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Cooperation is widespread...

but emergence of cooperation is problematic!

I A game-theoretic framework based on pairwise interactions is a first
step toward a better understanding of a complex phenomenon.

I This framework can provide clues about conditions that would favor the
evolution of cooperation.
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2. Prisoner’s Dilemma (PD)
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Payoff Matrix

against

Defect

Cooperate

Cooperate

Temptation

Reward

Defect

Punishment

Sucker’s payoff

2. Prisoner’s Dilemma C.I.R.M. Marseille, 25-29 mai 2009



T > R > P > S

against

D

C

C

14

5

D

3

1
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Iterated Prisoner’s Dilemma (IPD)
I PD repeated n times between the same players with additive payoffs

against

Always-Defect (B)

Tit-for-Tat (A)

A

c = T +P(n−1)

a = Rn

B

d = Pn

b = S +P(n−1)
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a > c > d > b for n > T−P
R−P

against

B

A

A

41

50

B

30

28

for n = 10 in the previous example
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Expected payoffs in an infinite population

I random pairwise interactions

I x : frequency of A

wA(x) = ax+b(1− x)

wB(x) = cx+d(1− x)

wA(x) > wB(x) if and only if x > d−b
a−b−c+d = x∗ ↓ 0 as n ↑ ∞
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3. Evolutionary dynamics in an infinite population

I reproduction with discrete, non-overlapping generations

I s ≥ 0 : intensity of selection with expected payoff as coefficient

I x(t) : frequency of A in offspring in generation t before selection

x(t +1) =
x(t)(1+ swA(x(t)))

1+ sw̄(x(t))

x(t +1)− x(t) =
s(a−b− c+d)x(t)(1− x(t))(x(t)− x∗)

1+ sw̄(x(t))

x(t) ↑ 1 if x(0) > x∗ and x(t) ↓ 0 if x(0) < x∗
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4. Probability of fixation in a finite population

I N parents chosen at random to produce the next generation
(assumed large)

I (ν1, ...,νN) : proportions of offspring produced in large numbers
(assumed exchangeable)

I X(t) : frequency of A in offspring in generation t before selection

I X(0) = N−1

X(T)→ X(∞) = X(0)+∑t≥0(X(t +1)−X(t))

X(∞) = 1 with probability u(s), and 0 otherwise
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I u(s) = Es[X(∞)] : probability of ultimate fixation of A

I u(0) = X(0)

u(s) = X(0)+ ∑
t≥0

Es[X(t +1)−X(t)]

= u(0)+ s(a−b− c+d) ∑
t≥0

Es

[
X(t)(1−X(t))(X(t)− x∗)

1+ sw̄(X(t))

]
≈ u(0)+ s(a−b− c+d) ∑

t≥0
E0[X(t)(1−X(t))(X(t)− x∗)]

u(s) > u(0) for s > 0 small : weak selection favors A replacing B

x∗ < ∑t≥0 E0[X(t)2(1−X(t))]
∑t≥0 E0[X(t)(1−X(t))] = x̃
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5. Generalized one-third law

∑
t≥0

E0[X(t)(1−X(t))] = ∑
t≥0

P0(A,B in generation t)

= ∑
t≥0

p22(t)P0(A,B in generation 0)

=
X(0)(1−X(0))

1−p22

with p22(t) = pt
22 the probability that two offspring chosen at random in

generation t descend from two distinct ancestors in generation 0

generation t

generation 0

A B

A B

t

t

t

t
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∑
t≥0

E0[X(t)2(1−X(t))] = ∑
t≥0

P0(A,A,B in generation t)

= ∑
t≥0

p33(t)P0(A,A,B in generation 0)

+ ∑
t≥0

p32(t)
3

P0(A,B in generation 0)

with p33(t) = pt
33 the probability that three offspring chosen at random in

generation t descend from three distinct ancestors in generation 0, and

p32(t) =
t−1

∑
r=0

pt−r−1
33 p32pr

22 = p32

(
pt

33−pt
22

p33−p22

)
the probability that they descend from two distinct ancestors in generation 0.
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t

r

0

A A B

A A B

t t t

t t t

A A B

A B

t t t

t t
t t
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∑
t≥0

E0[X(t)2(1−X(t))] =
X(0)2(1−X(0))

1−p33
+

p32X(0)(1−X(0))
3(1−p22)(1−p33)

≈ p32X(0)(1−X(0))
3(1−p22)(1−p33)

and therefore

x̃ ≈ p32
3(1−p33)

≤ 1
3

with equality if and only if at most 2 lineages out of 3 coalesce at a time
backward in time with probability 1, which characterizes the Kingman
coalescent for a wide range of reproduction schemes as N → ∞ with N
generations as unit of time (Möhle 2000).
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Λ-coalescent (e.g., Eldon and Wakeley 2006)

I 1−N−α : probability that every parent produces the same proportion
N−1 of the offspring

I N−α : probability that a parent chosen at random produces a proportion
ψ of offspring and every other parent a proportion (1−ψ)(N−1)−1

x̃ ≈ 1−ψ

3−2ψ
< 1

3 if α < 1

which means a more stringent condition for cooperation to be favored in the
case of a highly skewed distribution for the contribution of parents in
offspring.
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6. Projected average allelic effect

For any number of types A1, ...,An and any coefficient of selection wij for Ai
in interaction with Aj, the first order effect of selection on the probability of
fixation of Ai is

u′i(0) = Xi(0)ai(0)

where ai(0) is a projected average allelic effect on the selection coefficient
given by

ai(0) = E0(S3)

[
∑
k

wikXk(0)−∑
j

∑
k

wjkXj(0)Xk(0)

]

+
(

E0(S2)−E0(S3)
2

)[
wii−∑

j
wjiXj(0)

]

+
(

E0(S2)−E0(S3)
2

)[
∑

j
wijXj(0)−∑

j
wjjXj(0)

]

with E0(Sj) being the expected number of generations with j lineages.
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Symmetric case wij = wji

ai(0) = E0(S3)

[
∑
k

wikXk(0)−∑
j

∑
k

wjkXj(0)Xk(0)

]

+
(

E0(S2)−E0(S3)
2

)[
wii−∑

j
wjjXj(0)

]

with autozygous pairs having the same weight as allozygous pairs, leading to
the one-third law of evolution, in the domain of application of the Kingman
coalescent, and a lighter weight than allozygous pairs otherwise.
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7. Effect of population structure

I D groups of N parents producing equal proportions of offspring
(D assumed large)

I m : proportion of offspring that disperse uniformly before selection
(Wright island model)

I Xi(t) : frequency of A in group i after dispersal in generation t

I X(t) = D−1
∑

D
i=1 Xi(t) : frequency of A in the population in generation t

I X(0) = (ND)−1

I selection: within groups after dispersal
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x̃ =
∑t≥0 E0

[
X(t)2(1−X(t))

]
∑t≥0 E0

[
X(t)(1−X(t))

]

=
∑t≥0 P0(A,A,B in the same group in generation t)
∑t≥0 P0(A,B in the same group in generation t)
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States for the ancestors of 3 offspring
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Transition matrix backward in time

Applying Möhle (1998) lemma

PbNDf−1
22 τc →

(
I 0
F 0

)(
eτA 0

BeτA 0

)
as D → ∞, where

F =

 f21 f22 0
0 f21 f22

f31 f32 f33


with fnk the probability for n offspring in the same group to have k ancestors
in different groups in the case of an infinite number of groups, and

A =

 0 0 0
1 −1 0
0 3 −3


the infinitesimal generator for the Kingman coalescent.
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Two-time-scale argument for large D

I Fast scattering of lineages in the same group; slow collecting of
lineages in different groups.

I Times spent with lineages in the same group can be neglected
compared to times spent with lineages in different groups.

I The expected time spent with 2 lineages in different groups in number
of generations is approximately NDf−1

22 , the effective population size.

I Moreover, the probability for two ancestors chosen at random in
different groups in generation 0 to be of type A can be neglected.
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∑
t≥0

P0(A,B in the same group in generation t)

≈ ∑
t≥0

P42(t)P0(A,B in different groups in generation 0)

≈ f22×NDf−1
22 ×X(0)(1−X(0))

4

state 2 in generation 0

state 4 in generation t

�� �
r �� �
r�� �
r r

�� �
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r

A B

A B

A B
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∑
t≥0

P0(A,A,B in the same group in generation t)

≈ 1
3 ∑

t≥0
P62(t)P0(A,B in different groups in generation 0)

≈ 1
3
× (f32 + f33)×NDf−1

22 ×X(0)(1−X(0))
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state 2 in generation 0

state 6 in generation t
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x̃ ≈ 1−f31
3(1−f21)

> 1
3

with

f21 =
(1−m)2

Nm(2−m)+(1−m)2

f31 = f21

[
N(1−m)+2(N−1)(1−m)3

N2m(3−3m+m2)+(3N−2)(1−m)3

]

which means a less stringent condition for cooperation to be favored in the
case of a group-structured population.
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8. Variants and extensions

I Dispersal after selection:

u′(0) = (b−d) ∑
t≥0

E0

[
X(t)(1−X(t))

]
+ (a−b− c+d) ∑

t≥0
E0

[
X(t)2(1−X(t))

]
+ m(2−m)(b+ c−2d) ∑

t≥0
E0

[
X(t)2−X(t)

2
]

+ m(2−m)(a−b− c+d) ∑
t≥0

E0

[
X(t)3−X(t) X(t)2

]
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E0

[
X(t)2−X(t)

2
]

≈ P0(A,B in different groups)

− P0(A,B in the same group)

E0

[
X(t)3−X(t) X(t)2

]
≈ P0(A,A,B with B in a different group)

− P0(A,A,B in the same group)

x̃ ≈ (1−f31)(1−m)2

3(1−f21)
+ 2m(2−m)

3 + (a−d)(N−1)−1

(a−b−c+d) > 1−f31
3(1−f21)

which means an even less stringent condition for cooperation to be favored.
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I Dispersal before selection with exchangeable contributions of groups:
D−β the probability that a group at random provides a fraction φ of the
migrants and every other a fraction (1−φ)(D−1)−1 in the case β < 1

u′(0) ≈
[
(b−d)f22 +

(
a−b− c+d

3

)(
f32 + f33

µ32

µ32 + µ33

)]
× µ

−1
21 NDβ ×X(0)(1−X(0))

where µlk is the rate of transition from l to k lineages in different groups
backwards in time with NDβ generations as unit of time as D → ∞

x̃ ≈
1−f31−f33

µ33
µ32+µ33

3(1−f21)
< 1−f31

3(1−f21)

which means a more stringent condition for cooperation to be favored.
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Rates of transition for lineages in different groups

µlk = ∑l≥j≥n≥k λljpjnfnk

where

λlj =
(

l
j

)
(φm)j(1−φm)l

pjn =
N[n]S(n)

j

Nj

with

N[n] = N(N−1)...(N−n+1)

S(n)
j =

1
n! ∑

j1, ..., jn ≥ 1
j1 + ...+ jn = j

(
j

j1, ..., jn

)
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fnk is the probability of k types among n genes in an exact Wright-Fisher
model with probability of mutation to a novel type m per gene per generation

fnk =
k

∑
j=0

(n−1)∧(n−j)

∑
l=k−j

(
n
j

) (Nm)j(1−m)n−jN[l]S(l)
n−j

Nn− (1−m)nN[n] fl,k−j

where |Sk
n|= coefficient of xk in x(x+1)...(x+n−1), in agreement with

the approximation from the Ewens sampling formula for m small and N large

fnk ≈ Mk|Sk
n|

M(M +1)...(M +n−1)

where M = 2Nm.

Remark. The recursion equation can be extended to the Cannings model.

8. Variants and extensions C.I.R.M. Marseille, 25-29 mai 2009



9. Summary and comments

I IPD in an infinite population can explain the spread of cooperation but
only from a frequency x > x∗.

I IPD in a finite population can explain that cooperation is favored to go
to fixation from a low frequency under the condition x∗ < x̃.

I In a large population, x̃ ≤ 1/3 with a strict inequality leading to a more
stringent condition if the contribution of parents in offspring is highly
skewed.

I In a group-structured population with a large number of groups, the
condition is less stringent with x̃ > 1/3 unless the contribution of
groups in offspring is skewed enough.
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I The first-order effect of selection on the probability of fixation of an
allele is given by the projected average allelic effect on the selection
coefficient.

I This effect can be obtained under more complex population
assumptions: interactions between any number of individuals, diploid
populations with sex differences and overlapping generations, different
timings for selection, mating and dispersal or local extinction in
group-structured populations, etc.

I The effect of selection of any order on the probability of fixation in a
multiallele multilocus setting can be obtained in a similar way in terms
of expected sojourn times.
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I The approximations given by the first-order effect of selection are valid
under very weak selection, actually as long as the intensity of selection
is small compared to the intensity of the other evolutionary forces, but
without constraints on the reproduction scheme.

I An alternative approach under the assumption that the intensity of
selection is of the same order of magnitude as the other evolutionary
forces is a diffusion approximation, but then the contributions of
parents and groups in offspring cannot be too highly skewed.
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Diffusion approximation for the Wright island model

I s = σ(ND)−1 and dispersal before selection

I ND generations as unit of time as D → ∞

Applying Ethier and Nagylaki (1980) conditions, the infinitesimal mean and
variance of the limiting diffusion are

m(x) = σ(a−b− c+d)x(1− x)(xf33− x∗f22 + f21− f31)
v(x) = x(1− x)f22

and the probability of fixation of A from a small initial frequency x0 is∫ x0

0
exp

{
−2

∫ y

0

m(x)
v(x)

dx
}

dy ≈ x0 +σ(a−b− c+d)x0(1− x0)f22

(
1− f31

3f22
− x∗

)
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Recursion equation for the Cannings model

fn,k =
k

∑
j=0

(n−1)∧(n−j)

∑
l=k−j

∑
r

n!N[l]mj(1−m)n−jE
(

∏
l
i=1 ν

[ri]
i

)
j!l!

(
∏

l
i=1 ri!

)
N[n−j] [1− (1−m)nE (∏n

i=1 νi)]
fl,k−j

where r = (r1, ...,rl) satisfy r1, ...,rl ≥ 1 with r1 + ...+ rl = n− j.
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