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Motivation

I Mathematically tractable epidemic models are valuable tools

for understanding, predicting, mitigating, planning, . . . in the

context of infectious diseases.

I Classical models include many assumptions of homogeneity,

most of which are unrealistic.

I In this lecture series we focus on ways of reflecting population

structure by differentiating between ‘local’ and ‘global’

contacts.

I Broadly, this means adding another infection mechanism, or

layer of structure, to the standard homogeneously mixing

stochastic SIR model.
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Section 1: Review (& extension) of standard SIR epidemic

I Approach to analysis

I Exact results for the final outcome

I Branching process approximation for early stages of an

outbreak

I Threshold theorem and probability of a major outbreak

I Law of Large Numbers and Central Limit Theorem for the

final size of a major outbreak
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Standard stochastic SIR epidemic

I Population of n individuals.

I Each is Susceptible, Infectious or Removed.

I Start with 1 infectious (chosen uniformly at random) and the

remaining n − 1 susceptible.

I Infectious individual remains so for a random time distributed

as I , a random variable with arbitrary distribution which we

specify via its MGF/LST φ(θ) = E[e−θI ].

I Through its infectious period an infective makes contacts with

each other individual in the population at the points of a

Poisson process of rate λ. If an individual so contacted is

susceptible it becomes infectious, otherwise nothing happens.

I Epidemic ceases when no infectious individuals remain.

I All infectious periods, contact processes are mutually

independent.
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Analysis

I First object of interest is the final size Z , the number of initial

susceptibles that are ultimately removed (i.e. were infected

during the epidemic).

I Analysis in the limit as n→∞.

I Z (n) is either O(1) or O(n): minor or major outbreak.

I Therehold theorem.

I Major outbreak probability.

I Behaviour of Z (n) conditional on a major outbreak.

I Key tool: Branching process approximation of early stages.

I We will obtain analogues of these results for models with

additional population structure.
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Tools

The following results/ideas from the standard homogeneously

mixing SIR epidemic will be crucial to our analysis of these models

with additional population structure:

I Properties of SIR epidemics in small groups: joint generating

function of the size and severity.

I As above, including outside infection.

I Branching process approximations, we will use a discrete-time

‘generation’ based approach rather than the ‘real-time’

approach.

I Formula for the expected final size.
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Homogeneously mixing SIR epidemic

I Here we modify the setup and notation slightly:
I Assume that there are m initial infectives and n initial

susceptibles, so that the population size is m + n.

I The rest remains the same:
I Infectious period distributed as I , with φ(θ) = E[e−θI ].
I Contacts during the infectious period at per-pair rate λ.
I Independence.

I We analyse the final size and the severity of this process
En,m(λ, I ) = ((X (t),Y (t)), t ≥ 0). Define

I Extinction time T = inf{t > 0 | Y (t) = 0},
I Final size Z = X (0)− X (T ),
I Severity A =

∑n
i=−(m−1) 1{i infected}Ii .
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Generating functions of size and severity

Theorem (see Picard and Lefèvre (1990)). Let

ψn,m(s, θ) = E[sn−Z e−θA]

be the joint generating function of the number of survivors and

severity of En,m(λ, I ). Then

ψn,m(s, θ) =
n∑

k=0

n!

(n − k)!
φ(θ + λk)n+m−k Gk(s | U).

Here U = (u0, u1, . . . ) has uk = φ(θ + λk) and Gk(s | U) is the

k-th Gontcharoff polynomial (with parameter sequence U), defined

by
∑k

i=0
k!

(k−i)! uk−i
i Gi (x | U) = xk (k = 0, 1, . . . ).
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Generating functions of size and severity

Corollary 1 Set s = 1 to obtain the MGF of the severity A of

En,m(λ, I ).

Corollary 2 Let

fn,m(s) = E[sn−Z ]

be the PGF of the ultimate number of susceptibles n − Z in

En,m(λ, I ). Then, setting θ = 0 in Theorem 1 yields

fn,m(s) =
n∑

k=0

n!

(n − k)!
φ(λk)n+m−kGk(s|V),

where V = (v0, v1, . . . ) with vk = φ(λk).
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Final size of En,m(λ, I )

Formulae for the mean final size and the distribution of the final

size follows from Corollary 2. Starting with fn,m(s):

I Differentiating once and setting s = 1 yields

E[Z ] = n−E[n−Z ] = n−
n∑

k=1

n!

(n − k)!
φ(λk)n+m−kGk−1(1 | E 1V),

where E kV = (vk , vk+1, . . . ).

I Differentiating n − z times and setting s = 0 yields

P(Z = z) =
1

(n − z)!

n∑
k=n−z

n!

(n − k)!
φ(λk)n+m−kGk−n+z(0 | En−zV).
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SIR model with outside infection

I Consider the model En,m(λ, I ) with the additional feature that

susceptibles may be infected from outside the population.

I Specifically, each susceptible avoids outside infection

independently with probability π.

I Individuals infected from outside the population infect

susceptibles within the population as in En,m(λ, I ).

I Denote model by Ẽn,m(λ, I , π).

I Let Z̃ and Ã denote the size and severity of Ẽn,m(λ, I , π), and

let

ψ̃n,m(s, θ) = E[sn−Z̃e−θÃ].

(Addy et al. (1991))
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Size and severity of Ẽn,m(λ, I , π)

Theorem (Ball et al. (1997)) For n,m = 0, 1, · · · ,

ψ̃n,m(s, θ) =
n∑

k=0

n!

(n − k)!
φ(θ + λk)n+m−kπkGk(s | U),

where U = u0, u1, . . . with uk = φ(θ + λk).
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Size and severity of Ẽn,m(λ, I , π)

I Expressions for the MGF of the severity Ãn and the PGF of

the number of survivors n − Z̃n follow as before. Also,

E[Z̃n] = n −
n∑

k=1

n!

(n − k)!
φ(λk)n+m−kπkGk−1(1 | W),

where W = (w0,w1, . . . ) with wk = φ(λ(k + 1)).

I For fixed m, let P̃n
i = P(Z̃n = i) (i = 0, 1, . . . , n). Then

j∑
i=0

(n−i
j−i
)
P̃n
i

φ(λ(n − j))m+iπn−j
=

(
n

j

)
(j = 0, 1, . . . , n).
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Branching process approximations

I Depending upon the aim of our analysis, there are two (main)
different approaches to branching process approximation of
the number of infectives in the early stages of an epidemic:

I Real-time; Crump-Mode-Jagers branching process.
I Generation based; embedded (Bienaymé-)Galton-Watson

process.

I Here we motivate the latter and briefly touch on the

connection between the two.
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General branching process

I In a general Crump–Mode–Jagers (CMJ) branching process

individuals have IID life histories H = (I , ξ), where I denotes

a typical individual’s age at death and ξ is a point process of

ages at which she reproduces. [Note that ξ((I ,∞)) = 0.]

I Thus if an individual with life history H = (I , ξ) is born at

time b and 0 < τ1 ≤ τ2 ≤ · · · ≤ I denote the points of ξ then

she has one child at each time b + τ1, b + τ2, . . . .

I The life histories are pieced together in the obvious fashion to

form the population process.

I Such a process approximates Y (t), the (real-time) evolution

of the number of infectives.

(Haccou et al. (2005).)
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General branching process
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Branching processes and final size

I If we are interested in analysing the final size properties of an

SIR epidemic process then we do not need all of this

information.

I All that matters is who has infectious contact with who.

I The times of the contacts do not affect the final size.

(Ludwig (1975))
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Embedded Galton-Watson process

CMJ process Embedded GW process

0

1

2

3

4

5

6

7

0

3 41

2 6 5 7

19/105 (4–25)



Embedded Galton-Watson process

I Suppose that there are m initial individuals. These comprise

generation 0. For k = 0, 1, 2, . . . , generation k + 1 consists of

the daughters of generation-k individuals.

I Let R = ξ((0,∞)) be a random variable describing the

number of offspring of a typical individual.

I For k = 0, 1, . . . , let Yk denote the size of generation k . Then

Y0 = m and, for k = 1, 2, . . . ,

Yk =

{
Rk−1,1 + Rk−1,2 + · · ·+ Rk−1,Yk−1

if Yk−1 > 0,

0 if Yk−1 = 0,

where Rk,i
iid∼ R.
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Extinction

I Suppose P(R = 1) < 1. Then a Galton-Watson process

ultimately either goes extinct or grows unboundedly.

I Let

f (s) = E
[
sR
]

=
∞∑
k=0

P(R = k)sk (0 ≤ s ≤ 1)

be the PGF of R and let π be the probability that the GW

process goes extinct given that there is one ancestor.

I Then π is the smallest non-negative solution of f (s) = s.

I Let R0 = E[R]. Then π < 1 ⇐⇒ R0 > 1.

I If there are m ancestors, the extinction probability is πm.

I If P(I <∞) = 1, a CMJ process goes extinct if and only if its

embedded GW process of generation sizes does so.
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Total progeny

I Let Z = Y1 + Y2 + . . . denote the total progeny of the

embedded Galton-Watson process {Yk : k = 0, 1, . . . }, not

including the m ancestors. (Note that Z is also the total

progeny of the corresponding CMJ branching process.)

I Then

P(Z = k) =
m

m + k
P(R1+R2+· · ·+Rm+k = k) (k = 0, 1, . . . ),

where R1,R2, . . . are IID copies of R.

I Note that

∞∑
k=0

P(Z = k) =

{
1 if R0 ≤ 1,

πm < 1 if R0 > 1.
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Asymptotic final size properties of En,m(λ, I )

I As n→∞, Z (n) D→ Z , where Z is the total progeny of a

suitable branching process.

I If P(Z =∞) > 0 then Z (n)/n
D→ Z ′, where

1− P(Z ′ = 0) = P(Z ′ = z) = pmaj

and 1− pmaj and 1− z are branching process extinction

probabilities.

I (CLT for size of major outbreaks.)

I Asymptotic expected relative final size z satisfies

1− z = exp(−z
λ

N
NµI ) = exp(−zλµI ).
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Summary

I Exact results for small populations.

I To study final size we may ignore time.

I Threshold theorem.

I Law of large numbers (and central limit theorem) for final size

of major outbreaks.
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Going forward

This course is about (stochastic SIR) structured population

epidemic models.

We look in detail at

I Households models

(Ball, Mollison & Scalia-Tomba (1997), Ball & Lyne (2006)).

I General two-level-mixing model

(Ball & Neal (2002, 2008)).

I Network and households model

(Ball, Sirl & Trapman (2009, 2010)).
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Why study households models?

I Household structure is a key departure from homogeneous

mixing for human populations and can have significant impact

on disease dynamics.

I There are outbreak control measures associated with

households and similar structures (e.g. schools and

workplaces).

I Epidemic data are often collected at the household level.

I Households models are mathematically reasonably tractable

and consequently are generally easier to interpret than

complex simulation models.
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Households SIR epidemic model

mn households of size n (n = 1, 2, . . . )

total of m =
∑∞

n=1 mn households

and N =
∑∞

n=1 nmn <∞ individuals

I SIR (susceptible → infective → removed)

I Infectious period ∼ I , an arbitrary but specified distribution

I Infection rates (individual to individual)

I local (within-household) λL
I global (between-household) λG/N

I Latent period

(Bartoszyński (1972), Becker and Dietz (1995), Ball et al. (1997))
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Threshold parameter R∗

GLOBAL INFECTION

I R∗ = mean number of global contacts emanating from a typical

single-household epidemic. Letting

α̃n =
nmn

N
= P(randomly chosen person lives in a household of size n),

µn(λL) = mean size of size-n household epidemic with 1 initial infective,

R∗ =
∞∑
n=1

α̃nµn(λL)λGE[I ].

I Therefore pmaj > 0 ⇐⇒ R∗ > 1.
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Probility of a major outbreak

I Approximate early stages of an epidemic by a branching process of

infected households.

I Number of global contacts emanating from a single size-n household

epidemic, Rn say, follows a Poisson distribution with random mean

λGAn−1, where An−1 is the severity of a single-household epidemic

with initially 1 infective and n − 1 susceptibles. Thus, recalling

notation from Section 1,

E
[
sRn
]

= E
[
E
[
sRn | An−1

]]
= E

[
e−λGAn−1(1−s)

]
= ψn−1,1(1, λG (1−s)).

I If the epidemic is started by an individual chosen uniformly at

random from the population becoming infected then pmaj = 1− σ,

where σ is the smallest non-negative solution of f (s) = s and

f (s) =
∞∑
n=1

α̃nφn−1,1(1, λG (1− s)).
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Number of people infected
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Number of households infected
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Critical values of (λL, λG )
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SIR model with outside infection

I Recall the model Ẽn,m(λL, I , π), in which individuals avoid

outside infection independently with probability π, and let

Z̃n,m denote the final size of Ẽn,m(λL, I , π).

I For n = 1, 2, . . . , let

µ̃n(λL, π) = E[Z̃n,0]

be the expected final size of such an epidemic in an initially

fully susceptible household of size n.

I An expression for µ̃n(λL, π) in terms of Gontcharoff

polynomials is given in Section 1.
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Final outcome of major outbreak
Suppose m is large and there are few initial infectives. Set

z = expected proportion of the population infected by the epidemic and

π = probability that a typical individual avoids global infection.

I Then z and π satisfy the following equations:

π = exp

(
−λG

N
NzµI

)
= exp(−λG zµI ), (1)

z =
∞∑
n=1

α̃nµ̃n(λL, π)/n. (2)

I If R∗ ≤ 1 then z = 0 is the only solution of (1)–(2) in [0, 1].

I If R∗ > 1 then there is a unique second solution z∗ ∈ (0, 1), giving

the mean relative size of major outbreak.

I Final outcome in an initially fully-susceptible household having size

n is distributed according to final outcome of Ẽn,0(I , λL, π
∗), where

π∗ = exp(−λG z∗µI ).
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Vaccination

I For n = 1, 2, · · · and v = 0, 1, · · · , n, let
xnv = proportion of size-n households that have v members vaccinated,

µnv = mean number of global contacts emanating from a single-household

epidemic in a household in state (n, v), initiated by an individual

chosen uniformly at random being contacted globally.
I Post-vaccination

Rv =
∞∑
n=1

α̃n

n∑
v=0

xnvµnv

I Vaccination coverage

c =
∞∑
n=1

α̃n

n∑
v=0

v

n
xnv

I Determination of optimal vaccination scheme (e.g. to reduce Rv to 1 with

minimum vaccination coverage) is a linear programming problem, whose

solution can be constructed explicitly.

(Becker and Starczak (1997), Ball and Lyne (2002, 2006))
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Calculation of µnv

I Recall
xnv = proportion of size-n households that have v members vaccinated,

µnv = mean number of global contacts emanating from a single-household

epidemic in a household in state (n, v), initiated by an individual

chosen uniformly at random being contacted globally.
I µnv depends on model for vaccine action.
I For an all-or-nothing model, in which vaccinees are rendered completely

immune independently with probability ε, otherwise the vaccine has no

effect

µnv =
v∑

k=0

(
v

k

)
εk(1− ε)v−k︸ ︷︷ ︸

(1)

n − k

n︸ ︷︷ ︸
(2)

µn−k(λL)︸ ︷︷ ︸
(3)

λGµI

(1) P(k vaccinations are successful)

(2) P(globally contacted individual is susceptible)

(3) Mean size of single-household epidemic
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Vaccine response model

I Vaccine response described by a random vector (A,B).

A = relative susceptibility compared to an unvaccinated individual

[force of infection acting on that individual at time t reduced

from λt to Aλt
B = relative infectivity should vaccinee become infected

[total force of infection exerted by that individual reduced

from
∫∞
0
λ′s ds to B

∫∞
0
λ′s ds]

I
All-or-nothing P(A = 0,B = 0) = 1− P(A = 1,B = 1) = ε

Non-random P(A = a,B = b) = 1

Leaky non-random with a = 1− ε, b = 1

I Vaccine efficacy: VESI = 1− E[AB] (= ε)

(Becker and Starczak (1998))
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Variola Minor, Sao Paulo, 1956

I Data comprise final numbers infected in each of 338

households. Household size varied from 1 to 12 (mean 4.56)

I Each individual labelled vaccinated or unvaccinated

773 unvaccinated — 425 infected (58%)

809 vaccinated — 85 infected (11%)

I Fit households SIR model with non-random vaccine response,

assuming infectious period I ≡ 1, using pseudolikelihood

method of Ball and Lyne (2014) to obtain the estimates

λ̂L = 0.3821, λ̂G = 1.4159, â = 0.1182, b̂ = 0.8712.
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Comparison of vaccination strategies
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Optimal vaccination schemes

I Let
hnv = mnxnv = number of households of size n with v members

vaccinated.
I Recalling α̃n = nmn/N,

Rv =
∞∑
n=1

α̃n

n∑
v=0

xnvµnv

=
∞∑
n=1

n∑
v=0

hnvMn,v ,

where Mn,v = nµnv/N.
I Consider the vaccine gain

Gn,v = Mn,v −Mn,v+1, the reduction in Rv from vaccinating one

further member of a (n, v)-household.
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Vaccine gain matrix

n v = 0 1 2 3

1 0.562510

2 1.50006 0.79699

3 2.65063 1.78765 1.04468

4 3.81651 2.94202 2.07624 1.30257

Vaccine gain matrix (Gn,v ) for a population consisting of 100

households of each size 1, 2, 3 and 4, when I ∼ Exp(1), λL = 5

and λG = 0.75, for an all-or-nothing vaccine with ε = 0.75.
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Vaccine gain matrices

All-or-nothing, ε = 0.75

n v = 0 1 2 3

1 0.562510

2 1.50006 0.79699

3 2.65063 1.78765 1.04468

4 3.81651 2.94202 2.07624 1.30257

Non-random, a = b = 0.5

n v = 0 1 2 3

1 0.562510

2 1.27687 0.88999

3 2.05824 1.66866 1.27068

4 2.82241 2.44642 2.06403 1.67145

Leaky, a = 0.25

n v = 0 1 2 3

1 0.562510

2 1.23968 0.92719

3 1.88575 1.71416 1.39767

4 2.43651 2.38212 2.24183 1.94374
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Effect of vaccine action model on Rv
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Effect of vaccine action model on cv
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Section 3: General two-level mixing epidemic model

11

2
3

N

Population

N = {1, 2, · · · ,N}

I SIR (susceptible → infective → removed).

I Infectious periods I1, I2, . . . , IN
i.i.d.∼ I (arbitrary but specified).

I Infection rates (individual → individual).
I local λLij ,
I global λG/N.

I (λLij ≡ 0 yields homogeneous mixing.)

(Ball and Neal (2002))

45/105 (45–70)



Households model

m households, each of size n

N = mn

I λLij =

{
λL if i and j belong to the same household

0 otherwise

I Unequal-sized households.

(Bartoszyński (1972), Becker and Dietz (1995), Ball et al. (1997))
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Overlapping groups model

Workplace

Household

I mα households, each of size nα, mβ workplaces, each of size

nβ, so N = mαnα = mβnβ.

I λLij =


λLα if i and j belong to the same household,

λLβ if i and j belong to the same workplace,

0 otherwise.

(Ball and Neal (2002), cf. Andersson (1999); Ball et al. (2014))
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Great circle model

3
2

1N −1 N

Basic form:

λLij =

{
λL if i and j are neighbours,

0 otherwise.

‘Small-world’ networks

More general contact distribution:

λLij = λL v(i − j (mod N))

(Ball et al. (1997), Ball and Neal (2002, 2003))
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Networks with casual contacts

I ‘independent’ random graph of possible local contacts with

specified degree distribution pk = P(D = k) (k = 0, 1, . . . )

I λLij =

{
λL if i and j are neighbours

0 otherwise

(Diekmann et al. (1998), Ball and Neal (2002, 2008), Kiss et al. (2006), Newman (2002))
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Digraph of local infectious contacts

I i → j if and only if i , if infected, contacts j locally.

I Conditional on the infectious periods I1, I2, . . . , IN ,

P(i → j) = 1− e−λ
L
ij Ii independently for distinct (i , j).
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Local infectious clump CN
i

i

I Define CNi = {j ∈ N : i  j}, where i  j if and only if there

exists a chain of directed arcs from i to j .

I Set CN
i = |CNi |.
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Local infectious clumps

i

j

I CNi = {j ∈ N : i  j}; CN
i = |CNi |.

I In early stages, clumps don’t overlap if N is large (unless local

epidemic is supercritical).
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Threshold parameter R∗

I As N →∞, process of infected clumps tends to a branching

process having offspring random variable R ∼ Poi(λGA),

where A =
∑

j∈C Ij .

I Major outbreak occurs if and only if this branching process

does not go extinct.

I We therefore have a threshold parameter

R∗ = E[R] = λGE[A] = λGE
[∑

j∈N Ij1{j∈C}

]
= λG

∑N
j=1 E[Ij ]P(j ∈ C) = λGµIE[C ].

I Thus pmaj > 0 ⇐⇒ R∗ > 1.
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Local susceptibility set SN
i

i

I SNi = {j ∈ N : j  i}; SN
i = |SNi |.

I i is ultimately infected ⇐⇒ SNi is contacted globally.
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Final outcome of major outbreak
Suppose N is large and there are few initial infectives. Set

z = expected proportion of the population infected by the epidemic and

π = probability that a typical individual avoids global infection.

I Then z and π satisfy the following equations:

π = exp

(
−λG

N
NzµI

)
= exp(−λG zµI ), (3)

1− z = P(typical susceptible avoids infection by epidemic)

= P(typical local susceptibility set avoids global infection)

=
∞∑
k=1

P(S = k)πk = fS(π) = fS(e−λG zµI ). (4)

I If R∗ ≤ 1 then z = 0 is the only solution of (3)–(4) in [0, 1].
I If R∗ > 1 then there is a unique second solution z∗ ∈ (0, 1), giving mean

‘size’ of major outbreak.
I Proof of this (and CLT) available using Scalia-Tomba (1985) embedding

technique. (Local digraphs and global Sellke-type construction.)
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Final outcome of major outbreak

I To show that equation (4),

1− z = fS(e−λG zµI ),

has a unique solution in (0, 1] when R∗ > 1, consider a Galton-Watson

process with offspring random variable, R say, having a Poisson

distribution with random mean λGµIS .
I Then

E[R] = λGµIE[S ] = R∗

and

f (s) = E
[
sR
]

= E
[
E
[
sR | S

]]
= E

[
e−λGµIS(1−s)

]
= fS

(
e−λGµI (1−s)

)
.

I Suppose that R∗ > 1. Then f (s) = s has a unique solution in [0, 1).

Hence, setting z = 1− s, shows that (4) has a unique solution in (0, 1].
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General two-level mixing model

I Analyse early spread of epidemic via local infectious clumps.

I Analyse final size properties of a major outbreak by local

susceptibility sets.

57/105 (45–70)



Great circle model

I Si = {i} ∪ SL ∪ SR

I pL = P(i infects i + 1 locally) = 1− E[e−λLI ]

I P(SL = k) = P(SR = k) = (1− pL)pk
L

(k = 0, 1, . . . )

I SL and SL are independent, so

P(S = k) = (1−pL)2pk−1
L (k = 1, 2, . . . )

I E[S ] = 2p−1L − 1

I fS follows easily
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Households model

Consider household of n individuals, labelled 1, 2, . . . , n, and let S be the local

susceptibility set of individual 1.

n−j
j−1

1

Let P
(n)
j = P(S = j) (j = 1, 2, . . . , n)

Let qk = E[e−kλLI ] be the probability that

a given set of k susceptibles avoids local

infection from a given infective

P
(n)
j =

(
n−1
j−1

)
P

(j)
j qn−j

j (j = 1, 2, . . . , n)

I

∑k
j=1 P

(k)
j = 1 =⇒

∑k
j=1

(
k−1
j−1
)
P

(j)
j qk−j

j = 1

=⇒
∑k

j=1

(
n−k
n−j
)
P

(n)
j

qn−k
j

=

(
n − 1

k − 1

)
(k = 1, 2, . . . , n)

I Triangular system of linear equations for P(S = j) (j = 1, 2, . . . , n)
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Overlapping groups model

Workplace

Household

i

I Construct local susceptibility set S of typical individual i via a two-type

branching process in which individuals beget only the opposite type and the

offspring of a type α (β) individual are the individuals in its workplace

(household) susceptibility set.
I If µα (µβ) is the mean size of a household (workplace) susceptiblity set,

then

E[S ] =

{
µαµβ

µα+µβ−µαµβ
if (µα − 1)(µβ − 1) < 1,

∞ otherwise.
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Network: Configuration model

I Population N = {1, 2, · · · ,N}.
I D = degree of typical individual,

pk = P(D = k) (k = 0, 1, . . . ) specified µD = E[D].

I D1,D2, . . . ,DN IID copies of D.

I Attach Di half-edges to individual i (i = 1, 2, . . . ,N).

I Pair up the SN half-edges uniformly at random to form the

network.

I There may be imperfections; but these are sparse if

σ2D = var(D) <∞.

(Bollobás (2001))
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Networks with casual contacts

I Let D̃ = degree of typical neighbour of typical individual in

the network and µD̃ = E[D̃]. Then

P(D̃ = k) = kp
k
/µD (k = 1, 2, . . . ) and µD̃ =

σ2D + µ2D
µD

.

I Size of typical local susceptibility set S (N) a.s.−→ S as N →∞,

where S is the total size of a Galton-Watson process having

offspring law Bin(D, pL) for the initial individual and

Bin(D̃ − 1, pL) for all subsequent individuals.

I It follows that

E[S ] =

1 + µDpL
1−(µD̃−1)pL

if (µD̃ − 1)pL < 1,

∞ otherwise.
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‘Deterministic’ households model

m households of size n, labelled 1, 2, . . . ,m.

Let xi (t) and yi (t) be the number of susceptibles

and infectives in household i at time t.

I dxi
dt

= −(λLyi + N−1λG

m∑
j=1

yj)xi ,

dyi
dt

= (λLyi + N−1λG

m∑
j=1

yj)xi − γyi (i = 1, 2, . . . ,m).

I Basic Reproduction number R0 = (λG + nλL)/γ.
I Proportion of susceptibles ultimately infected z∗det given by largest root of

1− z = exp(−R0z) in [0, 1]
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Households and great circle models
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Overlapping groups model, varying λL
β

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

*
=1, nα=3, nβ =2

λα
L

λ
G

λ
β
=0.0

λ
β
=0.2

λ
β
=0.4

λ
β
=0.6

λ
β
=1.0

λ
β
=100.0

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
z, λ

G
=0.5, nα=3, nβ=2

nα λα
L

z

λ
β
=0.2 

λ
β
=0.4 

λ
β
=0.6 

λ
β
=1.0

λ
β
=100.0

Critical values of (λLα, λG ) so that R∗ = 1 and final outcome z∗ when

I ∼ Exp(1)

65/105 (45–70)



Overlapping groups model, varying nβ
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Networks with casual contacts
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Illustration of CLT
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N = 10, 000 when D ≡ 8, λG = 0 and pL = 0.2 (I ≡ 1 and λL = − log 0.8),

with asymptotic normal approximation superimposed.
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Networks with casual contacts
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Networks with casual contacts
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Section 4: Households and network model

I Standard households model has household structure and

(global) homogeneous mixing.

I Use a network instead of homogeneous mixing for the global

mixing.

I The model for the network is the configuration model.
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Household and network SIR epidemic model

mn households of size n (n = 1, 2, . . . ).

Total of m =
∑∞

n=1 mn households

and N =
∑∞

n=1 nmn <∞ individuals.

Network/global degrees ∼ D, arbitrary.

I SIR (susceptible → infective → removed) progression.

I Infectious period ∼ I , an arbitrary but specified distribution.

I Infection rates (individual to individual)

(i) local (within-household) λL,

(ii) network (between-household) λG .

I (Latent period.)

(Ball, Sirl & Trapman (2009, 2010))
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Analysis of household/network model

I Basic ideas are the same as for the standard households

model: approximate early stages by a branching process of

infected households.

I Analysis is more complex, because the within household

severity doesn’t give enough information to determine the

number of global contacts.

I This is because individuals are heterogeneous in their

connectivity.
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Approximation of early stages
I Branching process of infected

households (generation basis).

I Offspring of a household are the

households its members infect globally.

I An individual contacted through the

network has degree distributed as D̃.

I In the initial household all individuals

have degree distributed as D; in

subsequent infected households the

primary case has degree D̃.

I BP characterised by the distributions of (i) C̃ and (ii) C ; the number of

network infectious contacts emanating from a household with a single

primary case (i) infected through the network / (ii) chosen UAR.
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Threshold parameter

I A major outbreak is possible if R∗ = E[C̃ ] > 1.
I Letting T =

∑∞
n=2 α̃n E[Z (n)] be the expected number of secondary

cases in a household (i.e. the expected final size of En−1,1(λL, I ),

averaged over n),

R∗ =
(
E[D̃ − 1] + E[T ]E[D]

)
pG .

I The first term is the expected number of network neighbours of those

infected in the within-household epidemic

and pG = 1− E[e−λG I ] = 1− φ(λG ) is the probability of each of

those neighbours being infected.
I Evaluate numerically, since E[T ] is complicated.
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Major outbreak probability

I Early stages of the proliferation of infected households

approximated by a GW processes with (i) 1 ancestor, (ii)

offspring random variable C in first generation, (iii) offspring

random variable C̃ in subsequent generations.

I Therefore pmaj ≈ 1− fC (σ), where σ is the smallest solution

of fC̃ (s) = s in s ∈ [0, 1].

I Calculating these PGFs is difficult due to dependencies

between the number of network contacts made by different

individuals in the same household.

I “Final state random variables” of Ball & O’Neill (1999) can

be used to overcome this.
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Susceptibility sets

I For each individual in the population, take samples from the

infective period distribution and the relevant Poisson

processes.

I This gives a list of which individuals each individual would

have infectious contact with, were it to become infected.

I Construct a (random) digraph with an arc from i to j iff j is

in i ’s list.

I We then say that j ∈ Si (i ’s susceptibility set) if there is a

path from j to i in this digraph.

I Individual i becomes infected if a member of Si becomes

infected.
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Example
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Example
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Final size of a major outbreak

I An exhangability argument tells us that the probability that a

given individual is infected is equal to the expected proportion

of individuals that are ultimately infected.

I We find that, as m→∞, in the event of a major outbreak,

an initially susceptible individual is ultimately infected iff its

susceptibility set is infinite.

I We construct the susceptibility set of an individual by

‘generations’ in much the same manner as our analysis of the

early stages of an epidemic.

I This leads to a branching process approximation for the size

of the susceptibility set of a typical initial susceptible.
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Final size of a major outbreak

I The expected relative final size z of a major outbreak is the

probability that this branching process avoids extinction.

I In this BP
I Individuals are households that have members in the susceptibility

set (of an individual chosen UAR).
I There is 1 ancestor and the initial and subsequent generations have

different offspring distributions.

I We have z ≈ 1− fB(ξ), where ξ is the smallest solution of

fB(s) = s in [0, 1]. Here

fB̃(s) = fD̃−1(1− pG + pG s) fM(fD(1− pG + pG s)),

fB(s) = fD(1− pG + pG s) fM(fD(1− pG + pG s)),

and M is the size of a typical individual’s local susceptibility set.
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Within-household final size

I We can also compute the distribution of the number of

ultimately infected individuals within a given household in the

event of a major outbreak.

I We find the probability that a set A of individuals within a

household avoid infection (using the same branching process

approximation of susceptibility set size).

I Some combinatorics then yields a formula for the mass

function of the within-household final size, in terms of

branching process extinction probabilities.
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Numerical results
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Numerical results
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Other parameters are H ≡ 3, I ≡ 1, λL = 1, λG = 1/10.
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Vaccination

I In advance of any outbreak

I Vaccine allocation models
I Individuals chosen UAR
I Household based
I Network based

I Vaccine action model
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Network based vaccine allocation

I ‘Best’ allocation vaccinates individuals of highest degree

I ‘Worst’ allocation vaccinates individuals of lowest degree

I More realistically try to target individuals of higher degree
I Sample individuals UAR from the population
I Sampled individuals name some of their neighbours
I These named individuals are vaccinated

I Neighbours of individuals are likely to have higher degree than

typical individuals, so this achieves that aim.

Cohen et al. (2003); Britton et al. (2007); Ball & Sirl (2013)
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Section 5: Multitype SIR model

I The previous sections have focused on introducing small

groups/networks of individuals (local contacts) to the

standard homogeneously mixing model.

I The models are analysed in the large population limit, but

with these groups remaining ‘small’.

I Multitype models allow for the situation where these

sub-groups of the population also become large in the large

population limit.

I For example, some infectious diseases have the property that

there are some groups of the population that have different

susceptibility to infection and/or infectivity if infected.
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Multitype SIR model

I Suppose that the population can be split into k types.

I All individuals of the same type are homogeneous, with

respect to infectious period distribution, susceptibility,

infectivity and mixing rates.

I Types might reflect one (or more) of
I age groups,
I vaccination status,
I prior immunity,
I geographic location,

88/105 (87–93)



Multitype SIR epidemic model

For each i = 1, 2, . . . , k, there are

ni initial susceptibles of type i and

mi initial infectives of type i .

Total of n =
∑k

i=1 ni susceptibles

and m =
∑k

i=1 mi infectives.

I SIR (susceptible → infective → removed) progression

I Type i individuals have infectious period ∼ Ii , an arbitrary but

specified distribution.

I A type-i infective infects each type-j susceptible at (individual to

individual) rate λij/N.

I (Latent period, movement between groups)

(Ball (1986), Ball & Clancy (1993))
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Exact results

I Denote this process by En,m(Λ, I), where n = (ni )
k
i=1,

m = (mi )
k
i=1, I = (Ii )

k
i=1, Λ = (λij)

k
i ,j=1.

I Let Zi and Ti be the final size and severity amongst type i

individuals; and write Z = (Zi )
k
i=1, T = (Ti )

k
i=1.

I There are formulae (cf. single-type case) for
I final size probabilities P(Z = z) 0 ≤ z ≤ n,
I expected final size E[Z],
I joint PGF/MGF of n−Z and T , E[

∏k
i=1 sni−Zi

i exp(−θiTi )].

90/105 (87–93)



Large population limits

I These limits are as n→∞, with k fixed.

I Let πi = limn→∞ ni/n be the asymptotic proportion of

individuals of type i and µi = limn→∞mi/ni be the

asymptotic ratio of initial infective to susceptible type i

individuals.

I (Assume the matrix (E[Ii ]λijπj)
k
i ,j=1 is irreducible.)

I There are two cases, depending on whether
∑k

i=1 µi is zero or

positive.
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Case
∑k

i=1 µi = 0

I Let Z ′i = Zi + mi .

I Then (Z ′i ) converges in distribution (as n→∞) to the
distribution of the total progeny of a multitype branching
process with

I m ancestors,
I lifetime distributions I,
I birth rates (λijπj).

I From this follow
I basic reproduction number,
I major outbreak probability.
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Case
∑k

i=1 µi > 0

I Let Ẑi =
Z ′i
ni

=
Zi + mi

ni
.

I Then (Ẑi ) converges in probability to (zi ), which solves the

balance equations

1 + µj − zj = exp

(
−

k∑
i=1

πiziE[Ii ]λij

)
(j = 1, . . . , k),

uniquely in [0, 1]k .

I The vector with entries
√

ni (Ẑi − zi ) satisfies a CLT.
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Section 6: Extensions and variations

There are many directions in which these models and analyses can

be extended. Here we briefly address

I Imperfect vaccine action models.

I Models with more ‘levels’ to represent/capture more features.

I Different branching process approximations (and reproduction

numbers) in structured models.

I Inference.

And we don’t address time evolution, demography, non S(E)IR

progression, multiple severities, contact tracing, control measures

imposed during an outbreak, . . .
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(a) Imperfect vaccine action

I Framework of Becker & Starczak (1998).

I Random vaccine response (A,B), independent for each

vaccinated individual, describing relative susceptibility and

relative infectivity.

I If (A,B) takes finitely many values then the models we have

seen can be extended to allow for this using multi-type

methods.

I (E.g. In a households model, analyse within-household spread

by conditioning on the number of vaccinated individuals with

each possible response to the vaccine.)

95/105 (94–105)



(b) Models with more levels of mixing

I Homogeneous mixing.

I Network structure/s.

I Household structure.

I Overlapping groups.

I (And multitype variations)

I Simulation-based models.
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(c) Different BP approximations

I In structured population epidemic models there is more than

one BP approximation (even after assuming that we just look

at final size properties).

I This leads to a variety of reproduction numbers.

I Example: In households models we can set up branching
processes which approximate the proliferation of

I infected households,
I infected individuals.

I We have focused on R∗ as it is (generally) easiest to work

with.

I Other reproduction numbers are ‘nicer’ but harder to

calculate: R0 and Rr .

(Pellis, Ball & Trapman (2012); Ball, Pellis & Trapman (2015))
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Reproduction numbers: household/network model

I R∗, a household-to-household reproduction number.

I R1: maximum eigenvalue of M =

(
(µD̃ − 1)pG µT
µDpG 0

)
.

I Here µT is the mean number of secondary cases in a

household.

I Entries of M give the mean number of primary/secondary

individuals infected by a primary/secondary infective;

assigning all within-household infections to the primary case.

I M is a mean matrix (next-generation matrix) which attempts

to reflect the proliferation of individuals.

I R1 is a threshold parameter, but does not have a neat

interpretation.
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(d) Inference

I Models with multiple levels of mixing have complex features

and thus likelihood functions which can be difficult to deal

with analytically.

I Further difficulties arise due to the nature of the available

data: missing data, final size data, partial data.

I Progress can sometimes be made by assuming independence

where dependence is weak (pseudolikelihood methods).

I MCMC and data augmentation methods.
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