ON ASYMPTOTICS OF EXCHANGEABLE

COALESCENTS WITH MULTIPLE COLLISIONS

Martin Möhle
(joint work with Alex Iksanov and Alexander Gnedin)

CIRM, Marseille Luminy, May 26, 2009

Coalescent with multiple collisions (Pitman 1999, Sagitov 1999)

Fix $n \in \mathbb{N}$. Let Λ be a finite measure on $[0,1]$.
Definition. (Coalescent with multiple collisions, Λ-coalescent)
The n-coalescent with multiple collisions is a Markov process $\Pi_{n}=\left(\Pi_{n}(t)\right)_{t \geq 0}$ with state space \mathcal{P}_{n}, the set of partitions of $\{1, \ldots, n\}$, and generator $Q=\left(q_{\pi \pi^{\prime}}\right)_{\pi, \pi^{\prime} \in \mathcal{P}_{n}}$ with rates

$$
q_{\pi \pi^{\prime}}=\int_{[0,1]} x^{k-2}(1-x)^{b-k} \Lambda(d x)=: \lambda_{b, k} \quad \text { for } \pi \prec_{k} \pi^{\prime}, k \geq 2, \text { where }
$$

$b:=|\pi|:=$ number of blocks of π
$\pi \prec_{k} \pi^{\prime}: \Longleftrightarrow$ Exactly k blocks of π merge to form a single block of π^{\prime}

Examples.

$\Lambda=\delta_{0}$ (Dirac measure in 0). \Rightarrow Kingman coalescent (1982)
$\Lambda=U_{[0,1]}$ (uniform on $[0,1]$). \Rightarrow Bolthausen-Sznitman coalescent (1998)
$\Lambda=\delta_{1}$ (Dirac measure in 1). \Rightarrow star-shaped coalescent

Functionals of coalescent processes
$X_{n}:=$ number of collisions
$\tau_{n}:=\inf \left\{t \geq 0:\left|\Pi_{n}(t)\right|=1\right\}=$ time back to MRCA $=$ absorption time
$X_{6}=3$

$$
X_{6}=4
$$

Graphical representation of three realisations of a 6-coalescent with multiple collisions

Example: Bolthausen-Sznitman coalescent

Proposition 1. (Asymptotics of X_{n}, Iksanov and M. 2007, Drmota, Iksanov, Rösler and M. 2007, 2009)

$$
Y_{n}:=\frac{(\log n)^{2}}{n} X_{n}-\log n-\log \log n \xrightarrow{d} Y
$$

where Y is 1 -stable with characteristic function $\mathrm{E}\left(e^{i \lambda Y}\right)=e^{i \lambda \log |\lambda|-\frac{\pi}{2}|\lambda|}, \lambda \in \mathbb{R}$.

Proposition 2. (Asymptotics of τ_{n}, Goldschmidt and Martin 2005, Freund and M. 2007)

$$
\tau_{n}-\log \log n \xrightarrow{d} \tau
$$

where τ is Gumbel distributed.

Remark. Analytic proofs are based on singularity analysis. Probabilistic proofs use relations to random recursive trees and/or to random walks with a barrier.

Summary: Number of collisions of beta(a,1)-coalescent (2007/2008)

coalescent	parameter a	number $\mathbf{X}_{\mathbf{n}}$ of collisions
Kingman	$a \rightarrow 0$	$X_{n}=n-1$
	$0<a<1$	$\frac{X_{n}-n(\alpha-1)}{(\alpha-1) n^{1 / \alpha}} \xrightarrow{d} Y_{\alpha} \quad(\alpha$-stable, $\alpha:=2-a)$
Bolthausen-Sznitman	$a=1$	$\frac{(\log n)^{2}}{n} X_{n}-\log (n \log n) \xrightarrow{d} Y \quad$ (1-stable) $)$
	$1<a<2$	$\frac{X_{n}}{\Gamma(a) n^{2-a}} \xrightarrow{d} \int_{0}^{\infty} e^{-U_{t}} d t \quad(U=$ subord.)
	$a=2$	$\frac{X_{n}-\left(2 m_{1}\right)^{-1} \log ^{2} n}{\left(\frac{m_{2}}{3 m_{1}^{2}} \log ^{3} n\right)^{1 / 2}} \xrightarrow{d} N \quad$ (standard normal)
	$2<a<\infty$	$\frac{X_{n}-\mu^{-1} \log n}{\left(\sigma^{2} \mu^{-3} \log n\right)^{1 / 2}} \xrightarrow{d} N \quad$ (standard normal)
star-shaped	$a \rightarrow \infty$	$X_{n}=1$

Intuition: High mass of Λ near $0 \widehat{=} \Pi_{n}$ has many small jumps $\widehat{=}$ increase of X_{n}

Assumptions

Assume that $\nu(d x):=x^{-2} \Lambda(d x)$ is a probability measure on $(0,1)$ such that

1. the support of ν is not contained in $\left\{1-\delta \gamma^{n}: n=0,1, \ldots\right\}$ for some $\delta>0$ and $\gamma \in(0,1)$,
2. $\int_{(0,1)}|\log x| \nu(d x)<\infty$.

The more general case of a finite measure ν can be reduced to the case of a probability measure by a linear time change of the coalescent.

The annihilator

There is a simpler process $A_{n}:=\left(A_{n}(t)\right)_{t \geq 0}$ with state space $\{0, \ldots, n\}$ moving from m to $m-k$ with rate $\binom{m}{k} \lambda_{m, k}, 1 \leq k \leq m \leq n$.

Remark. Total rates are $\sum_{k=1}^{m}\binom{m}{k} \lambda_{m, k}=\int_{[0,1]}\left(1-(1-x)^{m}\right) \nu(d x), m \in\{0, \ldots, n\}$.

Interpretation.

When there are m particles, any k-tuple of them collides and annihilates at rate $\lambda_{m, k}$.

Pitman's Poisson process construction.

At the generic time s_{j} of a unit Poisson process, a random variable $1-\eta_{j}$ is sampled from ν, and each of the remaining particles is marked 'head' with probability $1-\eta_{j}$ or 'tail' with probability η_{j}. The particles marked 'head' are removed.

A coupling

Define the coalescent Π_{n} and the annihilator A_{n} using the same unit Poisson process and the same sample $1-\eta_{1}, 1-\eta_{2}, \ldots$ from ν.

Call the initial n particles primary and their followers resulting from mergers secondary.
$K_{n}:=$ number of transitions of A_{n} as the process proceeds from n to 0
$K_{n, 1}:=$ number of jumps of A_{n} of size 1
$\sigma_{n}:=\inf \left\{t \geq 0: A_{n}(t)=0\right\}$ (absorption time, first time when there are no primary particles anymore)
$K_{n, 0}:=$ number of epochs $s_{j}<\sigma_{n}$ when none of the primary particles are marked 'head'
$U_{n}:=\left|\Pi_{n}\left(\sigma_{n}\right)\right| \quad$ (remaining secondary particles)

Lemma 1. The following stochastic order relations hold:

$$
K_{n}-K_{n, 1} \leq_{d} X_{n} \leq_{d} K_{n}+K_{n, 0}+X_{U_{n}}
$$

where (on the r.h.s.) $\left(K_{n}, K_{n, 0}, U_{n}\right)$ is independent of $\left(X_{1}, X_{2}, \ldots\right)$.

Proof. Coupling. If ≥ 2 primary particles collide, then both processes A_{n} and Π_{n} jump. The number of jumps of Π_{n} up to time σ_{n} does not exceed the number $K_{n}+K_{n, 0}$, and after time σ_{n} the coalescent evolves with U_{n} particles.

Lemma 2. The sequence of distributions of $X_{U_{n}}, n \in \mathbb{N}$, is tight.

Sketch of proof. Use $X_{U_{n}}<U_{n}$ and study the number Q_{j} of secondary particles at time s_{j}. Given all the η_{k} 's, $\left(Q_{j}\right)_{j}$ is a Markov chain. Introduce $N_{n}:=\inf \left\{k \geq 1: \eta_{1} \cdots \eta_{k} \leq 1 / n\right\}$ and use renewal theory to show that $\left(Q_{N_{n}}\right)_{n}$ is tight. Now replace the fixed drop level $1 / n$ by the appropriate random drop level associated with the last primary particle disappearing at time σ_{n} in order to show that $\left|Q_{N_{n}}-U_{n}\right|$ is stochastically bounded (technical ...)

Number of collisions X_{n} : Asymptotics

Theorem 1. The following two assertions are equivalent.
(i) There exist constants $a_{n}>0$ and $b_{n} \in \mathbb{R}$ such that $\left(X_{n}-a_{n}\right) / b_{n}$ weakly converges to some non-degenerate and proper distribution.
(ii) The distribution of $(-\log \eta)$ either belongs to the domain of attraction of a stable law or the function $x \mapsto P(-\log \eta>x)$ slowly varies at ∞.

There are five different regimes (A) - (E) of convergence.
Possible limiting laws are normal, α-stable with $\alpha \in[1,2)$ and (scaled) Mittag-Leffler.

Convergence Regimes

Logarithmic moments: $\mu:=\mathrm{E}(-\log \eta)$ and $\sigma^{2}:=\operatorname{Var}(\log \eta)$
(A) If $\sigma^{2}<\infty$ then, with $b_{n}:=\mu^{-1}$ and $a_{n}:=\left(\mu^{-3} \sigma^{2} \log n\right)^{1 / 2}$, the limiting law of $\left(X_{n}-a_{n}\right) / b_{n}$ is standard normal.
(B) If $\sigma^{2}=\infty$ and

$$
\int_{(x, 1)}(\log y)^{2} \nu(d y) \sim L(-\log x) \quad \text { as } x \rightarrow 0
$$

for some L slowly varying at ∞, then, with $b_{n}:=\mu^{-1} \log n$ and $a_{n}:=\mu^{-3 / 2} c_{[\log n]}$, where c_{n} is any sequence satisfying $\lim _{n \rightarrow \infty} n L\left(c_{n}\right) / c_{n}^{2}=1$, the limiting law of $\left(X_{n}-\right.$ $\left.b_{n}\right) / a_{n}$ is standard normal.
(C) Assume that, for some function L slowly varying at ∞, the relation

$$
\begin{equation*}
P(\eta \leq x) \sim(-\log x)^{-\alpha} L(-\log x) \quad \text { as } x \rightarrow 0 \tag{*}
\end{equation*}
$$

holds with $\alpha \in[1,2)$ and that $\mu<\infty$ if $\alpha=1$. Then, with $b_{n}:=\mu^{-1} \log n$ and $a_{n}:=\mu^{-(\alpha+1) / \alpha} c_{[\log n]}$, where c_{n} is any sequence satisfying $\lim _{n \rightarrow \infty} n L\left(c_{n}\right) / c_{n}^{\alpha}=1$, the limiting law of $\left(X_{n}-a_{n}\right) / b_{n}$ is α-stable with characteristic function

$$
t \mapsto \exp \left\{-|t|^{\alpha} \Gamma(1-\alpha)\left(\cos \left(\frac{\pi \alpha}{2}\right)+i \sin \left(\frac{\pi \alpha}{2}\right) \operatorname{sgn}(t)\right)\right\}, \quad t \in \mathbb{R}
$$

The remaining two regimes (D) and (E) cover the case when $\mu=\infty$.
(D) Assume that $\mu=\infty$ and that $(*)$ in (C) holds with $\alpha=1$. Let c be any positive function satisfying $\lim _{x \rightarrow \infty} \frac{x L(c(x))}{c(x)}=1$, and set $\psi(x):=x \int_{e^{-c(x)}}^{1} \frac{P(\eta \leq y)}{y} d y$.
Let b be any positive function satisfying $b(\psi(x)) \sim \psi(b(x)) \sim x, x \rightarrow \infty$.
Then, with $b_{n}:=b(\log n)$ and $a_{n}:=b(\log n) c(b(\log n)) / \log n$, the limiting law of $\left(X_{n}-a_{n}\right) / b_{n}$ is 1-stable with characteristic function

$$
t \mapsto \exp \left(-|t|\left(\frac{\pi}{2}-i \log |t| \operatorname{sgn}(t)\right)\right), \quad t \in \mathbb{R}
$$

The last regime:
(E) If $(*)$ in (C) holds with $\alpha \in[0,1)$ then, with $a_{n}:=\frac{\log ^{\alpha} n}{L(\log n)}$, the limiting law of $\frac{X_{n}}{a_{n}}$ is scaled Mittag-Leffler θ_{α} (exponential if $\alpha=0$) with moments

$$
\int_{[0, \infty)} x^{n} \theta_{\alpha}(d x)=\frac{n!}{\Gamma^{n}(1-\alpha) \Gamma(1+n \alpha)}, \quad n \in \mathbb{N}
$$

Basic ideas of the proof

- Use the coupling $K_{n}-K_{n, 1} \leq_{d} X_{n} \leq_{d} K_{n}+K_{n, 0}+X_{U_{n}}$ and the tightness of $X_{U_{n}}$ to show that $\left(X_{n}-b_{n}\right) / a_{n}$ weakly converges if and only if $\left(K_{n}-b_{n}\right) / a_{n}$ weakly converges to the same distribution.
- Interpret K_{n} as the number of non-empty boxes in an occupancy scheme, where n balls are dropped in box 1 with probability $\xi_{1}:=1-\eta_{1}$, the remaining balls are dropped in box 2 with probability $\xi_{2}:=1-\eta_{2}$ and so on (Bernoulli sieve).
(Gnedin, Iksanov, Negadajlov, Rösler 2008)

Example 1. Number of collisions for beta coalescents

An application of Regime (A) to beta coalescents with

$$
\nu(d x)=\frac{\Lambda(d x)}{x^{2}}=c x^{a-3}(1-x)^{b-1} d x
$$

($a>2$ and $b, c>0$) shows that

$$
\frac{X_{n}-\mu^{-1} \log n}{\left(\sigma^{2} \mu^{-3} \log n\right)^{\frac{1}{2}}} \xrightarrow{d} N(0,1)
$$

where

$$
\begin{aligned}
\mu & =\Psi(a-2+b)-\Psi(b) \\
\sigma^{2} & =\Psi^{\prime}(b)-\Psi^{\prime}(a-2+b)
\end{aligned}
$$

and Ψ is the logarithmic derivative of the gamma function.

Example 2

Suppose that $P(\eta \leq x)=\frac{1}{(1-\log x)^{\alpha}}, x \in(0,1)$, for some $\alpha>0$.
Then all five regimes occur.

Parameter α	$\mu:=\mathrm{E}(-\log \eta)$	$\sigma^{2}:=\operatorname{Var}(\log \eta)$	Regime
$0<\alpha<1$	∞	∞	(E) Mittag-Leffler
1	∞	∞	(D) 1-stable
$1<\alpha<2$	$\frac{1}{\alpha-1}$	∞	(C) α-stable
2	1	∞	(B) normal
$2<\alpha<\infty$	$\frac{1}{\alpha-1}$	$\frac{\alpha}{(\alpha-1)^{2}(\alpha-2)}$	(A) normal

Absorption times

Lemma. The following relation holds:

$$
\tau_{n} \stackrel{d}{=} \sigma_{n}+\tau_{U_{n}}^{\prime}
$$

where, on the right hand side, $\tau_{j}^{\prime} \stackrel{d}{=} \tau_{j}, j \in \mathbb{N}$, and $\left(\sigma_{n}, U_{n}\right)$ and $\left(\tau_{j}^{\prime}\right)_{j}$ are independent.
Proof. Coupling. When all the primary particles disappear at time σ_{n}, there are U_{n} secondary particles left.

Absorption times: Asymptotics

Theorem 2. Assume that condition (ii) of Theorem 1 holds. Then, with X_{n} replaced by τ_{n}, condition (i) of Theorem 1 holds.

There are again five different regimes of convergence.

Sketch of proof. By the previous lemma and Lemma 2, σ_{n} and τ_{n} have the same asymptotics. σ_{n} has the same limiting law as the first passage time through level $\log n$ for a compound Poisson process with the generic jump $-\log \eta$ and intensity 1.

Example: Absorption time for beta coalescent

An application of Regime (A) to beta coalescents with

$$
\nu(d x)=\frac{\Lambda(d x)}{x^{2}}=c x^{a-3}(1-x)^{b-1} d x
$$

($a>2$ and $b, c>0$) shows that

$$
\frac{C \tau_{n}-\mu^{-1} \log n}{\left(\left(\sigma^{2}+\mu^{2}\right) \mu^{-3} \log n\right)^{\frac{1}{2}}} \stackrel{d}{\rightarrow} N(0,1)
$$

with μ and σ^{2} as before and $C:=\frac{a-1+b}{a-1} \frac{a-2+b}{a-2}$.

Remarks.

- The factor C comes from the linear time change (ν is in general not a probability measure).
- Devroye (1999) obtains the same scaling for the depth of a random node in random trees.

Summary: Absorption time of beta(a,1)-coalescent

coalescent	parameter a	absorption time $\tau_{\mathbf{n}}$
Kingman	$a \rightarrow 0$	$\tau_{n} \xrightarrow{\text { a.s. }} \tau, \mathrm{E}(\tau)=2$
	$0<a<1$	$\tau_{n} \xrightarrow{\text { a.s. }} \tau, \mathrm{E}(\tau)<\infty$
Bolthausen-Sznitman	$a=1$	$\tau_{n}-\log \log n \xrightarrow{d} \tau \quad$ (Gumbel)
	$1<a<2$	Conjecture: asymptotically normal?
	$a=2$	Conjecture: asymptotically normal?
	$2<a<\infty$	$\frac{C \tau_{n}-\mu^{-1} \log n}{\left(\left(\sigma^{2}+\mu^{2}\right) \mu^{-3} \log n\right)^{1 / 2}} \xrightarrow{d} N \quad$ (standard normal)
star-shaped	$a \rightarrow \infty$	$\tau_{n} \stackrel{\stackrel{1}{=} \operatorname{Exp}(1)}{ }$

External branch length

$Z_{n}:=$ length of an external branch, chosen uniformly at random from the n external branches of the coalescent Π_{n}

Let T_{n} be the time of the first jump of Π_{n} and let $I_{n}:=\left|\Pi_{n}\left(T_{n}\right)\right|$ the number of blocks after that first jump.
Z_{n} satisfies the distributional recursion

$$
Z_{1}=0 \quad \text { and } \quad Z_{n}=T_{n}+B_{n} Z_{I_{n}}, \quad n \in\{2,3, \ldots\}
$$

where T_{n} is independent of $B_{n} Z_{I_{n}}, B_{2}, B_{3}, \ldots$ are Bernoulli random variables with $P\left(B_{n}=\right.$ $\left.1 \mid I_{n}\right)=\left(I_{n}-1\right) / n$, and, conditional on I_{n}, B_{n} and $Z_{I_{n}}$ are independent.

Summary: External branch length of beta(a,1)-coalescent

coalescent	parameter a	external branch length $Z_{\mathbf{n}}$
Kingman	$a \rightarrow 0$	$n Z_{n} \xrightarrow{d} Z$ having density $x \mapsto 8 /(2+x)^{3}$
	$0<a<1$	Conj.: $n^{1-a} Z_{n} \xrightarrow{d} Z=?$ (work in progress?)
Bolthausen-Sznitman	$a=1$	$(\log n) Z_{n} \stackrel{d}{\rightarrow} Z \stackrel{d}{=} \operatorname{Exp}(1)$
	$1<a<\infty$	$Z_{n} \xrightarrow{d} Z \stackrel{d}{=} \operatorname{Exp}(a /(a-1))$
star-shaped	$a \rightarrow \infty$	$Z_{n} \stackrel{d}{=} \operatorname{Exp}(1)$

Extensions to Xi-coalescents without proper frequencies

Some results can be easily extended to Ξ-coalescents (with simultaneous multiple collisions). For example, $P\left(Z_{n}>t\right)$ is the probability that a randomly chosen individual is still a singleton at time t. By exchangeability, we can call this individual ' 1 ', and it follows that

$$
P\left(Z_{n}>1\right)=P\left(\{1\} \text { is a singleton block of } \Pi_{n}(t)\right)
$$

If the coalescent does no have proper frequencies, i.e., if the measure Ξ on the simplex

$$
\Delta:=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{1} \geq x_{2} \geq \cdots \geq 0,|x|:=\sum_{i} x_{i} \leq 1\right\}
$$

satisfies $\alpha:=\int_{\Delta} \frac{|x|}{(x, x)} \Xi(d x)<\infty$, where $(x, x):=\sum_{i} x_{i}^{2}$, then,

$$
\lim _{n \rightarrow \infty} P\left(Z_{n}>t\right)=P\left(\{1\} \text { is a block of } \Pi_{\infty}(t)\right)=\exp (-\alpha t)
$$

using an argument of Pitman (1999), Eq. (37).
Examples. Dirac-coalescents, Poisson-Dirichlet coalescent

Discussion: A more general approach

Suppose that $\alpha<\infty$. For $t \geq 0$ let S_{t} denote the frequency of singletons of $\Pi_{\infty}(t)$ and set $X_{t}:=-\log S_{t}$. Then $X=\left(X_{t}\right)_{t \geq 0}$ is a subordinator with Laplace exponent

$$
\Phi(a)=\int_{\Delta}\left(1-(1-|x|)^{a}\right) \frac{\Xi(d x)}{(x, x)}, \quad a \geq 0
$$

We can still define the annihilator using Schweinberg's Poisson construction or Kingman's paint-box construction (drop all particles marked head). The annihilator has total rates $\Phi(m)$, $m \in\{0, \ldots, n\}$, and the inequality $X_{n} \geq_{d} K_{n}-K_{n, 1}$ holds true. The other bound in general does not make sense as a variable analogous to $K_{n, 0}$ might be ∞. It seems plausible that, under additional conditions, X_{n} and $K_{n}-K_{n, 1}$ still have the same limiting law.

Remark. This approach is for example also useful to analyse the asymptotics of the number of types M_{n} for Ξ-coalescents without proper frequencies and with mutation (rate $r>0$):

$$
\frac{M_{n}}{n} \xrightarrow{d} \int_{0}^{\infty} r e^{-r t} S_{t} d t
$$ (exponential integral of a subordinator with drift)

References I

Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007) On the length distribution of external branches in coalescence trees: genetic diversity within species. Theor. Popul. Biol. 72, 245-252.

Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008) Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18, 997-1025.

Devroye, L. (1999) Universal limit laws for depths in random trees. SIAM J. Computing 28, 409-432.
Drmota, M., Iksanov, A., Möhle, M., And Rösler, U. (2007) Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Process. Appl. 117, 1404-1421.

Drmota, M., Iksanov, A., Möhle, M., and Rösler, U. (2009) A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Struct. Algorithms 34, 319-336.

Freund, F. and Möhle, M. (2009) On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Related Fields 15, to appear.

References II

Freund, F. and Möhle, M. (2008) On the number of allelic types for samples taken from exchangeable coalescents with mutation. Preprint.

Gnedin, A.V. (2004) The Bernoulli sieve. Bernoulli 10, 79-96.
Gnedin, A. and Yakubovich, Y. (2007) On the number of collisions in Λ-coalescents. Electron. J. Probab. 12, 1547-1567.

Gnedin, A., Iksanov, A. and Möhle, M. (2008) On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Probab. 45, 1186-1195.

Gnedin, A., Iksanov, A. Negadajlov, P. and Rösler, U. (2009) The Bernoulli sieve revisited. Ann. Appl. Probab. 19, to appear.

References III

Goldschmidt, C. AND MARTIn, J.B. (2005) Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10, 718-745.

Iksanov, A. AND Möhle, M. (2007) A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Comm. Probab. 12, 28-35.

Iksanov, A. And Möhle, M. (2008) On the number of jumps of random walks with a barrier. Adv. Appl. Probab. 40, 206-228.

Iksanov, A., Marynych, A. ANd MöHLE, M. (2009) On the number of collisions in beta(2,b)-coalescents. Bernoulli 15, to appear.

Kingman, J.F.C. (1982) The coalescent. Stoch. Process. Appl. 13, 235-248.
Pitman, J. (1999) Coalescents with multiple collisions. Ann. Probab. 27, 1870-1902.
Sagitov, S. (1999) The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36, 1116-1125.

