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Coalescent with multiple collisions (Pitman 1999, Sagitov 1999)

Fix n ∈ N. Let Λ be a finite measure on [0, 1].

Definition. (Coalescent with multiple collisions, Λ-coalescent)

The n-coalescent with multiple collisions is a Markov process Πn = (Πn(t))t≥0 with state

space Pn, the set of partitions of {1, . . . , n}, and generator Q = (qππ′)π,π′∈Pn with rates

qππ′ =

∫

[0,1]

xk−2(1− x)b−k Λ(dx) =: λb,k for π ≺k π′, k ≥ 2, where

b := |π| := number of blocks of π

π ≺k π′ :⇐⇒ Exactly k blocks of π merge to form a single block of π′

Examples.

Λ = δ0 (Dirac measure in 0).⇒ Kingman coalescent (1982)

Λ = U[0,1] (uniform on [0, 1]).⇒ Bolthausen-Sznitman coalescent (1998)

Λ = δ1 (Dirac measure in 1).⇒ star-shaped coalescent
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Functionals of coalescent processes

Xn := number of collisions

τn := inf{t ≥ 0 : |Πn(t)| = 1} = time back to MRCA = absorption time
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Graphical representation of three realisations of a 6-coalescent with multiple collisions

3



Example: Bolthausen-Sznitman coalescent

Proposition 1. (Asymptotics of Xn, Iksanov and M. 2007, Drmota, Iksanov, Rösler and M.

2007, 2009)

Yn :=
(log n)2

n
Xn − log n− log log n

d→ Y

where Y is 1-stable with characteristic function E(eiλY ) = eiλ log |λ|−π
2
|λ| , λ ∈ R.

Proposition 2. (Asymptotics of τn, Goldschmidt and Martin 2005, Freund and M. 2007)

τn − log log n
d→ τ

where τ is Gumbel distributed.

Remark. Analytic proofs are based on singularity analysis. Probabilistic proofs use relations

to random recursive trees and/or to random walks with a barrier.
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Summary: Number of collisions of beta(a,1)-coalescent (2007/2008)

coalescent parameter a number Xn of collisions

Kingman a → 0 Xn = n− 1

0 < a < 1 Xn−n(α−1)

(α−1)n1/α

d→ Yα (α-stable, α := 2− a)

Bolthausen-Sznitman a = 1 (log n)2

n
Xn − log(n log n)

d→ Y (1-stable)

1 < a < 2 Xn

Γ(a)n2−a

d→ ∫∞
0

e−Utdt (U = subord.)

a = 2 Xn−(2m1)−1 log2 n

(
m2
3m2

1
log3 n)1/2

d→ N (standard normal)

2 < a < ∞ Xn−µ−1 log n
(σ2µ−3 log n)1/2

d→ N (standard normal)

star-shaped a →∞ Xn = 1

Intuition: High mass of Λ near 0 =̂ Πn has many small jumps =̂ increase of Xn

5



Assumptions

Assume that ν(dx) := x−2Λ(dx) is a probability measure on (0, 1) such that

1. the support of ν is not contained in {1 − δγn : n = 0, 1, . . .} for some δ > 0 and

γ ∈ (0, 1),

2.
∫

(0,1)
| log x| ν(dx) < ∞.

The more general case of a finite measure ν can be reduced to the case of a probability

measure by a linear time change of the coalescent.
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The annihilator

There is a simpler process An := (An(t))t≥0 with state space {0, . . . , n} moving from m

to m− k with rate
(

m
k

)
λm,k , 1 ≤ k ≤ m ≤ n.

Remark. Total rates are

m∑

k=1

(
m

k

)
λm,k =

∫

[0,1]

(1− (1− x)m) ν(dx), m ∈ {0, . . . , n}.

Interpretation.

When there are m particles, any k-tuple of them collides and annihilates at rate λm,k.

Pitman’s Poisson process construction.

At the generic time sj of a unit Poisson process, a random variable 1 − ηj is sampled from

ν, and each of the remaining particles is marked ’head’ with probability 1 − ηj or ’tail’ with

probability ηj . The particles marked ’head’ are removed.
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A coupling

Define the coalescent Πn and the annihilator An using the same unit Poisson process and

the same sample 1− η1, 1− η2, . . . from ν.

Call the initial n particles primary and their followers resulting from mergers secondary.

Kn := number of transitions of An as the process proceeds from n to 0

Kn,1 := number of jumps of An of size 1

σn := inf{t ≥ 0 : An(t) = 0} (absorption time, first time when there are no primary

particles anymore)

Kn,0 := number of epochs sj < σn when none of the primary particles are marked ’head’

Un := |Πn(σn)| (remaining secondary particles)
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Lemma 1. The following stochastic order relations hold:

Kn −Kn,1 ≤d Xn ≤d Kn + Kn,0 + XUn

where (on the r.h.s.) (Kn, Kn,0, Un) is independent of (X1, X2, . . .).

Proof. Coupling. If ≥ 2 primary particles collide, then both processes An and Πn jump. The

number of jumps of Πn up to time σn does not exceed the number Kn +Kn,0, and after time

σn the coalescent evolves with Un particles. ¤

Lemma 2. The sequence of distributions of XUn , n ∈ N, is tight.

Sketch of proof. Use XUn < Un and study the number Qj of secondary particles at time sj .

Given all the ηk ’s, (Qj)j is a Markov chain. Introduce Nn := inf{k ≥ 1 : η1 · · · ηk ≤ 1/n}
and use renewal theory to show that (QNn)n is tight. Now replace the fixed drop level 1/n

by the appropriate random drop level associated with the last primary particle disappearing at

time σn in order to show that |QNn − Un| is stochastically bounded (technical ...) ¤
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Number of collisions Xn: Asymptotics

Theorem 1. The following two assertions are equivalent.

(i) There exist constants an > 0 and bn ∈ R such that (Xn − an)/bn weakly converges to

some non-degenerate and proper distribution.

(ii) The distribution of (− log η) either belongs to the domain of attraction of a stable law or

the function x 7→ P (− log η > x) slowly varies at∞.

There are five different regimes (A) - (E) of convergence.

Possible limiting laws are normal, α-stable with α ∈ [1, 2) and (scaled) Mittag-Leffler.
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Convergence Regimes

Logarithmic moments: µ := E(− log η) and σ2 := Var(log η)

(A) If σ2 < ∞ then, with bn := µ−1 and an := (µ−3σ2 log n)1/2, the limiting law of

(Xn − an)/bn is standard normal.

(B) If σ2 = ∞ and
∫

(x,1)

(log y)2ν(dy) ∼ L(− log x) as x → 0

for some L slowly varying at ∞, then, with bn := µ−1 log n and an := µ−3/2c[log n],

where cn is any sequence satisfying limn→∞ nL(cn)/c2
n = 1, the limiting law of (Xn−

bn)/an is standard normal.
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(C) Assume that, for some function L slowly varying at∞, the relation

P (η ≤ x) ∼ (− log x)−αL(− log x) as x → 0 (∗)

holds with α ∈ [1, 2) and that µ < ∞ if α = 1. Then, with bn := µ−1 log n and

an := µ−(α+1)/αc[log n], where cn is any sequence satisfying limn→∞ nL(cn)/cα
n = 1,

the limiting law of (Xn − an)/bn is α-stable with characteristic function

t 7→ exp
{
− |t|αΓ(1− α)

(
cos

(πα

2

)
+ i sin

(πα

2

)
sgn(t)

)}
, t ∈ R.
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The remaining two regimes (D) and (E) cover the case when µ = ∞.

(D) Assume that µ = ∞ and that (∗) in (C) holds with α = 1. Let c be any positive function

satisfying lim
x→∞

xL(c(x))

c(x)
= 1, and set ψ(x) := x

∫ 1

e−c(x)

P (η ≤ y)

y
dy.

Let b be any positive function satisfying b(ψ(x)) ∼ ψ(b(x)) ∼ x, x →∞.

Then, with bn := b(log n) and an := b(log n)c(b(log n))/ log n, the limiting law of

(Xn − an)/bn is 1-stable with characteristic function

t 7→ exp
(
− |t|

(π

2
− i log |t|sgn(t)

))
, t ∈ R.
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The last regime:

(E) If (∗) in (C) holds with α ∈ [0, 1) then, with an :=
logα n

L(log n)
, the limiting law of

Xn

an

is

scaled Mittag-Leffler θα (exponential if α = 0) with moments
∫

[0,∞)

xn θα(dx) =
n!

Γn(1− α)Γ(1 + nα)
, n ∈ N.
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Basic ideas of the proof

◦ Use the coupling Kn−Kn,1 ≤d Xn ≤d Kn +Kn,0 +XUn and the tightness of XUn to

show that (Xn−bn)/an weakly converges if and only if (Kn−bn)/an weakly converges

to the same distribution.

◦ Interpret Kn as the number of non-empty boxes in an occupancy scheme, where n balls

are dropped in box 1 with probability ξ1 := 1−η1, the remaining balls are dropped in box

2 with probability ξ2 := 1− η2 and so on (Bernoulli sieve).

(Gnedin, Iksanov, Negadajlov, Rösler 2008)
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Example 1. Number of collisions for beta coalescents

An application of Regime (A) to beta coalescents with

ν(dx) =
Λ(dx)

x2
= cxa−3(1− x)b−1dx

(a > 2 and b, c > 0) shows that

Xn − µ−1 log n

(σ2µ−3 log n)
1
2

d→ N(0, 1)

where

µ = Ψ(a− 2 + b)−Ψ(b),

σ2 = Ψ′(b)−Ψ′(a− 2 + b)

and Ψ is the logarithmic derivative of the gamma function.
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Example 2

Suppose that P (η ≤ x) =
1

(1− log x)α
, x ∈ (0, 1), for some α > 0.

Then all five regimes occur.

Parameter α µ := E(− log η) σ2 := Var(log η) Regime

0 < α < 1 ∞ ∞ (E) Mittag-Leffler

1 ∞ ∞ (D) 1-stable

1 < α < 2
1

α− 1
∞ (C) α-stable

2 1 ∞ (B) normal

2 < α < ∞ 1

α− 1

α

(α− 1)2(α− 2)
(A) normal
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Absorption times

Lemma. The following relation holds:

τn
d
= σn + τ ′Un

where, on the right hand side, τ ′j
d
= τj , j ∈ N, and (σn, Un) and (τ ′j)j are independent.

Proof. Coupling. When all the primary particles disappear at time σn, there are Un secondary

particles left.
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Absorption times: Asymptotics

Theorem 2. Assume that condition (ii) of Theorem 1 holds. Then, with Xn replaced by τn,

condition (i) of Theorem 1 holds.

There are again five different regimes of convergence.

Sketch of proof. By the previous lemma and Lemma 2, σn and τn have the same asymptotics.

σn has the same limiting law as the first passage time through level log n for a compound

Poisson process with the generic jump− log η and intensity 1.
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Example: Absorption time for beta coalescent

An application of Regime (A) to beta coalescents with

ν(dx) =
Λ(dx)

x2
= cxa−3(1− x)b−1dx

(a > 2 and b, c > 0) shows that

Cτn − µ−1 log n

((σ2 + µ2)µ−3 log n)
1
2

d→ N(0, 1)

with µ and σ2 as before and C :=
a− 1 + b

a− 1

a− 2 + b

a− 2
.

Remarks.

◦ The factor C comes from the linear time change (ν is in general not a probability measure).

◦ Devroye (1999) obtains the same scaling for the depth of a random node in random trees.
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Summary: Absorption time of beta(a,1)-coalescent

coalescent parameter a absorption time τn

Kingman a → 0 τn
a.s.→ τ , E(τ) = 2

0 < a < 1 τn
a.s.→ τ , E(τ) < ∞

Bolthausen-Sznitman a = 1 τn − log log n
d→ τ (Gumbel)

1 < a < 2 Conjecture: asymptotically normal?

a = 2 Conjecture: asymptotically normal?

2 < a < ∞ Cτn−µ−1 log n
((σ2+µ2)µ−3 log n)1/2

d→ N (standard normal)

star-shaped a →∞ τn
d
= Exp(1)
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External branch length

Zn := length of an external branch, chosen uniformly at random from the n external branches

of the coalescent Πn

Let Tn be the time of the first jump of Πn and let In := |Πn(Tn)| the number of blocks after

that first jump.

Zn satisfies the distributional recursion

Z1 = 0 and Zn = Tn + BnZIn , n ∈ {2, 3, . . .},

where Tn is independent of BnZIn , B2, B3, . . . are Bernoulli random variables with P (Bn =

1|In) = (In − 1)/n, and, conditional on In, Bn and ZIn are independent.
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Summary: External branch length of beta(a,1)-coalescent

coalescent parameter a external branch length Zn

Kingman a → 0 nZn
d→ Z having density x 7→ 8/(2 + x)3

0 < a < 1 Conj.: n1−aZn
d→ Z =? (work in progress?)

Bolthausen-Sznitman a = 1 (log n)Zn
d→ Z

d
= Exp(1)

1 < a < ∞ Zn
d→ Z

d
= Exp(a/(a− 1))

star-shaped a →∞ Zn
d
= Exp(1)
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Extensions to Xi-coalescents without proper frequencies

Some results can be easily extended to Ξ-coalescents (with simultaneous multiple collisions).

For example, P (Zn > t) is the probability that a randomly chosen individual is still a singleton

at time t. By exchangeability, we can call this individual ‘1’, and it follows that

P (Zn > 1) = P ({1} is a singleton block of Πn(t)).

If the coalescent does no have proper frequencies, i.e., if the measure Ξ on the simplex

∆ := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0, |x| := ∑
ixi ≤ 1}

satisfies α :=

∫

∆

|x|
(x, x)

Ξ(dx) < ∞ , where (x, x) :=
∑

i x
2
i , then,

lim
n→∞

P (Zn > t) = P ({1} is a block of Π∞(t)) = exp(−αt),

using an argument of Pitman (1999), Eq. (37).

Examples. Dirac-coalescents, Poisson-Dirichlet coalescent
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Discussion: A more general approach

Suppose that α < ∞. For t ≥ 0 let St denote the frequency of singletons of Π∞(t) and set

Xt := − log St. Then X = (Xt)t≥0 is a subordinator with Laplace exponent

Φ(a) =

∫

∆

(1− (1− |x|)a)
Ξ(dx)

(x, x)
, a ≥ 0.

We can still define the annihilator using Schweinberg’s Poisson construction or Kingman’s

paint-box construction (drop all particles marked head). The annihilator has total rates Φ(m),

m ∈ {0, . . . , n}, and the inequality Xn ≥d Kn − Kn,1 holds true. The other bound in

general does not make sense as a variable analogous to Kn,0 might be∞. It seems plausible

that, under additional conditions, Xn and Kn −Kn,1 still have the same limiting law.

Remark. This approach is for example also useful to analyse the asymptotics of the number

of types Mn for Ξ-coalescents without proper frequencies and with mutation (rate r > 0):

Mn

n

d→
∫ ∞

0

re−rtSt dt (exponential integral of a subordinator with drift)
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