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Abstract

We obtain a representation of Feller’s branching diffusion with logistic growth in terms
of the local times of a reflected Brownian motion H with a drift that is affine linear in
the local time accumulated by H at its current level. As in the classical Ray-Knight
representation, the excursions ofH are the exploration paths of the trees of descendants of
the ancestors at time t = 0, and the local time ofH at height tmeasures the population size
at time t (see e.g. [9]). We cope with the dependence in the reproduction by introducing
a pecking order of individuals: an individual explored at time s and living at time t = Hs

is prone to be killed by any of its contemporaneans that have been explored so far. The
proof of our main result relies on approximating H with a sequence of Harris paths HN

which figure in a Ray-Knight representation of the total mass of a branching particle
system. We obtain a suitable joint convergence of HN together with its local times and
with the Girsanov densities that introduce the dependence in the reproduction.

1 Introduction

Feller’s branching diffusion with logistic growth is is governed by the SDE

dZt = σ
√

Zt dWt + (θZt − γZ2
t ) dt, Z0 = x > 0, (1.1)

with positive constants σ, θ and γ. It has been studied in detail by Lambert [8], and models
the evolution of the size of a large population with a near-critical reproduction. The diffusion
term in (1.1) incorporates the individual offspring variance, and the drift term includes a
supercriticality in the branching that is counteracted by a killing with a rate proportional to
the “number of pairs of individuals”.

For θ = γ = 0, equation (1.1) is the SDE of Feller’s critical branching diffusion with
variance parameter σ2. In this case, a celebrated theorem due to Ray and Knight says that Z
has a representation in terms of the local times of reflected Brownian motion. To be specific,
let H = (Hs)s≥0 be a Brownian motion on R+ with variance parameter 4/σ2, reflected at the
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origin, and for s, t ≥ 0 let Ls(t,H) be the (semimartingale) local time accumulated by H at
level t up to time s. Define

Sx := inf{s > 0 : (σ2/4)Ls(0,H) ≥ x}. (1.2)

Then (σ2/4)LSx(t,H), t ≥ 0, is a weak solution of (1.1) with θ = γ = 0 , and is called the
Ray-Knight representation of Feller’s critical branching diffusion.

The Ray-Knight representation has a beautiful interpretation in an individual-based pic-
ture. Reflected Brownian motion H = (Hs)s≥0 arises as a concatenation of excursions, and
each of these excursions codes a continuum random tree, the genealogical tree of the progeny
of an individual that was present at time t = 0. The size of this progeny at time t > 0 is σ2/4
times the (total) local time spent by this excursion at level t. Starting with mass x at time
t = 0 amounts to collecting a local time (4/σ2)x of H at level 0. The local time of H at level t
then arises as a sum over the local time of the excursions, just as the state at time t of Feller’s
branching diffusion, Zt , arises as a sum of the masses of countably many families, each of
which belongs to the progeny of one ancestor that lived at time t = 0. The path (Hs)0≤s≤Sx

can be viewed as the exploration path of the genealogical forest arising from the ancestral
mass x. We will briefly illustrate this in Section 3 along a discrete mass – continuous time
approximation. For a more detailed explanation and some historical background we refer to
the survey [13].

The motivation of the present paper was the question whether a similar picture is true
also for (1.1) with strictly positive θ and γ, and whether also in this case a Ray-Knight
representation is available for a suitably re-defined dynamics of an exploration process H. At
first sight this seems prohibiting since the nonlinear term in (1.1) destroys the independence
in the reproduction. However, it turns out that introducing an order among the individuals
helps to overcome this hurdle. We will think of the individuals as being arranged “from left
to right”, and decree that the pairwise fights are always won by the individual “to the left”,
and lethal for the individual “to the right”. In this way we arrive at a population dynamics
which leaves the evolution (1.1) of the total mass unchanged, see again the explanation in
Section 3. The death rate coming from the pairwise fights leads in the exploration process
of the genealogical forest to a downward drift which is proportional to Ls(Hs,H), that is,
proportional to the amount of mass seen to the left of the individual encountered at exploration
time s (and living at real time Hs). In this way, those excursions of H which come later in
the exploration tend to be smaller - the trees to the right are “under attack from those to the
left”.

In quantitative terms, we will consider the stochastic differential equation

Hs =
2

σ
Bs +

1

2
Ls(0,H) +

2θ

σ2
s− γ

∫ s

0
Lr(Hr,H)dr, s ≥ 0, (1.3)

where B is a standard Brownian motion. The last two terms are the above described com-
ponents of the drift in the exploration process, and the term Ls(0,H)/2 takes care of the
reflection of H at the origin. We will show

Proposition 1.1. The SDE (1.3) has a unique weak solution.

Our main result is the

Theorem 1. Assume that H solves the SDE (1.3), and let, for x > 0, Sx be defined as in
(1.2). Then (σ2/4)LSx(t,H), t ≥ 0, solves (1.1).
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We will prove Proposition 1.1 by a Girsanov argument, and Theorem 1 along a discrete
mass–continuous time approximation that is presented in Section 3. An important step in the
proof of Theorem 1, and interesting in its own right, is Theorem 2 in Section 5, in which we
obtain a convergence in distribution of processes that approximate reflected Brownian motion,
together with their local times. A similar convergence result was proved in [14] for piecewise
linear interpolation of discrete time random walks and their local time. The proof of Theorem
1 is completed in Section 6, using again Girsanov’s theorem. It remains a challenge to prove
Theorem 1 directly by stochastic analysis. For this, one promising route is the approach of
Norris, Rogers and Williams [11], about which we learned after completing this paper. The
main result of [11] is a Ray-Knight theorem “of the first type” for Brownian motion with a
drift depending on its local time, while ours is a Ray-Knight theorem “of the second type”,
with reflection above the origin. Also, we think that our method involving an approximation
by an interacting particle system is of independent interest.

2 Proof of Proposition 1.1

For abbreviation we write Ls(t) := Ls(t,H). Following the Girsanov route, let B be a standard
Brownian motion defined on a probability space (Ω,F ,P) and let H obey

Hs =
2

σ
Bs +

1

2
Ls(0), (2.1)

with L being the semimartingale local time of H. Thus the process H is under the probability
measure P a reflected Brownian motion with variance parameter 4/σ2. In order to prove the
existence part of Proposition 1.1 it suffices to construct, by a suitable reweighting of P, a
probability measure P̃ under which

B̃s := Bs −
∫ s

0

[

θ

σ
− σγ

2
Lr(Hr)

]

dr, s ≥ 0, (2.2)

is a standard Brownian motion. Indeed, (2.2) and (2.1) together imply that under P̃ the
process H solves (1.3) with B̃ instead of B.

The Girsanov condition which makes the reweighting possible and whose validity we will
check is

E exp

(

Ms −
1

2
〈M〉s

)

= 1, s ≥ 0, (2.3)

with Ms :=
∫ s
0

[

θ
σ − σγ

2 Lr(Hr)
]

dBr.

Remark 2.1. If (2.3) holds, then there exists a measure P̃ such that for all s > 0

dP̃

dP

∣

∣

∣

∣

∣

Fs

= exp

(

Ms −
1

2
〈M〉s

)

,

where Fs is the σ-field generated by (Hr)0≤r≤s. By Girsanov’s theorem, B̃ defined by (2.2)
then is a standard Brownian motion under P̃. Thus, under P̃, H solves (1.3) with B̃ instead
of B. This gives the existence part of Proposition 1.1, as soon as we have (2.3).

A sufficient condition for (2.3) is provided by the following lemma, which is Theorem 1.1,
chapter 7 (page 152) in [5].
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Lemma 2.2. Assume that the quadratic variation of the continuous local martingale M is of
the form 〈M〉s =

∫ s
0 Rr dr ,and that for all s > 0 there exist constants a > 0 and c <∞ such

that
E exp(aRr) ≤ c, 0 ≤ r ≤ s. (2.4)

Then (2.3) is satisfied.

In our situation, Rr =
∣

∣

θ
σ − σγ

2 Lr(Hr)
∣

∣

2
, for which (2.4) is implied by the following

Lemma 2.3. Let H be a Brownian motion on R+ reflected at the origin, with variance
parameter v2. Then for all s > 0 there exists α = α(s, v) > 0 and a constant c <∞ such that

E
(

exp(αLr(Hr)
2)
)

≤ c, 0 ≤ r ≤ s.

Proof: Together with a simple scaling argument and a desintegration with respect to Hr, this
is immediate from the following

Lemma 2.4. Let β be a standard Brownian motion starting at 0, and denote by L1(t) the
local time accumulated by |β| at position t up to time 1. There exist constants a > 0 and
c > 0 (not depending on t) such that

E[eaL1(t)2 | |β1| = t] ≤ c, t ≥ 0. (2.5)

Proof: Denote by K1(x) the local time of β accumulated up to time 1 at position x. First
observe that for t ≥ 0

L1(t) = K1(t) +K1(−t) a.s. (2.6)

For deriving (2.5), by symmetry it suffices to condition under the event {β1 = t}. Writing P
x

for P[ . |β1 = x] we conclude from (2.6) and the Cauchy-Schwarz inequality that for all a > 0

E
t[eaL1(t)2 ] ≤

(

E
t
[

e4aK1(t)2
])1/2 (

E
t
[

e4aK1(−t)2
])1/2

. (2.7)

For u ≤ 1, the distribution of K1(t) under P
t and conditioned under the event that β hits t

first at time u, equals the distribution of
√
1− uK1(0) under P

0. Similarly, for u1, u2 ≤ 1,
the distribution of K1(−t) under Pt and conditioned under the event that (βv)0≤v≤1 hits −t
first at time u1 and last at time u2, equals the the distribution of

√
u2 − u1K1(0) under P

0.
Consequently,

E
t
[

e4aK1(t)2
]

≤ E
0
[

e4aK1(0)2
]

, E
t
[

e4aK1(−t)2
]

≤ E
0
[

e4aK1(0)2
]

. (2.8)

By a result due to Lévy (see formula (11) in [15]), K1(0) has under P
0 a Raleigh distribution,

i.e.
P
0(K1(0) > ℓ) = e−

1

2
ℓ2 .

This means that K2
1 (0) is exponentially distributed, and hence, for suitably small δ > 0,

E
0
[

eδK1(0)2
]

is finite. Now (2.5) follows from (2.7) and (2.8).



3 A DISCRETE MASS APPROXIMATION 5

As stated above, Lemmas 2.2 and 2.3 give together with Remark 2.1 the existence part of
Proposition 1.1. For its uniqueness part, assume that H is a weak solution of (1.3), governed
by some measure P. For n ∈ N, we define

Tn := inf{r > 0 : Lr(Hr) > n}. (2.9)

By a Girsanov transformation we can change the measure P into a measure P̄ under which,
for all n ∈ N,

B̄s∧n∧Tn = Bs∧n∧Tn +

∫ s∧n∧Tn

0

[

θ

σ
− γ

σ

2
Lr(Hr)

]

dr, s ≥ 0,

is a standard Brownian motion stopped at n ∧ Tn. Then, under P̄, for all n, the process H
satisfies

dHs =
2

σ
dB̄s +

1

2
dLs(0), 0 ≤ s ≤ n ∧ Tn, (2.10)

H0 = 0.

Because the weak solution of (2.10) is unique, the law of (Hs∧n∧Tn)s≥0 under P̄ is uniquely
determined, and so is the law of (Hs∧n∧Tn)s≥0 under P, since it can be recovered by the inverse
Girsanov transformation (note that P and P̄ are mutually absolutely continuous on Fn∧Tn).
From Theorem VI.1.7, page 225 of [16] one can infer that the local time L = Ls(t) of H is
jointly continuous on [0,∞) × [0,∞) in its two arguments P-a.s. Consequently, Tn → ∞ as
n→ ∞, P-a.s, which shows weak uniqueness for (1.3) and completes the proof of Proposition
1.1.

3 A discrete mass approximation

The aim of this section is to set up a “discrete mass - continuous time” approximation of
(1.1) and (1.3). This will explain the intuition behind Theorem 1, and also will prepare for
its proof.

For x > 0 and N ∈ N the approximation of (1.1) will be given by the total mass ZN,x of a
population of individuals, each of which has mass 1/N . The initial mass is ZN,x

0 = ⌊Nx⌋/N ,
and ZN,x follows a Markovian jump dynamics: from its current state k/N ,

ZN,x jumps to

{

(k + 1)/N at rate kNσ2/2 + kθ

(k − 1)/N at rate kNσ2/2 + k(k − 1)γ/N.
(3.1)

For γ = 0, this is (up to the mass factor 1/N) as a Galton-Watson process in continuous
time: each individual independently spawns a child at rate Nσ2/2+ θ, and dies (childless) at
rate Nσ2/2. For γ 6= 0, the additional quadratic death rate destroys the independence, and
hence also the branching property. However, when viewing the individuals alive at time t as
being arranged “from left to right”, and by decreeing that each of the pairwise fights (which
happen at rate 2γ and always end lethal for one of the two involved individuals) is won by
the individual to the left, we arrive at the additional death rate 2γLi(t)/N for individual i,
where Li(t) denotes the number of individuals living at time t to the left of individual i.

The just described reproduction dynamics gives rise to a forest FN,x of trees of descent,
drawn into the plane as sketched in Figure 1. At any branch point, we imagine the “new”
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Figure 1: A realization of (the first two trees of) FN and (the first two excursions of) its
exploration path HN . The t-axis is real time as well as exploration height, the s-axis is
exploration time.

branch being placed to the right of the mother branch. Because of the asymmetric killing,
the trees further to the right have a tendency to stay smaller: they are “under attack” by the
trees to their left. Note also that, with the above described construction, the FN,x, x > 0,
are coupled: when x is increased by 1/N , a new tree is added to the right. We denote the
union of the FN,x, x > 0, by FN .

From FN we read off a continuous and piecewise linear R+-valued path HN = (HN
s )

(called the exploration path of FN ) in the following way:
Starting from the root of the leftmost tree, one goes upwards at speed 2N until one hits

the top of the first mother branch (this is the leaf marked with D in Figure 1). There one
turns and goes downwards, again at speed 2N , until arriving at the next branch point (which
is B in Figure 1). From there one goes upwards into the (yet unexplored) next branch, and
proceeds in a similar fashion until being back at height 0, which means that the exploration
of the leftmost tree is completed. Then explore the next tree, and so on. For x > 0 we denote
by SN

x the time at which the exploration of the forest FN,x is completed. Obviously, for each
t ≥ 0, the number of branches in FN,x that are alive at time t equals half the number of
t-crossings of the exploration path of FN stopped at SN

x . Recalling that the slope of HN is
±2N , we define

ΛN
s (t) :=

1

2N
# of t-crossings of HN between exploration times 0 and s, (3.2)

where we count a local minimum of HN at t as two t-crossings, and a local maximum as none.
Note that by our convention both s 7→ ΛN

s (t) and t 7→ ΛN
s (t) are right continuous, and in

particular ΛN
0 (0) = 0. We call ΛN

s (t) the (unscaled) local time of HN accumulated at height
t up to time s. This name is justified also by the following occupation times formula, valid
for all measurable f : R+ → R+

∫ s

0
f(HN

r ) dr =

∫ ∞

0
f(t)ΛN

s (t) dt, s ≥ 0. (3.3)

The exploration time SN
x which it takes to traverse all of the ⌊Nx⌋ trees in FN,x can be

expressed as
SN
x = inf{s : ΛN

s (0) ≥ ⌊Nx⌋/N}. (3.4)
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Proposition 3.1. The exploration path s 7→ HN
s obeys the following stochastic dynamics:

• At time s = 0, HN starts at height 0 and with slope 2N .

• While HN moves upwards, its slope jumps from 2N to −2N at rate N2σ2+4γNℓ, where
ℓ = ΛN

s (HN
s ) is the local time accumulated by HN at the current height HN

s up to the
current exploration time s.

• While HN moves downwards, its slope jumps from −2N to 2N at rate N2σ2 + 2Nθ.

• Whenever HN reaches height 0, it is reflected above 0.

Proof: We give here an informal proof which contains the essential ideas. (A more formal
proof can be carried out along the arguments of the proof of Theorem 2.4 in [1].)

Recall that the death rate of an individual i living at real time t is Nσ2/2 + 2γLi(t)/N ,
where Li(t) is the number of individuals living at time t to the left of individual i. Assume
the individual i living at time t is explored first at time s, hence Hs = t, and H has slope 2N
at time s. Because of (3.2), while HN

s goes upward, we have Li(t) = NΛs(H
N
s ). The rate in t

is the rate in s multiplied by the factor 2N which is the absolute value of the slope. This gives
the claimed jump rate 2N(Nσ2/2 + 2γΛs(H

N
s )) from slope 2N to slope −2N , which can be

seen as the rate at which the “death clock” rings (and leads to a downward jump of the slope)
along the rising pieces of the exploration path HN . On the other hand, the “birth clock”
rings along the falling pieces of HN , its rate being Nσ2/2+θ in real time and 2N(Nσ2/2+θ)
in exploration time, as claimed in the proposition. Note that the process of birth times along
an individual’s lifetime is a homogeneous Poisson process which (in distribution) can as well
be run backwards from the individual’s death time. Also note that, due to the “depth-first-
search”-construction of HN , along falling pieces of HN always yet unexplored parts of the
forest are visited as far as the birth points are concerned.

The next statement is a discrete version of Theorem 1, and will later be used for the proof
of Theorem 1 by taking N → ∞.

Corollary 3.2. Let HN be a stochastic process following the dynamics specified in Proposition
3.1, and ΛN be its local time as defined by (3.2). For x > 0, let SN

x be the stopping time
defined by (3.4). Then t 7→ ΛN

SN
x
(t) follows the jump dynamics (3.1).

Proof: By Proposition 3.1, HN is equal in distribution to the exploration path of the random
forest FN . Hence ΛSN

x
(t) is equal in distribution to ZN,x

t , where NZN,x
t is the number of

branches alive in FN,x at time t. Since ZN,x follows the dynamics (3.1), so does ΛN
SN
x
.

The next lemma will also be important in the proof of Theorem 1.

Lemma 3.3. Let HN and SN
x be as in Corollary 3.2. Then SN

x → ∞ a.s. as x→ ∞.

Proof: Consider x = a/N for a = 1, 2 . . .. Applying (3.3) with s = SN
x and f ≡ 1 we obtain

the equality SN
x =

∫∞
0 ΛN

SN
x
(t) dt.

According to Corollary 3.2, ΛN
SN
x
(t) follows the jump dynamics (3.1), with initial condition

ΛSN
x
(t) = a/N . By coupling ΛN

SN
x
(t) with a “pure death process” KN that starts in a/N and

jumps from k/N to (k − 1)/N at rate k(k − 1)(Nσ2/2 + γ/N), we see that
∫∞
0 ΛN

SN
x
(t) dt

is stochastically bounded from below by
∫ T2

0 KN
t dt, where T2 is the first time at which KN
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comes down to 2/N . The latter integral equals a sum of independent exponentially distributed
random variables with parameters (j − 1)(N2σ2/2 + γ)), j = 2, . . . , a. This sum diverges as
a→ ∞.

4 Convergence of the mass processes ZN,x as N → ∞
The process {ZN,x

t , t ≥ 0} with dynamics (3.1) is a Markov process with values in the set
EN := {k/N, k ≥ 1}, starting from ⌊Nx⌋/N , with generator AN given by

ANf(z) = Nz

(

N
σ2

2
+ θ

)[

f

(

z +
1

N

)

− f(z)

]

(4.1)

+Nz

(

N
σ2

2
+ γ

(

z − 1

N

))[

f

(

z − 1

N

)

− f(z)

]

,

for any f : EN → R, z ∈ EN . (Note that the distinction between symmetric and ordered
killing is irrelevant here.) Applying successively the above formula to the cases f(z) = z and
f(z) = z2, we get that

ZN,x
t = ZN,x

0 +

∫ t

0

[

θZN,x
r − γZN,x

r

(

ZN,x
r − 1

N

)]

dr +M
(1)
t , (4.2)

(

ZN,x
t

)2
=
(

ZN,x
0

)2
+ 2

∫ t

0
ZN,x
r

[

θZN,x
r − γZN,x

r

(

ZN,x
r − 1

N

)]

dr

+

∫ t

0

[

σ2ZN,x
r +

θ

N
ZN,x
r +

γ

N

(

ZN,x
r − 1

N

)

ZN,x
r

]

dr +M
(2)
t , (4.3)

where {M (1)
t , t ≥ 0} and {M (2)

t , t ≥ 0} are local martingales. It follows from (4.2) and (4.3)
that

〈M (1)〉t =
∫ t

0

[

σ2ZN,x
r +

θ

N
ZN,x
r +

γ

N

(

ZN,x
r − 1

N

)

ZN,x
r

]

dr. (4.4)

We now prove

Lemma 4.1. For any T > 0,

sup
N≥1

sup
0≤t≤T

E

[

(

ZN,x
t

)4
]

<∞.

An immediate Corollary of this Lemma is that {M (1)
t } and {M (2)

t } are in fact martingales.
Proof: The same computation as above, but now with f(z) = z4, gives

(

ZN,x
t

)4
=
(

ZN,x
0

)4
+

∫ t

0
ΦN

(

ZN,x
r

)

dr +M
(4)
t , (4.5)

where {M (4)
t , t ≥ 0} is a local martingale and for some c > 0 independent of N ,

ΦN (z) ≤ c(1 + z4). (4.6)

We note that NZN,x
t is bounded by the value at time t of a Yule process (which arises when

suppressing the deaths), which is a finite sum of mutually independent geometric random
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variables, hence has finite moments of any order. Hence M (4) is in fact a martingale. We
then can take the expectation in (4.5), and deduce from (4.6) and Gronwall’s Lemma that
for 0 ≤ t ≤ T ,

E

[

(

ZN,x
t

)4
]

≤
[

(

ZN,x
0

)4
+ cT

]

ecT ,

which implies the result.

We shall also need below the

Lemma 4.2. For any T > 0,

sup
N≥1

E

[

sup
0≤t≤T

(

ZN,x
t

)2
]

<∞.

Proof: It follows readily from (4.2) that

sup
r≤t

|ZN,x
r |2 ≤ 4|ZN,x

0 |2 + 4tθ2
∫ t

0
|ZN,x

r |2dr + 4 sup
r≤t

|M (1)
r |2.

This together with (4.4), Doob’s L2-inequality for martingales and Lemma 4.1 implies the
result.

Corollary 7.10 in the Appendix combined with (4.2), (4.4) and Lemma 4.1 guarantees that
the tightness of {ZN

0 }n≥1 implies that of {ZN}N≥1 in D([0,+∞)).
Standard arguments exploiting (4.2) and (4.3) now allow us to deduce the convergence of

the mass processes (for a detailed proof, see Méléard [12], page 21).

Proposition 4.3. As N → ∞, ZN,x ⇒ Zx, where Zx is the unique solution of the SDE (1.1)
and thus is a Feller diffusion with logistic growth.

5 The exploration path in the case θ = γ = 0.

Let HN be a stochastic process as in Proposition 3.1 with θ = γ = 0. The aim of this section
is to provide a version of the joint convergence (as N → ∞) of HN and its local time which is
suitable for the change of measure that will be carried through in Section 6. This is achieved
in Theorem 2 and its Corollary 5.1. The proof of Theorem 2 is carried out in two major
parts. The first part (Proposition 5.3) provides a refined version of the joint convergence of
HN and its local time at level 0, the second part (starting from Lemma 5.5) extends this to
the other levels as well.

We define the (scaled) local time accumulated by HN at level t up to time s as

LN
s (t) :=

4

σ2
lim
ε→0

1

ε

∫ s

0
1{t<HN

u <t+ε}du

Note that this process is neither right– nor left–continuous as a function of s. However since
the jumps are of size O(1/N), the limit of LN as N → ∞ will turn out to be continuous.
In fact, we will show that LN converges as N → ∞ to the semimartingale local time of the
limiting process H, hence the scaling factor 4/σ2. It is readily checked that LN

0+(0) =
2

Nσ2 ,
and

LN
s (t) =

4

σ2
ΛN
s (t), ∀s ≥ 0, t ≥ 0, (5.1)
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where Λ was defined in (3.2). Then with SN
x defined in (3.4), we may rewrite

SN
x = inf{s > 0 : LN

s (0) ≥ 4

σ2
[Nx]/N}. (5.2)

From (5.1) and Corollary 3.2 we see that

ZN,x
t :=

σ2

4
LN
SN
x
(t)

follows the jump dynamics (3.1) in the case θ = γ = 0.
Let {V N

s , s ≥ 0} be the càdlàg {−1, 1}-valued process which is such that for a. a. s > 0,

dHN
s

ds
= 2NV N

s .

We can express LN in terms of HN and V N as

LN
s (t) =

4

σ2
1

2N





∑

0≤r<s

1{HN
r =t}

(

1 +
1

2
(V N

r − V N
r−)

)

+ 1{HN
s =t}1{V N

s−=−1}





where we put V0− = +1. Note that any r < s at which t is a local minimum of HN counts
twice in the sum of the last line, while any r < s at which t is a local maximum of HN is not
counted in the sum.

Conversely, we have

HN
s = 2N

∫ s

0
V N
r dr ,

V N
s = 1 + 2

∫ s

0
1{V N

r−=−1}dP
N
r − 2

∫ s

0
1{V N

r−=1}dP
N
r +

Nσ2

2
(LN

s (0) − LN
0+(0)),

(5.3)

where {PN
s , s ≥ 0} is a Poisson process with intensity N2σ2. Note that MN

s = PN
s −N2σ2s,

s ≥ 0, is a martingale. It is easily deduced that

HN
s +

V N
s

Nσ2
=

1

2
LN
s (0) +M1,N

s −M2,N
s , (5.4)

where

M1,N
s =

2

Nσ2

∫ s

0
1{V N

r−=−1}dM
N
r and M2,N

s =
2

Nσ2

∫ s

0
1{V N

r−=1}dM
N
r (5.5)

are two mutually orthogonal martingales. Thanks to an averaging property of the V N (see
step 2 in the proof of Proposition 5.3 below) these two martingales will converge as N → ∞
to two independent Brownian motions with variance parameter 2/σ2 each. Together with
the appropriate convergence of LN (0), (5.4) then gives the required convergence of HN , see
Proposition 5.3. We are now ready to state the main result of this section.

Theorem 2. For any x > 0, as N → ∞,

({HN
s ,M

1,N
s ,M2,N

s , s ≥ 0}, {LN
s (t), s, t ≥ 0}, SN

x ) ⇒ ({Hs,
2

σ
B1

s ,
2

σ
B2

s , s ≥ 0}, {Ls(t), s, t ≥ 0}, Sx)
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for the topology of locally uniform convergence in s and t. Here H solves the SDE (2.1) whose
driving Brownian motion B is given as

Bs =
1√
2
(B1

s −B2
s ),

L is the semimartingale local time of H, and Sx has been defined in (1.2).

An immediate consequence of this result is

Corollary 5.1. For any x > 0, as N → ∞,

({HN
s ,M

1,N
s ,M2,N

s , s ≥ 0}, {LN
SN
x
(t), t ≥ 0}) ⇒ ({Hs,

2

σ
B1

s ,
2

σ
B2

s , s ≥ 0}, {LSx(t), t ≥ 0})

in C([0,∞))× (D([0,∞)))3.

Recall that convergence inD([0,∞)) is equivalent to locally uniform convergence, provided
the limit is continuous.

A first preparation for the proof of Theorem 2 is

Lemma 5.2. The sequence {HN} is tight in C([0,∞)).

Proof: To get rid of the local time term in (5.4), we consider a new pair of processes
(RN ,WN ), which is R× {−1, 1}-valued and satisfies

RN
s = 2N

∫ s

0
WN

r dr ,

WN
s = 1 + 2

∫ s

0
sign(RN

r )1{WN
r−=−sign(RN

r )}dP
N
r − 2

∫ s

0
sign(RN

r )1{WN
r−=sign(RN

r )}dP
N
r .

We observe that
(HN , V N ) ≡ (|RN |, sign(RN )WN ) .

Clearly tightness of {RN} will imply that of {HN}, since

∀s, t |HN
s −HN

t | ≤ |RN
s −RN

t |

Now we have

RN
s +

WN
s

Nσ2
=

1

Nσ2
+

2

Nσ2

∫ s

0
(−WN

r−)dM
N
r .

By Proposition 7.8 in the Appendix, the sequence {RN}N≥1 is tight, and so is {HN}N≥1.

Proposition 5.3. Fix x > 0. As N → ∞,

(

HN ,M1,N ,M2,N , LN (0), SN
x

)

⇒
(

H,

√
2

σ
B1,

√
2

σ
B2, L(0), Sx

)

in C([0,∞]) ×
(

D([0,∞])
)3 × [0,∞],

where B1 and B2 are two mutually independent standard Brownian motions, and H solves
the SDE

Hs =
2

σ
Bs +

1

2
Ls(0), s ≥ 0, (5.6)

with Bs := (1/
√
2)(B1

s −B2
s ), and L(0) denoting the local time at level 0 of H. (Note that B

is again a standard Brownian motion.)
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Proof: Step 1. Note that

i) from Lemma 5.2, the sequence {HN , N ≥ 1} is tight in C([0,∞]);

ii) sups≥0
|V N

s |
Nσ2 → 0 in probability as N → ∞;

iii) from Proposition 7.8, {M1,N , N ≥ 1} and {M2,N , N ≥ 1} are tight in D([0,∞]), any
limiting martingales M1 and M2 being continuous;

iv) it follows from the first 3 items, (5.4) and Proposition 7.7 that {LN
s (0), N ≥ 1} is tight in

D([0,∞]), the limit K of any converging subsequence being continuous and increasing.

Working along a diagonal subsequence we can extract a subsequence, still denoted as an abuse
like the original sequence, such that

(

HN ,M1,N ,M2,N , LN (0)
)

⇒
(

H,M1,M2,K
)

.

Step 2. We claim that for any s > 0,
∫ s

0
1{V N

r−=1}dr →
s

2
,

∫ s

0
1{V N

r−=−1}dr →
s

2

in probability, as N → ∞. To see this, let AN
s (resp. INs ) denote the number of local maxima

(resp. minima) of the process HN on the interval ]0, s]. We have

INs ≤ AN
s ≤ INs + 1 (5.7)

and
PN
s ≤ AN

s + INs ≤ PN
s +NLN

s (0),

where {PN
s , s ≥ 0} is the Poisson processes with intensity N2σ2 appearing in (5.3). We

deduce from this system of inequalities, the law of large numbers for Poisson processes, and
the tightness of {LN (0), N ≥ 1} that

AN
s + INs
σ2N2

→ s in probability, as N → ∞. (5.8)

From (5.7) and (5.8) we have

AN
s

σ2N2
→ s

2
,

INs
σ2N2

→ s

2
in probability, as N → ∞.

Now

AN
s =

∫ s

0
1{V N

r−=1}dP
N
r

= σ2N2

∫ s

0
1{V N

r =1}dr +
∫ s

0
1{V N

r−=1}dM
N
r .

Consequently

∫ s

0
1{V N

r =1}dr =
AN

s

σ2N2
− (σ2N2)−1

∫ s

0
1{V N

r−=1}dM
N
r

→ s

2
in probability, as N → ∞.
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Indeed

P

(∣

∣

∣

∣

∫ s

0
1{V N

r−
=1}dM

N
r

∣

∣

∣

∣

> εN2

)

≤
√

E(|MN
s |2)

εN2

≤
√
σ2N2s

εN2

→ 0, as N → ∞.

The second part of the claim follows, since

∫ s

0
1{V N

r =−1}dr = s−
∫ s

0
1{V N

r =1}dr.

Step 3. By Step 1 iii), M1 and M2 are continuous martingales. In order to identify them,
we first introduce some useful notation. We writeM⊗2

t for the 2×2 matrix whose (i, j)–entry

equals M i
t ×M j

t , where M
i
t is the i–th coordinate of the vector Mt :=

(

M1
t

M2
t

)

. We denote by

〈〈M〉〉 the R
2×2–valued predictable process which is such that

M⊗2 − 〈〈M〉〉

is a martingale, and note that the (i, j)–entry of the matrix 〈〈M〉〉t equals 〈M i,M j〉t. Likewise
we proceed with M1,N and M2,N .

From Step 2 we see that

〈〈
(

M1,N

M2,N

)

〉〉s =
4

σ2

∫ s

0

(

1{V N
r =−1} 0

0 1{V N
r =1}

)

dr

→ 2

σ2
sI

in probability, locally uniformly in s, where I denotes the 2×2 identity matrix. Consequently

(

M1,N
s

M2,N
s

)⊗2

− 〈〈
(

M1,N

M2,N

)

〉〉s ⇒
(

M1
s

M2
s

)⊗2

− 2

σ2
sI

in D([0,∞);R4) and since weak limits of martingales are local martingales, there exist two
mutually independent standard Brownian motions B1 and B2 such that

M1
s =

√
2

σ
B1

s , M
2
s =

√
2

σ
B2

s , s ≥ 0.

Taking the weak limit in (5.4) we deduce that

Hs =

√
2

σ
(B1

s −B2
s ) +

1

2
Ks

=

√
2

σ
Bs +

1

2
Ks,

where Bs = (B1
s −B2

s)/
√
2 is also a standard Brownian motion. Step 4. For each ℓ ≥ 1, we
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define the function fℓ : R+ → [0, 1] by fℓ(x) = (1−ℓx)+. We have that for each N, ℓ ≥ 1, s > 0,
since LN (0) increases only when HN = 0,

E

(

∫ s

0
fℓ(H

N
r )dLN

r (0)− LN
s (0)

)

≥ 0.

Thanks to Lemma 7.3 in the Appendix we can take the limit in this last inequality as N → ∞,
yielding

E

(

∫ s

0
fℓ(Hr)dKr −Ks

)

≥ 0.

Then taking the limit as ℓ→ ∞ yields

E

(

∫ s

0
1{Hr=0}dKr −Ks

)

≥ 0.

But the random variable under the expectation is clearly nonpositive, hence it is zero a.s., in
other words

Ks =

∫ s

0
1{Hr=0}dKr, ∀s ≥ 0,

which means that the process K increases only when Hr = 0.
From the occupation times formula

4

σ2

∫ s

0
g(Hr)dr =

∫ ∞

0
g(t)Ls(t)dt

applied to the function g(h) = 1{h=0}, we deduce that the time spent by the process H at 0
has a.s. zero Lebesgue measure. Consequently

∫ s

0
1{Hr=0}dBr ≡ 0 a.s.

hence a.s.

Bs =

∫ s

0
1{Hr>0}dBr ∀s ≥ 0.

It then follows from Tanaka’s formula applied to the process H and the function h→ h+ that
K = L(0). Step 5. We have proved so far thatQN ⇒ Q, whereQN = (HN ,M1,N ,M2,N , LN (0)),

Q = (H,
√
2
σ B

1,
√
2
σ B

2, L(0)). Note that not only subsequences but the entire sequence
Q1, Q2, Q3, . . . converges, since the limit law is uniquely characterized. Step 6. It remains

to check that for any x > 0

(QN , SN
x ) ⇒ (Q,Sx) in C([0,∞])×

(

D([0,∞])
)3 × [0,∞].

To this end, let us define the function Φ from R+ × C↑(R+) into R+ by

Φ(x, y) = inf{s > 0 : y(s) >
4

σ2
x}.

For any x fixed, the function Φ(x, .) is continuous in the neighborhood of a function y which
is strictly increasing at the time when it first reaches the value x. Clearly Sx = Φ(x,L.(0)).
Define

S
′N
x := Φ(x,LN

. (0)).
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We note that for any x > 0, s 7→ Ls(0) is a.s. strictly increasing at time Sx, which is a
stopping time. This fact follows from the strong Markov property, the fact that HSx = 0,
and Lε(0) > 0, for all ε > 0. Consequently Sx is a.s. a continuous function of the trajectory
L.(0) , then also of Q, and

(QN , S
′N
x ) ⇒ (Q,Sx).

It remains to prove that S
′N
x − SN

x → 0 in probability. For any y < x and N large enough

0 ≤ S
′N
x − SN

x ≤ S
′N
x − S

′N
y .

Clearly S
′N
x − S

′N
y ⇒ Sx − Sy, hence for any ε > 0,

0 ≤ lim sup
N

P(S
′N
x − SN

x ≥ ε) ≤ lim sup
N

P(S
′N
x − S

′N
y ≥ ε) ≤ P(Sx − Sy ≥ ε).

The result follows, since Sy → Sx− as y → x, y < x, and Sx− = Sx a.s.

For the proof of Theorem 2 we will need the following lemmata:

Lemma 5.4. For any s > 0, t > 0, the following identities hold a.s.

(HN
s − t)+ = 2N

∫ s

0
V N
r 1{HN

r >t}dr,

V N
s 1{HN

s >t} =
σ2N

2
LN
s (t) +

∫ s

0
1{HN

r >t}dV
N
r .

Proof: The first identity is elementary, and is true along any piecewise linear, continuous
trajectory {HN

r } satisfying dHN
s /ds = 2NV N

s for almost all s, with V N
s ∈ {−1, 1}. The other

identities which we will state in this proof are true a.s. In these identities we exclude the
trajectories of HN which have a local maximum or minimum at the level t. This implies that
the two processes s→ V N

s and s→ 1{HN
s >t} do not jump at the same time. Hence from

1{HN
s >t} =

∑

0<r<s

1{HN
r =t}V

N
r − 1{V N

s =−1}1{HN
s =t}

=
σ2N

2

∫ s

0
V N
r dLN

r (t),

we deduce by differentiating the product that

V N
s 1{HN

s >t} =
σ2N

2

∫ s

0
(V N

r )2dLN
r (t) +

∫ s

0
1{HN

r >t}dV
N
r .

Since (V N
r )2 = 1, this is the second identity in the lemma.

Lemma 5.5. Denote by Ls(t) the local time at level t up to time s of H. Then with probability
one (s, t) 7→ Ls(t) is continuous from R+ × R+ into R.

Proof: This is Theorem VI.1.7 page 225 of Revuz, Yor [16].
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Proposition 5.6. For each d ≥ 1, 0 ≤ t1 < t2 < · · · < td,

{(

HN
s , L

N
s (t1), L

N
s (t2), .., L

N
s (td)

)

, s ≥ 0
}

⇒
{(

Hs, Ls(t1), Ls(t2), .., Ls(td)
)

, s ≥ 0
}

in C([0,∞)) × (D([0,∞)))d.

Proof: We prove the result in case d = 1 only, the proof of the general case being very
similar. From (5.3) and Lemma 5.4 we deduce that for any t ≥ 0, a. s.

LN
s (t) = 2(HN

s − t)+ +
2

Nσ2
V N
s 1{HN

s >t} − 2

∫ s

0
1{HN

r >t}(dM
1,N
r − dM2,N

r ), s ≥ 0. (5.9)

Let

UN
s =

∫ s

0
1{HN

r >t}(dM
1,N
r − dM2,N

r ).

By Proposition 7.8 we have that {UN}N≥1 is tight in D([0,∞)). Moreover,

〈M1,N −M2,N 〉s =
4

σ2
s (5.10)

〈UN 〉s = 〈UN ,M1,N −M2,N 〉s =
4

σ2

∫ s

0
1{HN

r >t}dr. (5.11)

From the occupation times formula

∫ s

0
1{Hr=t}dr =

σ2

4

∫ ∞

0
1{r=t}Ls(r)dr = 0 a.s.

Then by Lemma 7.2 from the Appendix we deduce that along an appropriate sequence

{

∫ s

0
1{HN

r >t}dr, s ≥ 0
}

⇒
{

∫ s

0
1{Hr>t}dr, s ≥ 0

}

(5.12)

From (5.10), (5.11) and (5.12), we have again along an appropriate subsequence

(UN
s ,M

1,N
s −M2,N

s ) ⇒
( 2

σ

∫ s

0
1{Hr>t}dBr,

2

σ
Bs

)

in
(

D([0,∞))
)2
.

Moreover, arguments similar to that used in the proof of Proposition 5.3 establish that

(HN
s , U

N
s ) ⇒

(

Hs,
2

σ

∫ s

0
1{Hr>t}dBr

)

in
(

D([0,∞))
)2
.

Now from any subsequence, we can extract a subsequence along which we can take the weak
limit in (5.9). But Tanaka’s formula gives us the identity

Ls(t) = 2(Hs − t)+ − 4

σ

∫ s

0
1{Hr>t}dBr,

which characterizes the limit of LN as the local time of H. Since the law of H is uniquely
characterized, the whole sequence converges.
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Proposition 5.7. For each s ≥ 0 fixed, {LN
s (t), t ≥ 0}N≥1 is tight in D([0,∞)).

Proof: We have

LN
s (t) = 2(HN

s − t)+ +
2

Nσ2
V N
s 1{HN

s >t} +
4

Nσ2

∫ s

0
V N
r−1{HN

r >t}dM
N
r (5.13)

= KN
t +GN

t ,

where

KN
t = 2(HN

s − t)+ +
2

Nσ2
V N
s 1{HN

s >t},

GN
t =

4

Nσ2

∫ s

0
V N
r−1{HN

r >t}dM
N
r .

We shall apply Proposition 7.7. Since

{KN
0 = 2HN

s +
2

Nσ2
V N
s 1{HN

s >0}, N ≥ 1} is tight and

lim sup
N→∞

|KN
t −KN

t′ | ≤ 2|t− t′|,

the sequence {KN
· }N≥1 satisfies the conditions of Proposition 7.5, and we now show that the

sequence {GN
· }N≥1 satisfies the conditions of Proposition 7.6.

Condition (1) follows easily from the fact that E
(

|GN
t |2
)

≤ 16s/σ2. In order to verify
condition (2), we will show that for any T > 0, there exists C > 0 such that for any 0 < t <
T, ε > 0,

E
[

(GN
t+ε −GN

t )2(GN
t −GN

t−ε)
2
]

≤ C(ε3/2 + ε2).

In order to simplify the notations below we let

ϕN
r := V N

r−1{t−ε<HN
r ≤t},

ψN
r := V N

r−1{t<HN
r ≤t+ε}.

An essential property, which will be crucial below, is that ϕN
r ψ

N
r = 0. Also (ϕN

r )2 = |ϕN
r |, and

similarly for ψN , since those functions take their values in the set {−1, 0, 1}. The quantity
we want to compute equals up to a fixed multiplicative constant

N−4
E

[

(

∫ s

0
ϕN
r dM

N
r )2(

∫ s

0
ψN
r dM

N
r )2

]

.

We note that we have the identity

(

∫ s

0
ϕN
r dM

N
r )2 = 2

∫ s

0

∫ r−

0
ϕN
u dM

N
u ϕ

N
r dM

N
r +

∫ s

0
|ϕN

r |dMN
r + σ2N2

∫ s

0
|ϕN

r |dr,

and similarly with ϕN replace by ψN . Because ϕN
r ψ

N
r = 0, the expectation of the product of

∫ s

0

∫ r−

0
ϕN
u dM

N
u ϕ

N
r dM

N
r or

∫ s

0
|ϕN

r |dMN
r

with
∫ s

0

∫ r−

0
ψN
u dM

N
u ψ

N
r dM

N
r or

∫ s

0
|ψN

r |dMN
r
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vanishes. We only need to estimate the expectations

E

(

∫ s

0

∫ r−

0
ϕN
u dM

N
u ϕ

N
r dM

N
r

∫ s

0
|ψN

r |dr
)

,E
(

∫ s

0
|ϕN

r |dMN
r

∫ s

0
|ψN

r |dr
)

,

and E

(

∫ s

0
|ϕN

r |dr
∫ s

0
|ψN

r |dr
)

,

together with similar quantities with ϕN and ψN interchanged. The estimates of the first
two expectations are very similar. We estimate the second one as follows, using the Cauchy-
Schwarz inequality, and Lemma 5.8 below :

E

(

∫ s

0
|ϕN

r |dMN
r

∫ s

0
|ψN

r |dr
)

≤
√

E

∫ s

0
|ϕN

r |d〈MN 〉r

√

E

[(

∫ s

0
|ψN

r |dr
)2]

≤ CNε3/2

Finally, again from Lemma 5.8,

E

(

∫ s

0
|ϕN

r |dr
∫ s

0
|ψN

r |dr
)

≤ Cε2.

The first quantity should be multiplied by N2, and the second by N4, and then both should
be divided by N4. The proposition is established.

Lemma 5.8. Let s, ǫ, T > 0. Then there exists a constant C such that for all N ≥ 1 and
0 < t, t′ < T ,

E

(

∫ s

0
1{t−ε<HN

r ≤t}dr
)

≤ Cε,

E

(

∫ s

0
1{t−ε<HN

r ≤t}dr
∫ s

0
1{t′−ε<HN

r ≤t′}dr
)

≤ Cε2.

Proof: We will prove the second inequality, the first one follows from the second one with
t = t′ and the Cauchy-Schwarz inequality.

For s, t > 0 define FN
s (t) :=

∫ s
0 1{0≤HN

r ≤t}dr. It follows readily from the definition of LN

that
∂FN

s

∂t
(t) =

σ2

4
LN
s (t).

Hence

E

(

∫ s

0
1{t−ε<HN

r ≤t}dr
∫ s

0
1{t′−ε<HN

r ≤t′}dr
)

=
σ4

16
E

(

∫ t

t−ε
LN
s (r)dr

∫ t′

t′−ε
LN
s (u)du

)

=
σ4

16
E

(

∫ t

t−ε

∫ t′

t′−ε
LN
s (r)LN

s (u)drdu
)

=
σ4

16

∫ t

t−ε

∫ t′

t′−ε
E
(

LN
s (r)LN

s (u)
)

drdu

≤ σ4

16
ε2 sup

0≤r,u≤T
E
(

LN
s (r)LN

s (u)
)

=
σ4

16
ε2 sup

0≤r≤T
E
(

(LN
s (r))2

)

.
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On the other hand, since by Itô’s formula there exists a martingale M̄N
s such that

(HN
s )2 +

2

Nσ2
HN

s V
N
s =

4

σ2
s+ M̄N

s .

we conclude that
sup
N≥1

E
(

(HN
s )2

)

<∞.

The second inequality now follows from (5.13).

Proposition 5.9. For all d > 1, 0 ≤ s1 < s2 < · · · < sd,

(HN , LN
s1 , . . . , L

N
sd
) ⇒ (H,Ls1 , . . . , Lsd) in C([0,∞)) × (D([0,∞)))d .

Proof: We prove the result in the case d = 1 only, the proof in the general case being very
similar. From Proposition 5.6 there follows in particular that for all k ≥ 1, 0 ≤ t1 < t2 <
· · · < tk, we have

(

HN , LN
s (t1), L

N
s (t2), .., L

N
s (tk)

)

⇒
(

H,Ls(t1), Ls(t2), .., Ls(tk)
)

That is, {LN
s } converges in finite-dimensional distributions to {Ls}, jointly with HN . By

Proposition 5.7, {LN
s (t), t ≥ 0}N≥1 is tight. The result follows.

We are now prepared to complete the
Proof of Theorem 2: The main task is to combine the assertions of Propositions 5.6 and
5.9, which means to turn the “partial” convergences asserted for LN in these propositions
into a convergence that is joint in s and t. We will also combine this result with Proposition
5.3 in order to get joint convergence of all our processes. To facilitate the reading, we will
divide the proof into several steps. Step 1. Let {sn, n ≥ 1} denote a countable dense subset

of R+. Our first claim is that for all n ∈ N,

(HN ,M1,N ,M2,N , LN
s1 , . . . , L

N
sn , S

N
x ) ⇒ (H,

2

σ
B1,

2

σ
B2, Ls1 , . . . , Lsn , Sx) (5.14)

in C(R+)×D(R+)
n+2 × R+.

To make the core of the argument clear, let us write just for the moment

Y N := (M1,N ,M2,N , SN
x ), Y := (

2

σ
B1,

2

σ
B2, Sx), Λ

N := (LN
s1 , . . . , L

N
sn), Λ := (Ls1 , . . . , Lsn).

Then (5.14) translates into
(HN , Y N ,ΛN ) ⇒ (H,Y,Λ). (5.15)

By Proposition 5.3, (HN , Y N ) ⇒ (H,Y ), and by Proposition 5.9, (HN ,ΛN ) ⇒ (H,Λ). Be-
cause in our situation Λ is a.s. a function of H, these two convergences imply (5.15). (More
generally, this implication would be true if Y and Λ would be conditionally independent given
H.) Step 2. Now having established (5.14), it follows from a well known theorem due to

Skorohod that all the processes appearing there can be constructed on a joint probability
space, such that there exists an event N with P(N ) = 0 and for all ω /∈ N ,

SN
x (ω) → Sx(ω), (5.16)
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(HN
s (ω),M1,N

s (ω),M2,N
s (ω)) → (Hs(ω),

2

σ
B1

s (ω),
2

σ
B2

s (ω)) locally uniformly in s ≥ 0,

(5.17)
and for all n ≥ 1,

LN
sn(t)(ω) → Lsn(t)(ω) locally uniformly in t ≥ 0, (5.18)

as N → ∞. Here we have made use of Lemma 5.5, which allows us to assume that (s, t) 7→
Ls(t)(ω) is continuous from R+ ×R+ into R for all ω /∈ N , possibly at the price of enlarging
the null set N , and of Lemma 7.1 from the Appendix. Step 3. We claim that in the situation

described in the previous step one even has for all C, T > 0, ω /∈ N ,

sup
0≤s≤C, 0≤t≤T

|LN
s (t, ω)− Ls(t, ω)| → 0, (5.19)

as N → ∞. In other words, in Skorokhod’s construction there is a.s. convergence of LN
s (t) to

Ls(t), locally uniformy in s and t. To prove (5.19), we will make use of the fact that for any
ω /∈ N , and all N, t, the mapping s 7→ LN

s (t)(ω) is increasing and the mapping s 7→ Ls(t)(ω)
is continuous and increasing. Moreover, since the mapping (s, t) 7→ Ls(t, ω) is continuous
from the compact set [0, C] × [0, T ] into R+, for any ε > 0, there exists δ > 0 such that
0 ≤ s < s′ ≤ C, 0 ≤ t ≤ T and s′ − s ≤ δ implies that

Ls′(t, ω)− Ls(t, ω) ≤ ε.

Hence there exists k ≥ 1 and 0 =: s0 < r1 < · · · < rk := C such that {ri, 0 ≤ i < k} ⊂
{sn, n ≥ 1} and moreover, ri − ri−1 ≤ δ for all 1 ≤ i ≤ k. We have

sup
0≤s≤C,0≤t≤T

|LN
s (t, ω)− Ls(t, ω)| ≤ sup

1≤i≤k
[AN,i +BN,i]

where

AN,i = sup
ri−1≤s≤ri,0≤t≤T

(LN
s (t, ω)− Ls(t, ω))

+

BN,i = sup
ri−1≤s≤ri,0≤t≤T

(LN
s (t, ω)− Ls(t, ω))

−.

For ri−1 ≤ s ≤ ri,

(LN
s (t, ω)− Ls(t, ω))

+ ≤ (LN
ri (t, ω)− Ls(t, ω))

+

≤ (LN
ri (t, ω)− Lri(t, ω))

+ + ε,

(LN
s (t, ω)− Ls(t, ω))

− ≤ (LN
ri−1

(t, ω)− Ls(t, ω))
−

≤ (LN
ri−1

(t, ω)− Lri−1
(t, ω))− + ε.

Finally,

sup
0≤s≤C,0≤t≤T

|LN
s (t, ω)− Ls(t, ω)| ≤ 2 sup

0≤i≤k
sup

0≤t≤T
|LN

ri (t, ω)− Lri(t, ω)|+ 2ε,

while from (5.18),
lim sup
N→∞

sup
0≤s≤C,0≤t≤T

|LN
s (t, ω)− Ls(t, ω)| ≤ 2ε.

This implies (5.19), since ε > 0 is arbitrary. The assertion of Theorem 2 is now immediate
by combining (5.16), (5.17) and (5.19).
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6 Change of measure and proof of Theorem 1

As in the previous section, let, for fixed N ∈ N, HN be a process that follows the dynamics
described in Proposition 3.1 for θ = γ = 0. We denote the underlying probability measure by
P, and the filtration by F = (Fs). Our first aim is to construct, by a Girsanov reweighting of
the restrictions P|Fs , a measure P̃

N under which HN follows the dynamics from Proposition
3.1 for a prescribed θ ≥ 0 and γ > 0.

Here, a crucial role is played by the point process PN of the successive local maxima
and minima of HN , excluding the minima at heigth 0. Under P, this is a Poisson process
with intensity σ2N2. More precisely, the process Q1,N which counts the successive local
minima of HN (except those at height 0) is a point process with predictable intensity λ1,Ns :=
N2σ21{V N

s−=−1}, and the process Q2,N which counts the successive local maxima of HN is a

point process with predictable intensity λ2,Ns := N2σ21{V N
s−=+1}. (Recall that the process V

N

is the (càdlàg) sign of the slope of HN .)
For the rest of this section we fix θ ≥ 0 and γ > 0. In view of Proposition 3.1 we want to

change the rate λ1,Ns to λ1,Ns (1 + 2θ
Nσ2 ) and the rate λ2,Ns to λ2,Ns (1 + 4γΛN

s (Hs)
Nσ2 ).

As in Section 5 we will use the process MN
s = PN

s −Nσ2s, s ≥ 0, which is a martingale
under P. Taking the route designed by Proposition 7.15, we consider the local martingales

XN,1
s :=

∫ s

0

2θ

Nσ2
1{V N

r−=−1}dM
N
r , XN,2

s :=

∫ s

0

γLN
r (HN

r )

N
1{V N

r−=1}dM
N
r , XN := XN,1+XN,2.

Let Y N := E(XN ) denote the Doléans exponential of XN , which is equivalent to Y N being
the solution of

Y N
s = 1 +

∫ s

0
Y N
r−

(

2θ

Nσ2
1{V N

r−=−1} +
γLN

r (HN
r )

N
1{V N

r−=1}

)

dMN
r , s ≥ 0, (6.1)

see Proposition 7.11. We will show that Y N is a martingale, which will directly render the
required change of measure.

Proposition 6.1. Y N is a (F ,P)-martingale.

Proof: The proof amounts to showing that, for all s > 0,

E[Y N
s ] = 1. (6.2)

A key idea is to work along the excursions of HN , that is, along the sequence of stopping times
τN,s
a := SN

a/N ∧ s, a = 0, 1, 2, . . . Since N and s are fixed, we will suppress the superscripts N

and s for brevity and write τa instead of τN,s
a .

Step 1. We want to show that

E[Y N
τa ] = 1, a = 1, 2, . . . (6.3)

It follows readily from the identity (6.1) that for all τa−1 ≤ r ≤ τa,

Y N
r

Y N
τa−1

≤
∏

k≥1:τa−1≤Tk≤τa

(

1 +
2θ

Nσ2
1{V N

Tk−
=−1} +

γLN
Tk
(HN

Tk
)

N
1{V N

Tk−
=1}
)
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where Tk is the kth-jump time of the Poisson process (PN
s , s ≥ 0). Within the excursion of HN

between the times τa−1 and τa, these jump times coincide with the times of the local maxima
and minima of HN in the time interval (τa−1, τa). Since for a > 1 there are reflections of XN

at 0 in the time interval (0, τa−1), the parity of those k for which V N
Tk− = 1, τa−1 ≤ Tk ≤ τa,

depends on a. However,
noting that

LN
Tk
(HN

Tk
) ≤ 4

Nσ2
k, (6.4)

we infer the existence of a constant c > 0 such that

Y N
r

Y N
τa−1

≤ cP
N
τa × (PN

τa + 1)!! , τa−1 ≤ r ≤ τa, (6.5)

where we define for k ∈ N, k!! = 1 · 3 · 5 · · · k if k is odd, and k!! = 1 · 3 · 5 · · · (k − 1) if k is
even.

Now

Y N
τa = Y N

τa−1

(

1 +

∫ τa

τa−1

Y N
r−

Y N
τa−1

[p(r) + LN
r−(H

N
r )q(r)]dMN

r

)

, (6.6)

where 0 ≤ p(r) ≤ 2

θ
N2, 0 ≤ q(r) ≤ γ

N
, p and q are predictable.

The claimed equalities E[Y N
τa ] = 1, a = 1, 2, . . ., follow by induction on a from (6.6), provided

the process

MN
s =

∫ s

0
1]τa−1,τa](r)

Y N
r−

Y N
τa−1

[p(r) + LN
r−(H

N
r )q(r)]dMN

r , s ≥ 0,

is a martingale. From Theorem T8 in Brémaud [3] page 27, this is a consequence of the fact
that

E

∫ s

0
1]τa−1,τa](r)

Y N
r−

Y N
τa−1

[p(r) + LN
r−(H

N
r )q(r)]dr <∞.

In order to verify the latter inequality, we compute

E

[

∫ τa

τa−1

Y N
r−

Y N
τa−1

[p(r) + LN
r−(H

N
r )q(r)]dr

]

≤ CNsE
[

cP
N
τa × (PN

τa + 1)!!(1 + PN
τa )
]

≤ CNsE
[

cP
N
s × (PN

s + 1)!!(1 + PN
s )
]

≤ CNsCN,s,

where we have used (6.5), (6.4) and τa ≤ s, and where CN and CN,s are constants which
depend only on N and (N, s), respectively. The fact that CN,s <∞ follows from

E[c
PN
s

2 (PN
s + 1)!!PN

s ] = exp{−N2σ2s}
∞
∑

k=0

ck2(k + 1)!!k
(N2σ2s)k

k!

Since

(k + 1)!!k

k!
=

k(k + 1)

2.4...
(

2[k2 ]
) =

k(k + 1)

2[
k
2
]

.
1

[k2 ]!

<
1

[k2 ]!
∀k ≥ 20,
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we deduce that E[c
PN
s

2 (PN
s + 1)!!PN

s ] <∞. This completes the proof of (6.3).
Step 2. We can now define a consistent family of probability measures P̃

N,s,a on Fτa , a =
1, 2, . . . by putting

dP̃N,s,a

dP |Fτa

= Y N
τa , a ∈ N.

We write P̃
N,s for the probability measure on the σ-field generated by union of the σ-fields

Fτa , a = 1, 2, . . ., whose restriction to Fτa is P̃N,s,a for all a = 1, 2, . . ., and put

A := inf{a ∈ N : τa = s}.

We will now show that

1. (i) A <∞ P̃
N,s- a.s. (and consequently τA = s P̃

N,s- a.s.),

2. (ii) under P̃N,s, (HN
r )0≤r≤τA = (HN

r )0≤r≤s is a stochastic process following the dynamics
specified in Proposition 3.1.

Indeed, applying Girsanov’s theorem (Proposition 7.15 in the Appendix) to the 2-variate
point process

(Q1,N
r , Q2,N

r ) =

(
∫ r

0
1{V N

u−=−1}dP
N
u ,

∫ r

0
1{V N

u−=1}dP
N
u

)

, 0 ≤ r ≤ τa, (6.7)

we have that under P̃N,s,a

Q1,N
r has intensity (N2σ2 + 2θN)1{V N

r−=−1}dr

Q2,N
r has intensity σ2[N2 + γNLN

r (HN
r )]1{V N

r−=1}dr.

Thus, for all a ∈ N, (HN
r )0≤r≤τa is, under P̃N,s,a, a stochastic process following the dynamics

from Proposition 3.1 up to the stopping time τa. Considering the sequence of excursions
(HN

r )τa−1≤r≤τa , a = 1, 2, . . . under P̃N,s, we infer from Lemma 3.3 the validity of the claims
(i) and (ii).
Step 3. We now prove (6.2). For this we observe that

E[Y N
s ] =

∑

a≥1

E[Y N
s ;A = a] =

∑

a≥1

E[Y N
τa ;A = a] =

∑

a≥1

P̃
N,s(A = a) = P̃

N,s(A <∞) = 1.

Corollary 6.2. Let P̃N be the probability measure on F whose restriction to Fs, s > 0, has
density Y N

s (given by (6.1)) with respect to P|Fs . Then under P̃
N the process HN follows the

dynamics from Proposition 3.1 for the prescribed θ and γ.

Proof: This is immediate from Proposition 6.1 and the discussion preceding it, combined
with Proposition 7.15 in the Appendix applied to the process defined in (6.7), now with
0 ≤ r <∞.
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Next we will analyze the behaviour of the Girsanov densities as N → ∞. For this we use
the two martingales M1,N and M2,N defined in (5.5), and note that (6.1) can be rewritten as

Y N
s = 1 +

∫ s

0
Y N
r−
{

θdM1,N
r +

γσ2LN
r (HN

r )

2
dM2,N

r

}

, s ≥ 0.

The two (pure jump) martingalesM1,N andM2,N have jump sizes 2/(Nσ2), hence the random
variable under the expectation in formula (7.7) vanishes for suitably large N . Thus (see
Definition 7.12 in the Appendix), the sequences {M1,N}N≥1 and {M2,N}N≥1 have uniformly
controlled variations, and because of Proposition 7.13 (1) they are good. Hence

XN
· ⇒

∫ ·

0

{

√
2θ

σ
dB1

r +

√
2γσLr(Hr)

2
dB2

r

}

:= X·.

Moreover, by Proposition 7.13 (3), {XN
s }N≥1 is also a good sequence, hence by Proposition

7.13 (2)
Y N = E(XN ) ⇒ E(X) =: Y.

Combining these facts with Corollary 5.1, we deduce, again from Proposition 7.13 (3), that

(HN , LN
SN
x
, Y N ) ⇒ (H,LSx , Y ). (6.8)

Since B1 and B2 are mutually orthogonal, by Proposition 7.11 we have

Ys = E
(

∫ .

0

{

√
2θ

σ
dB1

r +

√
2γσLr(Hr)

2
dB2

r

}

)

s

= E
(

√
2θ

σ
B1
)

s
E
(

∫ .

0

√
2γσLr(Hr)

2
dB2

r

)

s

= exp
{

√
2θ

σ
B1

s +

∫ s

0

√
2γσLr(Hr)

2
dB2

r −
∫ s

0

[ θ2

σ2
+
γ2σ2

4
Lr(Hr)

2
]

dr
}

Applying Lemma 2.2 and Lemma 2.3 again, we deduce that Y is a martingale. In particular
E[Ys] = 1 for all s ≥ 0. Define the probability measure P̃ by

dP̃ |Fs

dP |Fs

= Ys, ∀s ≥ 0,

then H, under P̃, solves the SDE (1.3) with Bs there replaced by

B̃s :=
1√
2
(B1

s −B2
s )−

θ

σ
s+

γσ

2

∫ s

0
Lr(Hr)dr,

which is a standard Brownian motion under P̃ due to Proposition 7.14.
The following general and elementary Lemma will allow us to conclude the required con-

vergence under the transformed measures.

Lemma 6.3. Let (ξN , ηN ), (ξ, η) be random pairs defined on a probability space (Ω,F ,P),
with ηN , η nonnegative scalar random variables, and ξN , ξ taking values in some complete
separable metric space X . Assume that E[ηN ] = E[η] = 1. Write (ξ̃N , η̃N ) for the random
pair (ξN , ηN ) defined under the probability measure P̃

N which has density ηN with respect to
P, and (η̃, ξ̃) for the random pair (η, ξ) defined under the probability measure P̃ which has
density η with respect to P. Then (ξ̃N , η̃N ) converges in distribution to (η̃, ξ̃), provided that
(ξN , ηN ) converges in distribution to (ξ, η).
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Proof: Due to the equality E[ηN ] = E[η] = 1 and a variant of Scheffé’s lemma, the sequence
ηN is uniformly integrable. Hence for all bounded continuous F : X × R+ → R,

E[F (ξ̃N , η̃N )] = E[F (ξN , ηN )ηN ] → E[F (ξ, η)η] = E[F (ξ̃, η̃)].

Combining (6.8) with Lemma 6.3 yields the

Theorem 3. Let HN be a stochastic process following the dynamics specified in Proposition
3.1, and let H be the unique weak solution of the SDE (1.3). We have

(HN , LN
SN
x
) ⇒ (H,LSx) in C([0,∞]) ×D([0,∞]), (6.9)

where SN
x and Sx are defined in (5.2) and (1.2).

We can now proceed with the
Completion of the proof of Theorem 1 : Define ZN,x

t := σ2

4 L
N
SN
x
(t). By Corollary 3.2,

ZN,x follows the dynamics (3.1). From (6.9), σ2

4 LSx is the limit in distribution of ZN,x as

N → ∞. Hence by Proposition 4.3, t 7→ σ2

4 LSx(t) is a weak solution of the SDE (1.1), which
completes the proof of Theorem 1.

Remark 6.4. Theorem 1 establishes a correspondence between the solution H of the SDE
(1.3) and the logistic Feller process, i.e. the solution of (1.1). This connection can be expressed
in particular through the occupation times formula for H, which states that for any Borel
measurable and positive valued function f ,

∫ Sx

0
f(Hs)ds =

∫ ∞

0
f(t)Zx

t dt.

This formula in the particular case f ≡ 1 states that

Sx =

∫ ∞

0
Zx
t dt.

The quantity on the right is the area under the trajectory Zx. It is the limit of the properly
scaled total branch length of the approximating forests FN defined in Section 3. We now
establish another identity concerning this same quantity, with the help of a time change
introduced by Lambert in [8]. Consider the additive functional

At =

∫ t

0
Zx
r dr,

and the associated time change

αt = inf{r > 0, Ar > t}.

As noted in [8], the process Ux
t := Zx

αt
is an Ornstein–Uhlenbeck process, solution of the SDE

dUx
t = (θ − γUx

t )dt+ σdBt, Ux
0 = x.
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Of course this identification is valid only for 0 ≤ t ≤ τx, where τx := inf{t > 0, Ut = 0}. Let
Tx be the extinction time of the logistic Feller process Zx

t . We clearly have ατx = Tx, and
consequently

τx =

∫ ∞

0
Zx
r dr.

We have identified the time at which the local time at 0 of the exploration process H reaches x
with the area under the logistic Feller trajectory starting from x, and with the time taken by
the Ornstein–Uhlenbeck process Ux to reach 0. The reader may notice that in the particular
case γ = 0, the identity Sx = τx is not a surprise, see also the discussion and the references
in [13] Section 6.

7 Appendix

In this section we collect some known results from the theory of weak convergence of stochastic
processes, and the theory of martingales. All proofs which are not given here may be found
in the references.

We denote by D([0,∞)) the space of functions from [0,∞) into R which are right contin-
uous and have left limits at any t > 0 (as usual such a function is called càdlàg). We briefly
write D for the space of adapted, càdlàg stochastic processes. We shall always equip the
space D([0,∞)) with the Skorohod topology, for the definition of which we refer the reader to
Billingsley [2] or Joffe, Métivier [6]. The results collected in the following statement as well
as in Proposition 7.4 can be found in [2].

Lemma 7.1. Suppose {xn, n ≥ 1} ⊂ D([0,∞)) and xn → x in the Skorohod topology.

(i) If x is continuous, then xn converges to x locally uniformly.

(ii) If each xn is continuous, then so is x, and xn converges to x locally uniformly.

In particular, the space C([0,∞)) is closed in D([0,∞)) equipped with the Skorohod topology.

The following two lemmata are used in the proofs of Propositions 5.6 and 5.3:

Lemma 7.2. Fix t > 0. Let xn, x ∈ C([0,∞)), n ≥ 1 be such that

1. xn(s) → x(s) locally uniformly.

2. for each s > 0,
∫ s

0
1{x(r)=t}dr = 0.

Then
∫ s

0
1{xn(r)>t}dr →

∫ s

0
1{x(r)>t}dr locally uniformly in s ≥ 0.

Proof: We prove convergence for each s > 0. The local uniformity is then easy. Given
ε > 0, then there exists N0 such that

sup
0≤r≤s

|xn(r)− x(r)| < ε ∀n ≥ N0.
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Then for all n ≥ N0,

|1{xn(r)>t} − 1{x(r)>t}| ≤ 1{t−ε<x(r)<t+ε}
∣

∣

∣

∫ s

0
1{xn(r)>t}dr −

∫ s

0
1{x(r)>t}dr

∣

∣

∣
≤
∫ s

0
1{t−ε<x(r)<t+ε}dr.

The result follows from

lim
ε→0

∫ s

0
1{t−ε<x(r)<t+ε}dr =

∫ s

0
1{x(r)=t}dr = 0.

Lemma 7.3. Let xn, yn ∈ D([0,∞)), n ≥ 1 and x, y ∈ C([0,∞)) be such that

1. yn is increasing, ∀n ≥ 1;

2. xn(t) → x(t), yn(t) → y(t), locally uniformly.

Then y is increasing and
∫ t

0
xn(s)dyn(s) →

∫ t

0
x(s)dy(s), locally uniformly in t ≥ 0.

Proof: We prove convergence for each t > 0. The local uniformity is then easy.

∣

∣

∣

∫ t

0
x(s)dy(s)−

∫ t

0
xn(s)dyn(s)

∣

∣

∣

≤
∣

∣

∣

∫ t

0
[x(s)− xn(s)]dyn(s)

∣

∣

∣
+
∣

∣

∣

∫ t

0
x(s)[dy(s) − dyn(s)]

∣

∣

∣

≤ sup
0≤s≤t

|x(s)− xn(s)|yn(t) +
∫ t

0
|x(s)− ξε(s)|[dy(s) − dyn(s)] +

∫ t

0
|ξε(s)|[dy(s)− dyn(s)],

where ξε is a step function which is such that sup0≤s≤t |x(s) − ξε(s)| ≤ ε. The first and last
term of the above right hand side clearly tend to 0 as n→ ∞. Then

lim sup
n→∞

∣

∣

∣

∫ t

0
x(s)dy(s)−

∫ t

0
xn(s)dyn(s)

∣

∣

∣
≤ ε lim sup

n→∞
[yn(t) + y(t)]

≤ 2y(t)× ε.

It remains to let ε→ 0.

Proposition 7.4. The sequence {Xn, n ≥ 1} ⊂ D is tight in D([0,∞)) iff the two following
conditions hold

(1) for each t ≥ 0, {Xn
t −Xn

t−, n ≥ 1} is tight in R.

(2) limδ→0 lim supn→∞ P(wT (Xn, δ) > η) = 0, ∀T, δ, η > 0

where
wT (x, δ) := inf

π∈ΠT
δ

max
ti∈π

sup
ti≤s<t<ti+1

| x(t)− x(s) |,

if x ∈ D([0,∞)) and ΠT
δ is the set of all increasing sequences 0 = t0 < t1 < ... < tn = T with

the property that inf0≤i<n | ti+1 − ti |≥ δ.
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An approach to checking tightness and convergence to a continuous process of a sequence
of càdlàg processes is to use Theorem 15.5 from [2], which we recall here for the convenience
of the reader:

Proposition 7.5. Let {Xn
t , t ≥ 0}n≥1 be a sequence of random elements of D([0,∞)). A

sufficient condition for {Xn} to be tight is that the two conditions (i) and (ii) be satisfied :

(i) {Xn
0 , n ≥ 1} is tight in R;

(ii) for any T, ε, η > 0, there exists δ > 0 such that

lim sup
n→∞

P

(

sup
0≤s≤t≤T ; t−s≤δ

|Xn
s −Xn

t | ≥ ε

)

≤ η.

Moreover, if (i) and (ii) are satisfied, then any limit of a converging subsequence is a. s.
continuous.

We now state yet another tightness criterion, which is Theorem 8.8 from Ethier and Kurtz
[4] :

Proposition 7.6. Let {Xn
t , t ≥ 0}n≥1 be a sequence of random elements of D([0,∞)). A

sufficient condition for {Xn} to be tight is that the two conditions (i) and (ii) be satisfied :

(i) For each t ≥ 0, the sequence of random variables {Xn
t , n ≥ 1} is tight in R;

(ii) for each T > 0, there exists β,C > 0 and θ > 1 such that

E

(

∣

∣Xn
t+h −Xn

t

∣

∣

β ∣
∣Xn

t −Xn
t−h

∣

∣

β
)

≤ Chθ,

for all 0 ≤ t ≤ T , 0 ≤ h ≤ t, n ≥ 1.

Note that convergence in D([0,∞)) is not additive : xn → x and yn → y in D([0,∞)) does
not imply that xn+yn → x+y in D([0,∞)). This is due to the fact that to the sequence xn is
attached a sequence of time changes, and to the sequence yn is attached another sequence of
time changes, such that the time changed xn and yn converge uniformly. But there may not
exist a sequence of time changes which makes xn + yn converge. If now {Xn

t , t ≥ 0}n≥1 and
{Y n

t , t ≥ 0}n≥1 are two tight sequences of random elements of D([0,∞)), we cannot conclude
that {Xn

t + Y n
t , t ≥ 0}n≥1 is tight. However, if xn → x and yn → y in D([0,∞)) and x is

continuous, then we deduce easily from Lemma 7.1 that xn + yn → x+ y in D([0,∞)). We
have similarly the

Proposition 7.7. If {Xn
t , t ≥ 0}n≥1 and {Y n

t , t ≥ 0}n≥1 are two tight sequences of random
elements of D([0,∞)) such that any limit of a weakly converging subsequence of the sequence
{Xn

t , t ≥ 0}n≥1 is a. s. continuous (for instance that sequence could satisfiy the conditions
of Proposition 7.5), then {Xn

t + Y n
t , t ≥ 0}n≥1 is tight in D([0,∞)).

Consider a sequence {Xn
t , t ≥ 0}n≥1 of one-dimensional semimartingales, which is such

that for each n ≥ 1,

Xn
t = Xn

0 +

∫ t

0
ϕn(X

n
s )ds +Mn

t , t ≥ 0;

〈Mn〉t =
∫ t

0
ψn(X

n
s )ds, t ≥ 0;
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where for each n ≥ 1,Mn is a locally square-integrable martingale, ϕn and ψn are Borel
measurable functions from R into R and R+ respectively.

We now establish a general tightness criterion adapted to this situation.

Proposition 7.8. A sufficient condition for the above sequence {Xn
t , t ≥ 0}n≥1 of semi-

martingales to be tight in D([0,∞)) is that both

the sequence of r.v.’s {Xn
0 , n ≥ 1} is tight; (7.1)

and for some p > 1,

∀T > 0, the sequence of r.v.’s
{

∫ T

0
[| ϕn(X

n
t ) | +ψn(X

n
t )]

pdt, n ≥ 1
}

is tight. (7.2)

Those conditions imply that both the bounded variation parts {V n, n ≥ 1} and the martingale
parts {Mn, n ≥ 1} are tight, and that the limit of any converging subsequence of {V n} is a.s.
absolutely continuous with respect to Lebesgue’s measure.

If moreover, for any T > 0, as n→ ∞,

sup0≤t≤T |Mn
t −Mn

t− |→ 0 in probability,

then any limit X of a converging subsequence of the original sequence {Xn}n≥1 is a.s. con-
tinuous.

We will introduce in the proof the Sobolev space W 1,p(0, T ), which can be defined as
the space of those continuous functions x : [0, T ] → R for which there exists y ∈ Lp(0, T )
satisfying

x(t) = x(0) +

∫ t

0
y(s)ds, 0 ≤ t ≤ T.

Here, p is the exponent which appears in the formulation of condition (7.2). Since p > 1,
W 1,p(0, T ) is a reflexive Banach space, and consequently its bounded subsets are relatively
compact for the weak topology (the topology induced by the pairing with elements of the dual
space). We use here “weak topology” in the functional analytic sense, which should be well
distinguished from “weak convergence” of probability measures. Proof of Proposition

7.8 It follows from Corollary 2.3.3 and section 2.1.4 in Joffe, Métivier [6] that given (7.1), a
sufficient condition for tightness of the sequence {Xn}n≥1 is that for each T > 0, ε, η > 0,
there exists δ > 0 and n0 ≥ 1 such that for any sequence {τn}n≥1 of [0, T ]–valued stopping
times,

sup
n≥n0

sup
θ≤δ

P

(

∫ (τn+θ)∧T

τn

[|ϕn(X
n
t )|+ ψn(X

n
t )]dt ≥ η

)

≤ ε. (7.3)

But from Hölder’s inequality, if 1/p + 1/q = 1,

∫ (τn+θ)∧T

τn

[|ϕn(X
n
s )|+ ψn(X

n
s )]ds ≤ θ1/q

(
∫ T

0
[|ϕn(X

n
t )|+ ψn(X

n
t )]

pdt

)1/p

,

hence (7.3) follows easily from (7.2).
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Clearly our criterion implies tightness of both the bounded variation part and the mar-
tingal part of Xn. Consider the bounded variation part

V n
t :=

∫ t

0
ϕn(X

n
s )ds.

Our condition implies in particular that for any T > 0, the W 1,p(0, T ) norm of V n is tight,
which implies that from any subsequence of the sequence {V n, n ≥ 1}, we can extract a
further subsequence which converges in law both for the uniform topology (this follows from
Lemma 7.1) and the weak topology of W 1,p(0, T ). Hence the trajectories of any limit of a
converging subsequence belong a. s. to W 1,p(0, T ), i. e. they are absolutely continuous.

Finally the second statement in the Lemma follows from Theorem III.10.2 in Ethier and
Kurtz [4].

The two following corollaries follow from the above proposition.

Corollary 7.9. A sufficient condition for (7.2) to hold is that for all T > 0,

{ sup
0≤t≤T

[|ϕn(X
n
t )|+ ψn(X

n
t )], n ≥ 1} is tight. (7.4)

Corollary 7.10. A sufficient condition for (7.2) to hold is that for all T > 0

lim sup
n≥1

sup
0≤t≤T

E[ϕ2
n(X

n
t ) + ψ2

n(X
n
t )] <∞. (7.5)

Proof: We show that (7.2) follows from (7.5). Indeed a sufficient condition for (7.2) is that

lim sup
n

E

∫ T

0
[|ϕn(X

n
t )|+ ψn(X

n
t )]

2dt <∞,

which clearly follows from (7.5).

In the remaining part of this Appendix, we collect some results from stochastic calculus.
For a semimartingale X = (Xt, t ≥ 0), consider the stochastic linear equation of Doléans

Yt = 1 +

∫ t

0
Yr−dXr. (7.6)

The following proposition follows from Theorem 1 and Theorem 2 in [10], page 122.

Proposition 7.11. (1) Equation (7.6) has a unique solution (up to indistinguishability)
within the class of semimartingales. This solution is denoted by E(X) and is called the
stochastic exponential of X. It has the following representation

E(X)t = exp
{

Xt −X0 −
1

2
〈Xc〉t

}

∏

r≤t

(1 + ∆Xr)e
−∆Xr .

(2) If U and X are two semimartingales, then

E(U)t E(X)t = E(U +X + [U,X])t.

(3) If X is a local martingale, then E(X) is a nonnegative local martingale and a supermartin-
gale.
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For δ > 0 we define hδ : R+ → R+ by hδ(r) = (1 − δ/r)+. For x ∈ D([0,∞)), we define
xδ ∈ D([0,∞)) by

xδt := xt −
∑

0<s≤t

hδ(| ∆xs |)∆xs.

Definition 7.12. (1) Let G,Gn in D, {Gn, n ≥ 1} be a sequence of semimartingales adapted
to a given filtration (Ft) and assume Gn ⇒ G. The sequence (Gn) is called good if for any
sequence {In, n ≥ 1} of (Ft)–progressively measurable processes in D such that (In, Gn) ⇒
(I,G), then G is a semimartingale for a filtration with respect to which I is adapted, and
(In, Gn,

∫

Ins−dG
n
s ) ⇒ (I,G,

∫

Is−dGs).

(2) A sequence of semimartingales {Gn}n≥1 is said to have uniformly controlled variations if
there exists δ > 0, and for each α > 0, n ≥ 1, there exists a semimartingale decomposition
Gn,δ =Mn,δ +An,δ and a stopping time T n,α such that P({T n,α ≤ α}) ≤ 1

α and furthermore

sup
n

E

{

[Mn,δ,Mn,δ]t∧Tn,α +

∫ t∧Tn,α

0
| dAn,δ |

}

<∞. (7.7)

Proposition 7.13. Let G,Gn in D, {Gn, n ≥ 1} be a sequence of semimartingales and assume
Gn ⇒ G.

(1) The sequence {Gn} is good if and only if it has uniformly controlled variations.

(2) If {Gn} is good, then (Gn, E(Gn)) ⇒ (G, E(G)).

(3) Suppose (In, Gn) ⇒ (I,G), and {Gn} is good. Then Jn =
∫

Ins−dG
n
s , n = 1, 2, . . .,

is also a good sequence of semimartingales. Moreover under the same conditions,
(In, Gn, E(Gn)) ⇒ (I,G, E(G)).

Proof: See [7], page 32 ff.

Finally, we state two multivariate versions of the Girsanov theorem, one for the Brownian
and one for the point process case. The second one combines Theorems T2 and T3 from [3],
pages 165-166.

Proposition 7.14. Let {(B(1)
s , . . . , B

(d)
s ), s ≥ 0} be a d–dimensional standard Brownian

motion defined on the filtered probability space (Ω,F ,P). Moreover, let φ = (φ1, ..., φd) be an
F-progressively measurable process with

∫ s
0 φi(r)

2dr < ∞ for all 1 ≤ i ≤ d and s ≥ 0. Let

X
(i)
s :=

∫ s
0 φi(r) dB

(i)
r and put Y := E(X(1) + · · ·+X(d)), or in other words

Ys = exp
{

∫ s

0
〈φ(r), dBr〉 −

1

2

∫ s

0
| φ(r) |2 dr

}

.

If E[Ys] = 1, s ≥ 0, then B̃s := Bs −
∫ s
0 φ(r)dr, s ≥ 0, is a d-dimensional standard Brownian

motion under the probability measure P̃ defined by dP̃ |Fs/dP |Fs = Ys, s ≥ 0.

Proposition 7.15. Let {(Q(1)
s , ..., Q

(d)
s ), s ≥ 0} be a d-variate point process adapted to some

filtration F , and let {λ(i)s , s ≥ 0} be the predictable (P,F)-intensity of Q(i), 1 ≤ i ≤ d. Assume
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that none of the Q(i), Q(j), i 6= j, jump simultaneously. Let {µ(i)r , r ≥ 0}, 1 ≤ i ≤ d, be
nonnegative F-predictable processes such that for all s ≥ 0 and all 1 ≤ i ≤ d

∫ s

0
µ(i)r λ

(i)
r dr <∞ P -a.s.

For i = 1, . . . , d and s ≥ 0 define

X(i)
s :=

∫ s

0
(µ(i)r − 1)dM (i)

r , Y (i) := E(X(i)), Y = E(X(1) + . . .+X(d)).

Then, with {T i
k, k = 1, 2 . . .} denoting the jump times of Q(i),

Y (i)
s =

(

∏

k≥1:T i
k
≤s

µ
(i)

T i
k

)

exp
{

∫ s

0
(1− µ(i)r )λ(i)r dr

}

and Ys =

d
∏

j=1

Y (j)
s , s ≥ 0.

If E[Ys] = 1, s ≥ 0, then, for each 1 ≤ i ≤ d, the process Q(i) has the (P̃,F)-intensity

λ̃
(i)
r = µ

(i)
r λ

(i)
r , r ≥ 0, where the probability measure P̃ is defined by dP̃ |Fs/dP |Fs = Ys, s ≥ 0.
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[3] P. Brémaud, Point processes and queues, martingale dynamics, Springer-Verlag New
York, 1981.

[4] S. Ethier, Th. Kurtz, Markov processes, Caracterisation and convergence, John Wiley
and Sons Inc., New York, 1986.

[5] A. Friedman, Stochastic differential equations and applications, vol 1, Academic Press,
1975.

[6] A. Joffe, M. Métivier, Weak convergence of sequences of semimartingales with applica-
tions to multitype branching processes, Adv. Appl. Prob. 18 (1986), 20–65.

[7] Th. Kurtz and Ph. Protter, Weak convergence of stochastic integrals and differential
equations, Probabilistic models for nonlinear partial differential equations, Lecture Notes
in Math 1627, 1–41, 1996.

[8] A. Lambert, The branching process with logistic growth, Ann. Appl. Probab. 15 (2005),
1506–1535.
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