rd of radius α, centered at x. Note that

P
(
A1/2W1 ∈ B(e,α)

)
> 0.

It follows that for ε > 0 small enough (here Xε is defined with c = 0),

P
(
X

ε,εx0
1 ∈ B(εx0 + e,α)

)
> 0.

Consequently

P
(

X̃
x0
1/ε2 ∈ B

(
x0 + e

ε
,
α

ε

))
> 0.

It then follows from Stroock–Varadhan’s support theorem that there exists a control u ∈
L2(0,1/ε2;Rm) such that the corresponding z-trajectory, lifted to Rd , satisfies

z̄(0) = x0,
∣∣z̄(1/ε2)− (x0 + e/ε)

∣∣� α/ε.

Now from H.2, there exist t � t0 and u ∈ L2( 1
ε2 , 1

ε2 + t;Rm), such that z̄( 1
ε2 + t) = x0 + g(γ ),

where

γ =
{
z(s), 0 � s � 1

2
+ t

}
∈ Γ.
ε
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We have constructed a loop γ such that∣∣∣∣g(γ ) − e

ε

∣∣∣∣� α

ε
+ C,

for some universal constant C (see the remark following Assumption H.2). Multiplying by ε, we
get ∣∣εg(γ ) − e

∣∣� α + εC,

and consequently ∣∣∣∣ g(γ )

|g(γ )| − e

∣∣∣∣� 2(α + εC),

from which the result follows, provided we let ε � δ/4C and choose α = δ/4. �
Proof of Corollary 4.5. It follows from Theorem 4.2 that linear combinations of elements of
G with positive coefficients are dense in ImA. Since they form a cone, they must therefore
coincide with ImA. Denoting the dimension of ImA by k, it follows from Theorem 4.1 that, for
any g ∈ G, there exist α1, . . . , αk ∈ R+ and linearly independent elements g1, . . . , gk ∈ G such
that

−g =
k∑

i=1

αigi .

In fact, since g and all gi have integer coordinates and since the inverse of a matrix with integer
coefficients has rational coefficients, the αi ’s must be rational. Consequently, there exists n ∈ N
such that −ng ∈ G, from which it follows immediately that −g ∈ G. We have proved that G is a
group. �
Proof of Theorem 4.6. The first statement follows from the fact that any admissible trajectory
starting at x0 stays in S.

Conversely, we first note that since S is connected, to each loop ρ ⊂ S, we can associate
a loop ρ′ ⊂ S starting from x0, with g(ρ′) = g(ρ). So we might as well assume that ρ starts
from x0. Denote by S̄ the lift of S to Rd . It now follows that x0 and x0 +g(ρ) belong to the same
connected component S̄′ of S̄. It remains to show that there exists an admissible loop γ such that
γ̄ joins x0 and x0 + g(ρ). In other words, it remains to show that g(ρ) ∈ G.

For that sake, first notice that

S̄ =
⋃

k∈Zd

C(k),

where C(k) denotes the set of accessible points from x0 + k by the solution of the controlled
ODE (2.5) lifted to Rd . Consequently we have that

S̄′ =
⋃

d ¯′
C(k).
k∈Z , x0+k∈S
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Recall that x0 + g(ρ) ∈ S̄′. Since each C(k) is open, there exist n > 0 and a chain f1, . . . , fn of
points in Zd such that, with f0 = 0 and fn+1 = g(ρ),

C(fi) ∩ C(fi+1) �= ∅, 0 � i � n.

Pick a point y ∈ C(fi) ∩ C(fi+1). There exist a control such that the solution of (2.5) (lifted
to Rd ) starting from x0 + fi reaches y in finite time, and another one such that the solution
starting from x0 + fi+1 also reaches y in finite time. It follows from Assumption H.2 that there
exists a control such that the solution starting from y reaches some x0 + f in finite time. Hence
f − fi , f − fi+1 ∈ G. Since G is a group, fi+1 − fi ∈ G, for all 0 � i � n. We have proved that
g(ρ) ∈ G. �
5. Homogenization of an elliptic PDE

In this section, we show how to apply the homogenization results obtained in the previous
sections to the elliptic homogenization problem (1.1). Let D be a bounded domain in Rd with a
C 1 boundary, and define

τ ε = inf
{
t � 0,Xε

t /∈ D̄
}
.

Let α � 0 be such that for all x ∈ D,

sup
ε>0

Ex exp
(
ατε
)
< ∞. (5.1)

We assume that f ∈ C(R2d), that it is periodic with respect to its second variable, and that there
exists δ > 0 such that

f (x, y) � (α − δ)+, ∀x ∈ Rd, y ∈ Td . (5.2)

Remark 5.1. We will need conditions (5.1) and (5.2) in order to deduce some uniform integrabil-
ity. Condition (5.1) must be checked in each particular example. It is always satisfied with α = 0
(unless one is in the case A = 0), in which case (5.2) requires that f (x, y) < 0, x ∈ Rd, y ∈ Td .
This condition can be relaxed only if (5.1) is satisfied with some α > 0.

The solution of the elliptic PDE⎧⎨
⎩Lεu

ε(x) + f

(
x,

x

ε

)
uε(x) = 0, x ∈ D,

uε(x) = g(x), x ∈ ∂D,

is then given by the Feynman–Kac formula

uε(x) = Ex

[
g
(
Xε

τε

)
exp

( τ ε∫
0

f

(
Xε

s ,
Xε

s

ε

)
ds

)]
.

We define as before
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A =
∫
Td

(I + ∇b̂)a(I + ∇b̂)∗(x)μ(dx),

C =
∫
Td

(I + ∇b̂)c(x)μ(dx),

D(x) =
∫
Td

f (x, y)μ(dy),

L = 1

2
Aij

∂2

∂xi∂xj

+ Ci

∂

∂xi

.

From Theorem 3.1, Xε ⇒ X as ε → 0, where

Xt = x + Ct + A1/2Wt, t � 0.

We assume here moreover that

A is strictly positive definite. (5.3)

Then

τ = inf{t � 0,Xt /∈ D̄}

is an a.s. continuous function of the limiting trajectory {Xt }. It follows from Proposition 3.3 that

t∫
0

f

(
Xε

s ,
Xε

s

ε

)
ds ⇒

t∫
0

D(Xs)ds.

From (5.1) and (5.2) we deduce the necessary uniform integrability in order to establish the

Theorem 5.2. Under the conditions H.1–H.4, (5.1)–(5.3),

uε(x) → Ex

[
g(Xτ ) exp

( τ∫
0

D(Xs)ds

)]
, as ε → 0,

where u(x) := Ex[g(Xτ ) exp(
∫ τ

0 D(Xs)ds)] is the solution of the elliptic PDE

{
Lu(x) + D(x)u(x) = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,

at least in the viscosity sense.
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Remark 5.3. The assumption that A be nondegenerate is not really necessary for our purpose. All
we need is that for almost all (with respect to the law of Xx

τ ) points x ∈ ∂D, 〈An(x),n(x)〉 > 0,
where n(x) denotes the normal at x to ∂D. Depending on the geometry of D, this can be true
even if dim(ImA) = 1 and d > 1.

6. Homogenization of a parabolic PDE

Assume that a, b, c satisfy the above assumptions. Let e ∈ C 1(Rd,R), f ∈ Cb(Rd × Rd,R),
e is periodic, f is periodic with respect to its second argument, and g ∈ C(Rd) grows at most
polynomially at infinity. For each ε > 0, we consider the PDE:

⎧⎨
⎩

∂uε

∂t
(t, x) = Lεu

ε(t, x) +
(

1

ε
e

(
x

ε

)
+ f

(
x,

x

ε

))
uε(t, x),

uε(0, x) = g(x), x ∈ Rd .

(6.1)

We assume that ∫
Td

e(x)μ(dx) = 0. (6.2)

Define

Y ε
t =

t∫
0

[
1

ε
e

(
Xε

s

ε

)
+ f

(
Xε

s ,
Xε

s

ε

)]
ds.

Then the solution of (6.1) is given by

uε(t, x) = E
[
g
(
Xε

t

)
exp
(
Y ε

t

)]
, (6.3)

where Xε
t is the solution of the SDE (2.1).

Define

ê(x) =
∞∫

0

Ex

[
e(X̃t )

]
dt,

b̂i(x) =
∞∫

0

Ex

[
bi(X̃t )

]
dt, i = 1, . . . , d,

the weak sense solutions of the Poisson equations

Lê(x) + e(x) = 0,

Lb̂i(x) + bi(x) = 0, i = 1, . . . , d.
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We let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
∫
Td

(I + ∇b̂)a(I + ∇b̂)∗(x)μ(dx),

C =
∫
Td

(I + ∇b̂)(c + a∇ ê)(x)μ(dx),

D(x) =
∫
Td

(
1

2
∇ ê∗a∇ ê + f (x, ·) + ∇ êc

)
(y)μ(dy).

(6.4)

Then, defining again Xx
t = x + Ct + A

1
2 Wt ,

u(t, x) = E
[
g
(
Xx

t

)
e
∫ t

0 D(Xx
s ) ds

]
is the solution (at least in the viscosity sense) of the parabolic PDE⎧⎨

⎩
∂u

∂t
(t, x) = 1

2
Aij

∂2u

∂xi∂xj

(t, x) + Ci

∂u

∂xi

(t, x) + D(x)u(t, x),

u(0, x) = g(x), x ∈ Rd .

Theorem 6.1. Under the conditions H.1–H.4, the smoothness of e, the boundedness and conti-
nuity of f , the continuity and growth condition on g and (6.2), for all t � 0, x ∈ Rd ,

uε(t, x) → u(t, x)

as ε → 0.

For the proof of Theorem 6.1, we need a result which is proved exactly as Lemma 3.2, namely

Lemma 6.2. Define

Ŷ ε
t = Y ε

t + εê

(
Xε

t

ε

)
.

Then the following holds for each ε > 0 and t > 0:

Ŷ ε
t = εê

(
x

ε

)
+

t∫
0

[f + ∇ êc]
(

Xε
s ,

Xε
s

ε

)
ds +

t∫
0

∇ êσ

(
Xε

s

ε

)
dWs.

We can now proceed with the

Proof of Theorem 6.1. We first define a new probability P̃ by the formula

dP̃
dP

∣∣∣∣
t

= exp

( t∫
∇ êσ

(
Xε

s

ε

)
dWs − 1

2

t∫
〈∇ ê, a∇ ê〉

(
Xε

s

ε

)
ds

)
.

0 0
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We next remark that it follows from (6.3) that the behaviour as ε → 0 of uε(t, x) is the same as
that of

ûε(t, x) := E
[
g
(
X̂ε

t

)
exp
(
Ŷ ε

t − εê(x/ε)
)]

.

The definition of P̃ then yields

ûε(t, x) = Ẽ

[
g
(
X̂ε

t

)
exp

t∫
0

f̃

(
Xε

s ,
Xε

s

ε

)
ds

]
,

where we defined

f̃ = f + ∇ êc + 1

2
〈∇ ê, a∇ ê〉.

On the other hand, it follows from Girsanov’s theorem that

X̂ε
t = x + εb̂

(
x

ε

)
+

t∫
0

(I + ∇b̂)(c + a∇ ê)

(
Xε

s

ε

)
ds +

t∫
0

(I + ∇b̂)σ

(
Xε

s

ε

)
dW̃s,

where W̃t = Wt − ∫ t

0 σ t∇ ê(
Xε

s

ε
) ds is a Brownian motion under P̃.

An obvious adaptation of the proof of Theorem 3.1 shows that X̂x,ε ⇒ Xx , where Xx
t =

x + Ct + A1/2W̃t , C is given by (6.4), and {W̃t } is a Brownian motion under P̃. Since it follows
from Proposition 3.3 that

t∫
0

f̃

(
Xε

s ,
Xε

s

ε

)
ds ⇒

t∫
0

D
(
Xx

s

)
ds

as ε → 0, the result follows. �
7. Examples and counterexamples

This section provides several examples of degenerate diffusions for which our results apply. In
each case, we furthermore give a characterisation of the range of the effective diffusion matrix A.

The figures should be interpreted as follows. The little black arrows show the vector field b.
The shaded dark grey regions denote the points where the strong Hörmander condition holds
(take for example a elliptic in the grey regions). We make no assumption whatsoever on the
positivity of a in the white regions. In particular, a is allowed to vanish there.

Our first example (which is the only one that we are going to work out in some detail) is a
typical example of the type of diffusions for which our conditions H.1–H.4 apply. Observe first
that the diffusion {X̃t , t � 0} on Td has the measure with density p as invariant measure, and H.4
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Fig. 1.

is satisfied if and only if there exists a mapping H from Td into the set of d × d antisymmetric
matrices, such that

bi(x) = 1

2p(x)

∑
j

∂

∂xj

(paij + Hij )(x), 1 � i � d, x ∈ Td .

Let α : Td → [0,1] be a smooth function such that the set A = {x | α(x) = 0} has a finite
number of bounded connected components. For ρ > 0, we define the set Aρ := {x, d(x, A) � ρ}
and we assume that there exists ρ > 0 such that Aρ intersects neither {x1 = 0} nor {x1 = 1/2}.

We choose our diffusion matrix σ to be given by σ(x) = α(x)I , and we let

H =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 (2π)−1 cos(2πx1)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
−(2π)−1 cos(2πx1) 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ .

Hence, if we choose

2b(x) = ∇(α2)(x) +

⎛
⎜⎜⎝

0
...

0
sin(2πx1)

⎞
⎟⎟⎠ ,

then the Lebesgue measure is invariant for the process X̃x
t . Fig. 1 shows the vector field given

by b, together with an example of a set A (the white disks) that satisfies our conditions.
Assumptions H.1 and H.4 are satisfied by construction. Assumption H.2 is satisfied since,

by taking the trivial control u = 0, there exists a time t such that every solution to the controlled
system reaches the complement of A before time t . The same argument shows that H.3 is satisfied
as well.
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Fig. 2.

Fig. 3.

Our second example is depicted in Fig. 2 and provides a situation where the diffusion matrix
of the limiting Brownian motion is non-degenerate even though the area in which the strong
Hörmander condition holds does not intersect the boundaries of the fundamental domain. In
particular, the argument of [10] mentioned in Remark 4.8 does not cover this situation.

In this case, it is easy to see that every point of the torus can be reached by the diffusion on
the torus, so that μ has full support and therefore A has full rank. Indeed, take any point on the
torus. If it is in the interior of the dark region, it can trivially be reached by the controlled ODE.
If not, follow the drift flow in the reverse direction, starting from that point. The trajectory which
we create in this way intersects the interior of the dark region. It is now clear that the controlled
ODE can reach the given point in finite time.

Our third example, depicted in Fig. 3, is in a way opposite to the first one. It shows that it
is possible for the limiting Brownian motion to have zero diffusion coefficient, even though the
area in which the strong Hörmander condition holds stretches over the whole space.
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Fig. 4.

In this case, the support S of the invariant measure is given by the gray disk, so that g(γ ) = 0
for every loop in S. This example again relies in a crucial way on the deterministic drift b. If we
take the same example but change the sign of b, then the homogenized diffusion matrix A has
full rank, since the support of the invariant measure will contain the unbounded shaded area.

In Fig. 4, we finally show an example where the effective diffusivity degenerates in one di-
rection. In this particular case, the range of A is the one-dimensional subspace of R2 spanned by
the vector (1,2).
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