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Abstract

NK fitness landscapes are stochastically generated fitness functions on bit
strings, parameterized (with � genes and � interactions between genes) so as to
make them tunably ‘rugged’. Under the ‘natural’ genetic operators of bit-flipping
mutation or recombination, NK landscapes produce multiple domains of attrac-
tion for the evolutionary dynamics. NK landscapes have been used in models of
epistatic gene interactions, coevolution, genome growth, and Wright’s shifting bal-
ance model of adaptation. Theory for adaptive walks on NK landscapes has been
derived, and generalizations that extend beyond Kauffman’s original framework
have been utilized in these applications.
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B2.7.2.1 Introduction

A very short time after the first mathematical models of Darwinian evolution were
developed, Sewall Wright (1932) recognized a deep property of population genetic
dynamics: when fitness interactions exist between genes, the genetic composition
of a population can evolve into multiple domains of attraction. The specific fitness
interaction is epistasis, where the effect on fitness from altering one gene depends
on the allelic state of other genes (Lush, 1935). Epistasis makes it possible for the
population to evolve toward different combinations of alleles, depending on its initial
genetic composition. (Wright’s framework also included the complication of diploid
genetics, which augments the fitness interactions that produce multiple attractors.)�
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Wright thus found a conceptual link between a microscopic property of organisms—
fitness interactions between genes—and a macroscopic property of evolutionary dynamics—
multiple population attractors in the space of genotypes. To illustrate this situation,
Wright invoked the metaphor of a landscape with multiple peaks, in which a population
would evolve by moving up hill until it reached its local fitness peak. This metaphor
of the ‘adaptive landscape’ is the general term used to describe multiple domains of
attraction in evolutionary dynamics.

Wright was specifically interested in how populations could escape from local fitness
peaks to higher ones through stochastic fluctuations in small population subdivisions.
His was thus one of the earliest conceptions of a stochastic process for the optimization
of multimodal functions.

Stuart Kauffman devised the ‘NK fitness landscape’ model to explore the way that
epistasis controls the ‘ruggedness’ of an adaptive landscape (Kauffman and Levin,
1987; Kauffman, 1989). Kauffman wanted to specify a family of fitness functions
whose ruggedness could be ‘tuned’ by a single parameter. He did this by building up
landscapes from multiple ‘atoms’ of maximal epistasis.

The NK model is a stochastic method for generating fitness functions � : � 0 � 1 �
	��
���
, on binary strings, ����� 0 � 1 �
	 , where the genotype � consists of � loci, with

two possible alleles at each locus ��� . (As such, it is an example of a random field
model elaborated upon in Stadler and Happel (1995).) It has two basic components:
a structure for gene interactions, and a way this structure is used to generate a fitness
function for all the possible genotypes.

The gene interaction structure is created as follows: The genotype’s fitness is the
average of � fitness components ��� contributed by each locus � . Each gene’s fitness
component � � is determined by its own allele, � � , and also the alleles at � other epistatic
loci (so � must fall between 0 and ��� 1). Thus, the fitness function is:��� �"!�# 1� 	$ �&% 1

���'�(�)� ; �)� 1 �+*,*,*
�-�)�/.0!1� (B2.7.2.7)

where �2� 1 �,*,*+*2�3�'45�768� 1 �,*,*+*9�-��� 1 �-��: 1 �,*+*,*;�-�<� . These � other loci could be
chosen in any number of ways from the � loci in the genotype. Kauffman investigated
two possibilities: adjacent neighborhoods, where the � genes nearest to locus � on
the chromosome are chosen; and random neighborhoods, where these � other loci
are chosen randomly on the chromosome. In the adjacent neighborhood model, the
chromosome is taken to have periodic boundaries, so that the neighborhood wraps
around the other end when it is near the terminus.

Epistasis is implemented through a ‘House of Cards’ model of fitness effects (King-
man, 1978, 1980): whenever an allele is changed at one locus, all of the fitness
components with which the locus interacts are changed, without any correlation to their
previous values. Thus, a mutation in any one of the genes affecting a particular fitness
component is like pulling a card out of a house of cards—it tumbles down and must be
rebuilt from scratch, with no information passed on from the previous value.
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Kauffman implemented this by generating, for each fitness component, a table of
2 4 � 1 numbers for each possible allelic combination for the �=: 1 loci determining
that fitness component. These numbers are independently sampled from a uniform
distribution on > 0 � 1 ! . (See B2.7.2.4 for alternative implementations of this scheme).

The consequence of this independent resampling of fitness components is that the
fitness function develops conflicting constraints: a mutation at one gene may improve
its own fitness component, but decrease the fitness component of another gene with
which it interacts. Furthermore, if the allele at another interacting locus changes, an
allele that had been optimal, given the alleles at the other loci, may no longer be
optimal. Thus, epistatic interactions produce ‘frustration’ in trying to optimize all
genes simultaneously, a concept borrowed from the field of spin-glasses, of which NK
landscapes are an example (Anderson, 1985).

B2.7.2.2 Evolution on NK Landscapes

The definition given by Kauffman for the NK landscape is simply a fitness function on
a data structure. The genetic operators that manipulate these data structures in creating
variants are not explicitly included in the NK landscape specification. However, nothing
can be said about the evolutionary dynamics until the genetic operators are defined.
A change in the genetic operator will effectively define a new adaptive landscape
(Altenberg, 1994a, 1995; Jones, 1995a, 1995b). The NK structure was defined with the
‘natural’ operators in mind: bit-flipping mutation, and recombination between strings.
The magnitude of mutation and recombination rates also has a fundamental effect on
the population dynamics.

One of the main differences between evolutionary algorithms and evolutionary
genetics is relative time spent during transient (vs. near-equilibrium) phases of the
dynamics. Biological populations have been running a long time, and so their genetic
compositions are relatively converged (Gillespie, 1984); whereas in evolutionary algo-
rithms, it is typical that initial populations are random over the search space, and so for
much of their dynamics, the populations are far from equilibrium.

The dynamics of nearly converged populations under low mutation rate can be
approximated by ‘one-mutant adaptive walks’ (Maynard Smith, 1970; Gillespie, 1984).
The population is taken as fixed on a single genotype, and occasionally a fitter genotype
is produced which then goes to fixation. The approximation assumes that the time it
takes for the mutant to go to fixation is short compared to the time epochs between
substitutions.

In implementing one-mutant adaptive walks, an initial genotype is chosen, and the
fitnesses of all of the genotypes that can be produced by a single bit flip are sampled.
A fitter variant (or the fittest, in the case of ‘greedy’ or ‘myopic’ walks) is selected, and
the process is reiterated. When all of the one-mutant neighbors of a genotype are less
fit than it, the walk terminates.
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Results for One-Mutant Adaptive Walks

The following is a synopsis of the results in Kauffman (1993), Weinberger (1991), and
Fontana et al. (1993) for one-mutant adaptive walks on NK landscapes.

For �?# 0 the fitness function becomes the classical additive multi-locus model.

1. There is a single, globally attractive genotype.

2. The adaptive walk from any genotype in the space will proceed by reducing
the Hamming distance to the optimum by 1 each step, and the number of fitter
one-mutant neighbors equals this Hamming distance. Therefore, the expected
number of steps to the global optimum is �A@ 2.

3. The fitnesses of one-mutant neighbor genotypes are highly correlated, as �B� 1
of the � fitness components are unaltered between the neighbors.

For �C#D�E� 1, the fitness function is equivalent to the random assignment of
fitnesses over the genotype space.

1. The probability that a genotype is a local optimum is 1	 � 1 .

2. The expected total number of local optima is 2 F	 � 1 .

3. The expected fraction of one-mutant neighbors that are fitter decreases by 1 @ 2
each step of the adaptive walk.

4. The expected length of adaptive walks is approximately ln �(�G� 1 ! .
5. The expected number of mutants tested before reaching a local optimum isH log2 I 	KJ 1 L J 1�&% 0 2 � .
6. As � increases, the expected fitness of the local optimum reached from a random

initial genotype decreases toward the mean fitness of the entire genotype space,
0 * 5. Kauffman (1993) calls this the ‘complexity catastrophe’.

For intermediate � , it is found that

1. For � small, the highest local optima share many of their alleles in common.
As � increases, this allelic correlation between local optima falls away, more
rapidly for random neighborhoods than adjacent neighborhoods.

2. For � large, the fitnesses of local optima are distributed with an asymptotically
normal distribution with mean approximatelyM :ON�P 2 ln �(�D: 1 !�D: 1

�
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and variance approximately � �G: 1 !QN 2�R> ��: 1 : 2 � �S: 2 ! ln � �G: 1 !'T �
where M is the expected value of ��� , and N 2 its variance. In the case of the
uniform distribution, M # 1 @ 2 and NU#WV 1 @ 12.

3. The average Hamming distance between local optima, which is roughly twice
the length of a typical adaptive walk, is approximately� log2 � �S: 1 !

2 �(�D: 1 ! *
4. The fitness correlation between genotypes that differ at X loci isY �(XZ!"#\[ 1 � X�^] [ 1 � ��B� 1 ]`_ �

for the random neighborhood model, andY �(XZ!�# 1 � �D: 1� X`: 1a 	 _ b min I 4�c 	 � 1 J _ L$ d % 1

�(�D�<ef: 1 ! [ ���geh� 1Xi� 2 ]
for the adjacent neighborhood model.

Results for Full Population Dynamics

Most studies using NK models have investigated adaptive walks on the landscape.
A notable exception is the study of Wright’s shifting balance process using an NK
landscape (Bergman et al., 1995). In this study, the genotypes are distributed on
a 1-dimensional spatial array, and mating and dispersal along the array are studied
with different length scales. Mutation rates of 10 J 4 per locus per reproduction, and
single-point recombination rates of 0 * 01 or 0 * 1 per chromosome per reproduction are
examined. The NK fitness function is extended to diploid genotypes.

This model produces rich interactions of dispersal distance, recombination rate,
and � with the mean fitness that is attained during evolution. For highly rugged
landscapes, recombination made little difference in fitness attained, whereas at lower
values of � , recombination could either improve or reduce the final fitness depending
in a nonlinear way on the other parameters. The results support Wright’s original
theory: the greater the ruggedness of the landscape, the larger is the improvement in
evolutionary optimization provided by population subdivision.
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B2.7.2.3 Generalized NK Maps

The epistatic interaction structures described by Kauffman can be seen to be special
cases of more general interaction structures. Although Kauffman conceives of each
gene as contributing a fitness component, inspection of equation (B2.7.2.7) shows that
in fact, the gene and the other � loci that interact with it are all symmetric in their effect
on the fitness component. So one can remove the identification of one gene with one
fitness component, and conceive of a set of � genes and a set of j fitness components
and a map between them. This generalized fitness function is:�k�(�l!�# 1jnm$ �&% 1

� � � � d
1 I � L �3� d

2 I � L �,*,*,*;�-� d(o3p !q�
where r � is the number of genes affecting fitness component � (its polygeny) and�+e 1 � �Q!1�'e 2 �(�'!q�,*,*,*9�Qe1s p �i6t� 1 �,*,*,*;�-�<� . The index sets �+e 1 � �Q!1�'e 2 �(�'!q�,*,*,*9�Qe1s p � comprise a
gene-fitness map, that can be represented as a matrix,u #�vxw � dqy �-�"# 1 *+*,*9jz�'e{# 1 *+*,*,�|� (B2.7.2.8)

of indices wU� d �<� 0 � 1 � , where wU� d # 1 indicates that gene e affects fitness component� . The rows of
u

, } � # v wU� d y , e�# 1 *,*,*,� , give the genes controlling each fitness
component � . The columns of

u
, ~ d # v w � d y , ��# 1 *,*+*+j , give the fitness components

controlled by each gene e . These vectors ~ d
represent each gene’s pleiotropy. It is

assumed that each gene affects at least one fitness component, and vice versa.
The fitness components � � can be represented with a single uniform pseudo-random

function � : ���'�(�l!"#���� ����} � �Q} � �3�'!l� uniform on > 0 � 1 !q� (B2.7.2.9)

where � : � 0 � 1 � 	�� � 0 � 1 � 	�� � 1 �,*,*,*;�-�<�h�
�> 0 � 1 ! , and � is the Hadamard product:

�|��} � #������ � 1 wU� 1� 2 wU� 2*,*,*� 	 wU� 	
�&���� *

A change in any of the three arguments � , } � , or �0�9} � gives a new value for �A�(���2} � �Q} � �3�'!
that is uncorrelated with the old. See section B2.7.2.4 for methods of implementing�A�(�|��} � �Q} � �-�Q! .

Some illustrations of this generalization of the NK model are given in Figure 1.
The first two maps are standard Kauffman NK maps, which require that the diagonal
be filled. The third is a map that produces a ‘block model’ of Perelson and Macken
(1995). The fourth is an example of a map grown by selective gene addition, a process
which produces highly non-generic NK landscapes (see below; Altenberg, 1994b).
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Figure 1: Four different gene-fitness interaction maps. Dark entries are for genes that
affect the fitness component. (A) Kauffman’s adjacent neighborhood, �E# 8 �-��# 2;
(B) Kauffman’s random neighborhood, �n# 8 �-�n# 2 ; (C) Perelson and Macken
‘block’ map (1995) ; (D) Map evolved through genome growth (Altenberg, 1994b).

The block model presents an opportunity to study recombination operators, which
has not yet been utilized in the literature. Recombination between blocks is effectively
operating on a smooth landscape, whereas mutation will still experience frustration, to
a degree that depends on the size of the block. One can conjecture that a relation could
be elucidated between the ‘blockiness’ of the gene-interaction map and the relative
effectiveness of recombination as a genetic operator, as compared to mutation. The
blockiness of a generalized NK landscape could serve as another tunable parameter for
investigating recombination as an evolutionary strategy.

B2.7.2.4 Implementation Details

Kauffman’s algorithm for generating an NK landscape requires storing the values for
all of the 2 I 4 � 1 L possible allelic combinations of each fitness component. Since there
are � fitness components, this approach requires storage of 2 I 4 � 1 L � numbers. For
small � , this poses no problem. But with large � and � , storage and computation
become formidable. With 32 genes and ��# 22, a gigabyte of storage is needed
(4 bytes/real � 32 � 2 I 22 � 1 L ). Yet, depending on the evolutionary algorithm used, often
many of these numbers will never be called during the run. So one could instead create
fitness component values as they are needed, and store them for later access (using, for
example, a binary tree structure (Wirth, 1976)).

A simple method (used in Altenberg (1994b)) which requires no storage, but more
computation, is to compute fitness components as they are called, using a pseudo-
random function:

Ψ : � 0 � 2 �S� 1 ���
�� 0 � 2 ��� 1 ���
where � is the bit-width of the integer representation . Ψ can be used to implement
equation (B2.7.2.9) thus:���'�(��!l# 2 J � Ψ ��� ����}�!�� Ψ > }�� Ψ �(�z�|��!�T ���
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where � is the integer seed of the run, � is the bitwise exclusive-or operator, and the bit
strings } and � are represented as integers.

One must be careful in the choice of algorithms for Ψ. Park-Miller random number
generators are unsuitable for Ψ, as there are correlations between input bits and output
bits. However, the ‘pseudo Data-Encryption-Standard’ algorithm, ran4, (Press et al.
1992) works well as Ψ for genomes of length � � 32, and can be extended for larger
genomes.

B2.7.2.5 Computational Complexity of NK Landscapes

The computational complexity of finding the optimum genotype in an NK landscape
has been analyzed by Weinberger (1996) and Thompson and Wright (1996). The
algorithms they use for the proofs depend only on the epistatic structure of the gene
interaction map, and not the statistical assignment of fitnesses.

Weinberger provides a dynamic programming algorithm that finds the optimum
genotype of an NK landscape with adjacent neighborhoods for any � . He is also able
to reduce the NK optimization problem with random ��¡ 3 neighborhoods to the
well-known 3SAT problem (Garey and Johnson, 1979). Thompson and Wright were
able to reduce the NK optimization problem with random �¢# 2 neighborhoods to
the 2SAT problem (Garey and Johnson, 1979). These techniques prove the following
theorems:

Theorem B2.7.1 (Weinberger) The NK optimization problem with adjacent neighbor-
hoods is solvable in £¤� 2 4 �g! steps, and is thus in ¥ .

Theorem B2.7.2 (Weinberger) The NK optimization problem with random neighbor-
hoods is ¦§¥ complete for �E¡ 3.

Theorem B2.7.3 (Thompson and Wright) The NK optimization problem with ran-
dom �¨# 1 neighborhoods is solvable in polynomial time.

Theorem B2.7.4 (Thompson and Wright) The NK optimization problem with ran-
dom �E# 2 neighborhoods is ¦O¥ complete. Moreover, for a generalized �¨# 1 map
with no requirement that w �©� # 1 for all � (in equation (B2.7.2.8)), the NK optimization
problem is ¦§¥ complete.

The Fourier expansion analysis of NK landscapes in Stadler and Happel (1995)
corroborates the difference between random and adjacent neighborhood models; with
adjacent neighborhoods, only the first �\: 1 Fourier components contribute, while
all contribute in the random neighborhood model. Thus, even though adaptive walks
on NK landscapes do not show much difference between adjacent neighborhood and
random neighborhood models, the computational complexity of these two families of
landscapes is quite different.
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B2.7.2.6 Application to Coevolution

Kauffman (1993) used the NK model to frame a novel hypothesis about coevolving
ecosystems: that they are poised on the ‘edge of chaos’, exhibiting a form of self-
organized criticality (Bak et al., 1988). In his model, Kauffman let the genes of other
organisms interact with a gene’s fitness component. Hence, evolution of one organism’s
gene alters the fitness landscapes of other organisms. Kauffman used adaptive walks as
the dynamics of the coevolving species. He found that smooth landscapes when coupled
together produce chaotic dynamics—the ‘Red Queen’ hypothesis—that organisms have
to evolve as fast as they can just to stay in the same place (Van Valen, 1973), and the
average fitness of organisms in the ecosystem is low. On the other extreme, in very
rugged landscapes, the likelihood of the species reaching a local equilibrium is very
high, but these equilibria are of low average fitness for the ecosystem. There is a
threshold level of ruggedness that results in criticality of the dynamics, with a spectrum
of ‘avalanches’ of coevolutionary change, the larger the avalanche, the less frequent.
This critical value appears to give the highest average fitness over the ecosystem.

B2.7.2.7 Application to the Representation Problem

The generalized NK model has been applied to the representation problem in evolu-
tionary computation: how to represent the objects in the search space so that genetic
operators can have a reasonable chance of producing fitter variants when acting on the
representation. One method proposed for producing good representations is to evolve
the representation itself through a process of selective genome growth (Altenberg,
1994b).

In the model, the gene-fitness map
u

is built up gene by gene: new genes with
randomly chosen connections to the fitness components (i.e. new columns of

u
with

randomly chosen entries �O� 0 � 1 � ) were added to the genome only if they produced a
fitness increase. It was found that as more genes were added and the fitness increased,
selection for genes with low pleiotropy (affecting few functions) became more intense.
An example of an evolved NK map is shown in Fig. 1(D). The fitness peaks of the
resulting NK maps were several standard deviations above the fitness distribution for
generic NK landscapes with the same interaction maps.

The NK model is thus used as an abstraction for the way representations produce
epistatic interactions between genes. It was suggested that the method of selective
genome growth which was able to produce highly evolvable NK landscapes might be
applicable toward more general representation problems.

Acknowledgements

I thank the Maui High Performance Computing Center for generously hosting me as a
visiting researcher.

9



References

[1] Altenberg, L. 1994a. The evolution of evolvability in genetic programming.
In K. E. Kinnear, editor, Advances in Genetic Programming, pages 47–74. MIT
Press, Cambridge, MA.

[2] Altenberg, L. 1994b. Evolving better representations through selective genome
growth. In Proceedings of the 1st IEEE Conference on Evolutionary Computation.
Part 1 (of 2), pages 182–187, Piscataway N.J. IEEE.

[3] Altenberg, L. 1995. The Schema Theorem and Price’s Theorem. In D. Whitley
and M. D. Vose, editors, Foundations of Genetic Algorithms 3, pages 23–49.
Morgan Kaufmann, San Mateo, CA.

[4] Anderson, P. W. 1985. Spin glass Hamiltonians: A bridge between biology, statis-
tical mechanics, and computer science. In D. Pines, editor, Emerging Synthesis in
Science: Proceedings of the Founding Workshops of the Santa Fe Institute, Santa
Fe, NM. Santa Fe Institute.

[5] Bak, P., C. Tang, and K. Wiesenfeld. 1988. Self-organized criticality. Physical
Review A 38: 364–374.

[6] Bergman, A., D. B. Goldstein, K. E. Holsinger, and M. W. Feldman. 1995.
Population structure, fitness surfaces, and linkage in the shifting balance process.
Genetical Research 66(1): 85–92.

[7] Fontana, W., P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker,
M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster. 1993. RNA folding
and combinatory landscapes. Physical Review E 47(3): 2083–2099.

[8] Garey, M. R. and D. S. Johnson. 1979. Computers and Intractibility. W. H.
Freeman, San Francisco.

[9] Gillespie, J. H. 1984. Molecular evolution over the mutational landscape. Evolu-
tion 38(5): 1116–1129.

[10] Jones, T. 1995a. Evolutionary algorithms, fitness landscapes and search. Ph.D.
Thesis. University of New Mexico.

[11] Jones, T. 1995b. One operator, one landscape. Working Papers 95-02-025, Santa
Fe Institute, Santa Fe, NM 87501.

[12] Kauffman, S. A. 1989. Adaptation on rugged fitness landscapes. In D. Stein,
editor, Lectures in the Sciences of Complexity, pages 527–618. Addison-Wesley,
Redwood City. SFI Studies in the Sciences of Complexity, Lecture Volume I.

[13] Kauffman, S. A. 1993. The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, Oxford.

10



[14] Kauffman, S. A. and S. Levin. 1987. Towards a general theory of adaptive walks
on rugged landscapes. Journal of Theoretical Biology 128: 11–45.

[15] Kingman, J. F. C. 1978. A simple model for the balance between selection and
mutation. Journal of Applied Probability 15: 1–12.

[16] Kingman, J. F. C. 1980. Mathematics of Genetic Diversity. Society for Industrial
and Applied Mathematics, Philadelphia, page 15.

[17] Lush, J. L. 1935. Progeny test and individual performance as indicators of an
animal’s breeding value. Journal of Dairy Science 18: 1–19.

[18] Maynard Smith, J. 1970. Natural selection and the concept of a protein space.
Nature 225: 563–564.

[19] Perelson, A. S. and C. A. Macken. 1995. Protein evolution on partially correlated
landscapes. Proceedings Of The National Academy Of Sciences Of The United
States Of America 92(21): 9657–9661.

[20] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numer-
ical Recipes in C: The Art of Scientific Computing. Second Edition. Cambridge
University Press, pages 278–280, 300–304.

[21] Stadler, P. F. and R. Happel. 1995. Random field models for fitness landscapes.
Working Papers 95-07-069, Santa Fe Institute, Santa Fe, NM.

[22] Thompson, R. K. and A. H. Wright. 1996. Additively decomposable fitness
functions. To Appear.

[23] Van Valen, L. 1973. A new evolutionary theory. Evolutionary Theory 1: 1.

[24] Weinberger, E. D. 1991a. Local properties of Kauffman’s N-k model, a tuneably
rugged energy landscape. Physical Review A 44(10): 6399–6413.

[25] Weinberger, E. D. 1996. NP completeness of Kauffman’s N-k model, a tuneable
rugged fitness landscape. Working Papers 96-02-003, Santa Fe Institute, Santa
Fe, NM, First circulated in 1991.

[26] Wirth, N. 1976. Algorithms + Data Structures = Programs. Prentice-Hall,
Englewood Cliffs, N.J., pages 189–211.

[27] Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection
in evolution. Proceedings of the Sixth International Congress on Genetics 1:
356–366.

11


