Stochastic SIR epidemics in structured populations

CIMPA school on Probilistic Models in Epidemiology

David Sirl, University of Nottingham, UK

December 2015

(With thanks to Frank Ball)

Motivation

- Mathematically tractable epidemic models are valuable tools for understanding, predicting, mitigating, planning, ... in the context of infectious diseases.
- Classical models include many assumptions of homogeneity, most of which are unrealistic.
- In this lecture series we focus on ways of reflecting population structure by differentiating between 'local' and 'global' contacts.
- Broadly, this means adding another infection mechanism, or layer of structure, to the standard homogeneously mixing stochastic SIR model.

Contents

- 1. Review (& extension) of key ideas from standard SIR model
- 2. Households model
- 3. General two-level model
 - (a) Households model
 - (b) Household and workplace model
 - (c) Great circle model
 - (d) Network model with casual contacts
- 4. Household and network model
- 5. Multitype models
- 6. Extensions and other models

Section 1: Review (& extension) of standard SIR epidemic

- Approach to analysis
- Exact results for the final outcome
- Branching process approximation for early stages of an outbreak
- Threshold theorem and probability of a major outbreak
- Law of Large Numbers and Central Limit Theorem for the final size of a major outbreak

Standard stochastic SIR epidemic

- Population of *n* individuals.
- Each is Susceptible, Infectious or Removed.
- Start with 1 infectious (chosen uniformly at random) and the remaining n − 1 susceptible.
- Infectious individual remains so for a random time distributed as *I*, a random variable with arbitrary distribution which we specify via its MGF/LST φ(θ) = ℝ[e^{-θI}].
- Through its infectious period an infective makes contacts with each other individual in the population at the points of a Poisson process of rate λ. If an individual so contacted is susceptible it becomes infectious, otherwise nothing happens.
- Epidemic ceases when no infectious individuals remain.
- All infectious periods, contact processes are mutually independent.

Analysis

- First object of interest is the *final size Z*, the number of initial susceptibles that are ultimately removed (i.e. were infected during the epidemic).
- Analysis in the limit as $n \to \infty$.
- $Z^{(n)}$ is either O(1) or O(n): minor or major outbreak.
- Therehold theorem.
- Major outbreak probability.
- Behaviour of $Z^{(n)}$ conditional on a major outbreak.
- ► Key tool: Branching process approximation of early stages.
- We will obtain analogues of these results for models with additional population structure.

Tools

The following results/ideas from the standard homogeneously mixing SIR epidemic will be crucial to our analysis of these models with additional population structure:

- Properties of SIR epidemics in small groups: joint generating function of the size and severity.
- As above, including outside infection.
- Branching process approximations, we will use a discrete-time 'generation' based approach rather than the 'real-time' approach.
- Formula for the expected final size.

Homogeneously mixing SIR epidemic

- Here we modify the setup and notation slightly:
 - ► Assume that there are *m* initial infectives and *n* initial susceptibles, so that the population size is *m* + *n*.
- The rest remains the same:
 - Infectious period distributed as *I*, with $\phi(\theta) = \mathbb{E}[e^{-\theta I}]$.
 - Contacts during the infectious period at per-pair rate λ.
 - Independence.
- ▶ We analyse the final size and the severity of this process $E_{n,m}(\lambda, I) = ((X(t), Y(t)), t \ge 0)$. Define
 - Extinction time $T = \inf\{t > 0 \mid Y(t) = 0\}$,
 - Final size Z = X(0) X(T),
 - Severity $A = \sum_{i=-(m-1)}^{n} \mathbb{1}_{\{i \text{ infected}\}} I_i$.

Generating functions of size and severity

Theorem (see Picard and Lefèvre (1990)). Let

$$\psi_{n,m}(s,\theta) = \mathbb{E}[s^{n-Z} e^{-\theta A}]$$

be the joint generating function of the number of survivors and severity of $E_{n,m}(\lambda, I)$. Then

$$\psi_{n,m}(s,\theta) = \sum_{k=0}^{n} \frac{n!}{(n-k)!} \phi(\theta + \lambda k)^{n+m-k} G_k(s \mid \mathcal{U}).$$

Here $\mathcal{U} = (u_0, u_1, ...)$ has $u_k = \phi(\theta + \lambda k)$ and $G_k(s \mid \mathcal{U})$ is the *k*-th Gontcharoff polynomial (with parameter sequence \mathcal{U}), defined by $\sum_{i=0}^k \frac{k!}{(k-i)!} u_i^{k-i} G_i(x \mid \mathcal{U}) = x^k \quad (k = 0, 1, ...).$

Generating functions of size and severity

Corollary 1 Set s = 1 to obtain the MGF of the severity A of $E_{n,m}(\lambda, I)$.

Corollary 2 Let

$$f_{n,m}(s) = \mathbb{E}[s^{n-Z}]$$

be the PGF of the ultimate number of susceptibles n - Z in $E_{n,m}(\lambda, I)$. Then, setting $\theta = 0$ in Theorem 1 yields

$$f_{n,m}(s) = \sum_{k=0}^{n} \frac{n!}{(n-k)!} \phi(\lambda k)^{n+m-k} G_k(s|\mathcal{V}),$$

where $\mathcal{V} = (v_0, v_1, \dots)$ with $v_k = \phi(\lambda k)$.

Final size of $E_{n,m}(\lambda, I)$

Formulae for the mean final size and the distribution of the final size follows from Corollary 2. Starting with $f_{n,m}(s)$:

Differentiating once and setting s = 1 yields

$$\mathbb{E}[Z] = n - \mathbb{E}[n-Z] = n - \sum_{k=1}^{n} \frac{n!}{(n-k)!} \phi(\lambda k)^{n+m-k} G_{k-1}(1 \mid E^{1}\mathcal{V}),$$

where $E^{k}V = (v_{k}, v_{k+1}, ...)$.

• Differentiating n - z times and setting s = 0 yields

$$\mathbb{P}(Z=z) = \frac{1}{(n-z)!} \sum_{k=n-z}^{n} \frac{n!}{(n-k)!} \phi(\lambda k)^{n+m-k} G_{k-n+z}(0 \mid E^{n-z} \mathcal{V}).$$

SIR model with outside infection

- Consider the model $E_{n,m}(\lambda, I)$ with the additional feature that susceptibles may be infected from outside the population.
- Specifically, each susceptible avoids outside infection independently with probability π.
- Individuals infected from outside the population infect susceptibles within the population as in E_{n,m}(λ, I).

• Denote model by
$$\tilde{E}_{n,m}(\lambda, I, \pi)$$
.

 Let Ž and Ä denote the size and severity of E
_{n,m}(λ, I, π), and let

$$\widetilde{\psi}_{n,m}(s,\theta) = \mathbb{E}[s^{n-\widetilde{Z}}e^{-\theta\widetilde{A}}].$$

(Addy et al. (1991))

Size and severity of $\tilde{E}_{n,m}(\lambda, I, \pi)$

Theorem (Ball et al. (1997)) For $n, m = 0, 1, \cdots$,

$$\tilde{\psi}_{n,m}(s,\theta) = \sum_{k=0}^{n} \frac{n!}{(n-k)!} \phi(\theta + \lambda k)^{n+m-k} \pi^{k} G_{k}(s \mid \mathcal{U}),$$

where $\mathcal{U} = u_0, u_1, \dots$ with $u_k = \phi(\theta + \lambda k)$.

Size and severity of $\tilde{E}_{n,m}(\lambda, I, \pi)$

► Expressions for the MGF of the severity *Ã_n* and the PGF of the number of survivors *n* − *Z̃_n* follow as before. Also,

$$\mathbb{E}[\tilde{Z}_n] = n - \sum_{k=1}^n \frac{n!}{(n-k)!} \phi(\lambda k)^{n+m-k} \pi^k G_{k-1}(1 \mid \mathcal{W}),$$

where
$$\mathcal{W} = (w_0, w_1, ...)$$
 with $w_k = \phi(\lambda(k+1))$.
For fixed *m*, let $\tilde{P}_i^n = \mathbb{P}(\tilde{Z}_n = i)$ $(i = 0, 1, ..., n)$. Then

$$\sum_{i=0}^{j} \frac{\binom{n-i}{j-i} \tilde{P}_i^n}{\phi(\lambda(n-j))^{m+i} \pi^{n-j}} = \binom{n}{j} \qquad (j=0,1,\ldots,n).$$

Branching process approximations

- Depending upon the aim of our analysis, there are two (main) different approaches to branching process approximation of the number of infectives in the early stages of an epidemic:
 - Real-time; Crump-Mode-Jagers branching process.
 - Generation based; embedded (Bienaymé-)Galton-Watson process.
- Here we motivate the latter and briefly touch on the connection between the two.

General branching process

- In a general Crump–Mode–Jagers (CMJ) branching process individuals have IID *life histories* H = (I, ξ), where I denotes a typical individual's *age at death* and ξ is a point process of ages at which she reproduces. [Note that ξ((I,∞)) = 0.]
- Thus if an individual with life history H = (I, ξ) is born at time b and 0 < τ₁ ≤ τ₂ ≤ ··· ≤ I denote the points of ξ then she has one child at each time b + τ₁, b + τ₂,
- The life histories are pieced together in the obvious fashion to form the population process.
- Such a process approximates Y(t), the (real-time) evolution of the number of infectives.

(Haccou *et al.* (2005).)

General branching process

Branching processes and final size

- If we are interested in analysing the *final size* properties of an SIR epidemic process then we do not need all of this information.
- All that matters is who has infectious contact with who.
- The times of the contacts do not affect the final size.

(Ludwig (1975))

Embedded Galton-Watson process

19/105 (4-25)

Embedded Galton-Watson process

- Suppose that there are *m* initial individuals. These comprise generation 0. For k = 0, 1, 2, ..., generation k + 1 consists of the daughters of generation-k individuals.
- Let R = ξ((0,∞)) be a random variable describing the number of offspring of a typical individual.
- For k = 0, 1, ..., let Y_k denote the size of generation k. Then Y₀ = m and, for k = 1, 2, ...,

$$Y_{k} = \begin{cases} R_{k-1,1} + R_{k-1,2} + \dots + R_{k-1,Y_{k-1}} & \text{if } Y_{k-1} > 0, \\ 0 & \text{if } Y_{k-1} = 0, \end{cases}$$

where $R_{k,i} \stackrel{\text{iid}}{\sim} R$.

Extinction

Suppose ℙ(R = 1) < 1. Then a Galton-Watson process ultimately either goes extinct or grows unboundedly.

Let

$$f(s) = \mathbb{E}\left[s^R
ight] = \sum_{k=0}^{\infty} \mathbb{P}(R=k)s^k \quad (0 \le s \le 1)^k$$

be the PGF of R and let π be the probability that the GW process goes extinct given that there is one ancestor.

- Then π is the smallest non-negative solution of f(s) = s.
- Let $R_0 = \mathbb{E}[R]$. Then $\pi < 1 \iff R_0 > 1$.
- If there are *m* ancestors, the extinction probability is π^m .
- If P(I < ∞) = 1, a CMJ process goes extinct if and only if its embedded GW process of generation sizes does so.

Total progeny

► Let Z = Y₁ + Y₂ + ... denote the total progeny of the embedded Galton-Watson process {Y_k : k = 0, 1, ... }, not including the *m* ancestors. (Note that Z is also the total progeny of the corresponding CMJ branching process.)

Then

$$\mathbb{P}(Z=k)=\frac{m}{m+k}\mathbb{P}(R_1+R_2+\cdots+R_{m+k}=k) \qquad (k=0,1,\ldots),$$

where R_1, R_2, \ldots are IID copies of R.

Note that

$$\sum_{k=0}^{\infty} \mathbb{P}(Z=k) = \begin{cases} 1 & \text{if } R_0 \leq 1, \\ \pi^m < 1 & \text{if } R_0 > 1. \end{cases}$$

Asymptotic final size properties of $E_{n,m}(\lambda, I)$

- As n→∞, Z⁽ⁿ⁾ → Z, where Z is the total progeny of a suitable branching process.
- If $P(Z = \infty) > 0$ then $Z^{(n)}/n \xrightarrow{D} Z'$, where

$$1-\mathbb{P}(Z'=0)=\mathbb{P}(Z'=z)=p_{\rm maj}$$

and $1 - p_{maj}$ and 1 - z are branching process extinction probabilities.

- (CLT for size of major outbreaks.)
- Asymptotic expected relative final size z satisfies

$$1-z=\exp(-z\frac{\lambda}{N}N\mu_{I})=\exp(-z\lambda\mu_{I}).$$

Summary

- Exact results for small populations.
- To study final size we may ignore time.
- Threshold theorem.
- Law of large numbers (and central limit theorem) for final size of major outbreaks.

Going forward

This course is about (stochastic SIR) structured population epidemic models.

We look in detail at

- Households models (Ball, Mollison & Scalia-Tomba (1997), Ball & Lyne (2006)).
- General two-level-mixing model (Ball & Neal (2002, 2008)).
- Network and households model (Ball, Sirl & Trapman (2009, 2010)).

Why study households models?

- Household structure is a key departure from homogeneous mixing for human populations and can have significant impact on disease dynamics.
- There are outbreak control measures associated with households and similar structures (e.g. schools and workplaces).
- Epidemic data are often collected at the household level.
- Households models are mathematically reasonably tractable and consequently are generally easier to interpret than complex simulation models.

Households SIR epidemic model

 m_n households of size n (n = 1, 2, ...)total of $m = \sum_{n=1}^{\infty} m_n$ households and $N = \sum_{n=1}^{\infty} nm_n < \infty$ individuals

- ► SIR (susceptible → infective → removed)
- ▶ Infectious period ~ *I*, an arbitrary but specified distribution
- Infection rates (individual to individual)
 - local (within-household) λ_L
 - global (between-household) λ_G/N
- Latent period

(Bartoszyński (1972), Becker and Dietz (1995), Ball et al. (1997))

Threshold parameter R_*

 R_{*} = mean number of global contacts emanating from a typical single-household epidemic. Letting

 $\tilde{\alpha}_n = \frac{nm_n}{N} = \mathbb{P}(\text{randomly chosen person lives in a household of size } n),$ $\mu_n(\lambda_L) = \text{mean size of size-} n \text{ household epidemic with 1 initial infective,}$

$$R_* = \sum_{n=1}^{\infty} \tilde{lpha}_n \mu_n(\lambda_L) \lambda_G \mathbb{E}[I].$$

• Therefore $p_{\rm maj} > 0 \iff R_* > 1$.

Probility of a major outbreak

- Approximate early stages of an epidemic by a branching process of infected households.
- Number of global contacts emanating from a single size-*n* household epidemic, *R_n* say, follows a Poisson distribution with random mean *λ_GA_{n-1}*, where *A_{n-1}* is the severity of a single-household epidemic with initially 1 infective and *n*−1 susceptibles. Thus, recalling notation from Section 1,

$$\mathbb{E}\left[s^{R_n}\right] = \mathbb{E}\left[\mathbb{E}\left[s^{R_n} \mid A_{n-1}\right]\right] = \mathbb{E}\left[e^{-\lambda_G A_{n-1}(1-s)}\right] = \psi_{n-1,1}(1,\lambda_G(1-s)).$$

• If the epidemic is started by an individual chosen uniformly at random from the population becoming infected then $p_{maj} = 1 - \sigma$, where σ is the smallest non-negative solution of f(s) = s and

$$f(s) = \sum_{n=1}^{\infty} \tilde{\alpha}_n \phi_{n-1,1}(1, \lambda_G(1-s)).$$

Number of people infected

Number of people infected in each set of 10,000 simulations, $I \equiv 1$, population consisting of 100 households of size 5

Number of households infected

Number of households infected in each set of 10,000 simulations, $I \equiv 1$, population consisting of 100 households of size 5

Critical values of (λ_L, λ_C)

Critical values of (λ_L, λ_G) so that $R_* = 1$, when $I \equiv 1$ and all households have size n.

SIR model with outside infection

Recall the model *Ẽ_{n,m}*(λ_L, *I*, π), in which individuals avoid outside infection independently with probability π, and let *Ž̃_{n,m}* denote the final size of *Ẽ_{n,m}*(λ_L, *I*, π).

• For
$$n = 1, 2, ...,$$
 let

$$\tilde{\mu}_n(\lambda_L,\pi) = \mathbb{E}[\tilde{Z}_{n,0}]$$

be the expected final size of such an epidemic in an initially fully susceptible household of size n.

An expression for μ̃_n(λ_L, π) in terms of Gontcharoff polynomials is given in Section 1.

Final outcome of major outbreak

Suppose m is large and there are few initial infectives. Set

- z = expected proportion of the population infected by the epidemic and
- $\pi=$ probability that a typical individual avoids global infection.
 - Then z and π satisfy the following equations:

$$\pi = \exp\left(-\frac{\lambda_G}{N}Nz\mu_I\right) = \exp(-\lambda_G z\mu_I), \quad (1)$$
$$z = \sum_{n=1}^{\infty} \tilde{\alpha}_n \tilde{\mu}_n (\lambda_L, \pi)/n. \quad (2)$$

- If $R_* \leq 1$ then z = 0 is the only solution of (1)–(2) in [0,1].
- If R_{*} > 1 then there is a unique second solution z^{*} ∈ (0,1), giving the mean relative size of major outbreak.
- Final outcome in an initially fully-susceptible household having size n is distributed according to final outcome of $\tilde{E}_{n,0}(I, \lambda_L, \pi^*)$, where $\pi^* = \exp(-\lambda_G z^* \mu_I)$.

Vaccination

- For n = 1, 2, ··· and v = 0, 1, ··· , n, let x_{nv} = proportion of size-n households that have v members vaccinated, µ_{nv} = mean number of global contacts emanating from a single-household epidemic in a household in state (n, v), initiated by an individual chosen uniformly at random being contacted globally.
- Post-vaccination

$$R_{\nu} = \sum_{n=1}^{\infty} \tilde{\alpha}_n \sum_{\nu=0}^{n} x_{n\nu} \mu_{n\nu}$$

Vaccination coverage

$$c = \sum_{n=1}^{\infty} \tilde{\alpha}_n \sum_{\nu=0}^n \frac{\nu}{n} x_{n\nu}$$

Determination of optimal vaccination scheme (e.g. to reduce R_v to 1 with minimum vaccination coverage) is a linear programming problem, whose solution can be constructed explicitly.

(Becker and Starczak (1997), Ball and Lyne (2002, 2006))

Calculation of μ_{nv}

- Recall
 - x_{nv} = proportion of size-*n* households that have *v* members vaccinated,
 - μ_{nv} = mean number of global contacts emanating from a single-household epidemic in a household in state (n, v), initiated by an individual chosen uniformly at random being contacted globally.
- μ_{nv} depends on model for vaccine action.
- For an *all-or-nothing* model, in which vaccinees are rendered completely immune independently with probability ε, otherwise the vaccine has no effect

$$\mu_{n\nu} = \sum_{k=0}^{\nu} \underbrace{\binom{\nu}{k} \varepsilon^{k} (1-\varepsilon)^{\nu-k}}_{(1)} \underbrace{\frac{n-k}{2}}_{(2)} \underbrace{\frac{\mu_{n-k}(\lambda_{L})}_{(3)}}_{(3)} \lambda_{G} \mu_{I}$$

- (1) $\mathbb{P}(k \text{ vaccinations are successful})$
- (2) $\mathbb{P}(\text{globally contacted individual is susceptible})$
- (3) Mean size of single-household epidemic
Vaccine response model

- ▶ Vaccine response described by a random vector (*A*, *B*).
 - $A = relative susceptibility compared to an unvaccinated individual [force of infection acting on that individual at time t reduced from <math>\lambda_t$ to $A\lambda_t$
 - $B = \text{relative infectivity should vaccinee become infected} \\ [\text{total force of infection exerted by that individual reduced} \\ \text{from } \int_0^\infty \lambda'_s \, ds \text{ to } B \int_0^\infty \lambda'_s \, ds] \end{cases}$

All-or-nothing $\mathbb{P}(A = 0, B = 0) = 1 - P(A = 1, B = 1) = \varepsilon$ Non-random $\mathbb{P}(A = a, B = b) = 1$

Leaky non-random with $a = 1 - \varepsilon, b = 1$

• Vaccine efficacy: $VE_{SI} = 1 - \mathbb{E}[AB] (= \varepsilon)$

(Becker and Starczak (1998))

Variola Minor, Sao Paulo, 1956

- Data comprise final numbers infected in each of 338 households. Household size varied from 1 to 12 (mean 4.56)
- Each individual labelled vaccinated or unvaccinated

773 unvaccinated — 425 infected (58%) 809 vaccinated — 85 infected (11%)

Fit households SIR model with non-random vaccine response, assuming infectious period *I* ≡ 1, using pseudolikelihood method of Ball and Lyne (2014) to obtain the estimates

$$\hat{\lambda}_L = 0.3821, \ \hat{\lambda}_G = 1.4159, \ \hat{a} = 0.1182, \ \hat{b} = 0.8712.$$

Comparison of vaccination strategies

Optimal vaccination schemes

Let $h_{nv} = m_n x_{nv}$ = number of households of size *n* with *v* members vaccinated.

• Recalling $\tilde{\alpha}_n = nm_n/N$,

$$R_{v} = \sum_{n=1}^{\infty} \tilde{\alpha}_{n} \sum_{\nu=0}^{n} x_{n\nu} \mu_{n\nu}$$
$$= \sum_{n=1}^{\infty} \sum_{\nu=0}^{n} h_{n\nu} M_{n,\nu},$$

where $M_{n,v} = n\mu_{nv}/N$.

Consider the vaccine gain

 $G_{n,v} = M_{n,v} - M_{n,v+1}$, the reduction in R_v from vaccinating one further member of a (n, v)-household.

Vaccine gain matrix

Vaccine gain matrix $(G_{n,\nu})$ for a population consisting of 100 households of each size 1, 2, 3 and 4, when $I \sim \text{Exp}(1)$, $\lambda_L = 5$ and $\lambda_G = 0.75$, for an all-or-nothing vaccine with $\varepsilon = 0.75$.

Vaccine gain matrices

All-or-nothing, $arepsilon=$ 0.75	n	v = 0	1	2	3
	1	0.5625 ¹⁰			
	2	1.5000^{6}	0.7969 ⁹		
	3	2.6506 ³	1.7876^{5}	1.0446^{8}	
	4	3.8165 ¹	2.9420 ²	2.0762 ⁴	1.3025 ⁷
		v = 0	1	C	2
Non-random, $a=b=0.5$		V = 0	T	2	3
	1	0.562510			
	2	1.2768^{7}	0.8899 ⁹		
	3	2.0582 ⁴	1.6686^{6}	1.2706^{8}	
	4	2.8224^{1}	2.4464 ²	2.0640 ³	1.6714^{5}
			_		
Leaky, <i>a</i> = 0.25	n	v = 0	1	2	3
	1	0.5625 ¹⁰			
	2	1.2396 ⁸	0.9271 ⁹		
	3	1.8857^{5}	1.7141^{6}	1.3976^{7}	
	4	2.4365^{1}	2.3821^{2}	2.2418 ³	1.9437^{4}

Effect of vaccine action model on R_v

Effect of different vaccine actions calibrated by $VE_{\rm SI} = 1 - \mathbb{E}[AB] = 0.91$, for a population of households of size 5, with $I \equiv 1$, $\lambda_L = 8$ and $\lambda_G = 0.8$.

Effect of vaccine action model on c_v

Effect of different vaccine actions on critical vaccination coverage c_v to achieve $R_v = 1$ for a population of households of size 8, with $I \equiv 1$, $\lambda_L = 10$, $\lambda_G = 0.15$. In non-random case $a = b = \sqrt{\mathbb{E}[AB]}$.

Section 3: General two-level mixing epidemic model

Population

$$\mathcal{N} = \{1, 2, \cdots, N\}$$

- SIR (susceptible \rightarrow infective \rightarrow removed).
- ▶ Infectious periods $I_1, I_2, \ldots, I_N \stackrel{\text{i.i.d.}}{\sim} I$ (arbitrary but specified).
- Infection rates (individual \rightarrow individual).
 - local λ_{ij}^L ,
 - global $\tilde{\lambda}_G/N$.

•
$$(\lambda_{ij}^L \equiv 0 \text{ yields homogeneous mixing.})$$

(Ball and Neal (2002))

Households model

m households, each of size nN = mn

 $\lambda_{ij}^{L} = \begin{cases} \lambda_{L} & \text{if } i \text{ and } j \text{ belong to the same household} \\ 0 & \text{otherwise} \end{cases}$

Unequal-sized households.

(Bartoszyński (1972), Becker and Dietz (1995), Ball et al. (1997))

Overlapping groups model

• m_{α} households, each of size n_{α} , m_{β} workplaces, each of size n_{β} , so $N = m_{\alpha}n_{\alpha} = m_{\beta}n_{\beta}$.

 $\mathbf{\succ} \ \lambda_{ij}^{L} = \begin{cases} \lambda_{\alpha}^{L} & \text{ if } i \text{ and } j \text{ belong to the same household,} \\ \lambda_{\beta}^{L} & \text{ if } i \text{ and } j \text{ belong to the same workplace,} \\ 0 & \text{ otherwise.} \end{cases}$

(Ball and Neal (2002), cf. Andersson (1999); Ball et al. (2014))

Great circle model

Basic form: $\lambda_{ij}^{L} = \begin{cases} \lambda_{L} & \text{if } i \text{ and } j \text{ are neighbours,} \\ 0 & \text{otherwise.} \end{cases}$

'Small-world' networks

More general contact distribution: $\lambda_{ij}^{L} = \lambda_{L} v(i - j \pmod{N})$

(Ball et al. (1997), Ball and Neal (2002, 2003))

Networks with casual contacts

(Diekmann et al. (1998), Ball and Neal (2002, 2008), Kiss et al. (2006), Newman (2002))

Digraph of local infectious contacts

• $i \rightarrow j$ if and only if *i*, if infected, contacts *j* locally.

► Conditional on the infectious periods $I_1, I_2, ..., I_N$, $\mathbb{P}(i \to j) = 1 - e^{-\lambda_{ij}^L I_i}$ independently for distinct (i, j).

Local infectious clump C_i^N

Define C^N_i = {j ∈ N : i → j}, where i → j if and only if there exists a chain of directed arcs from i to j.

• Set
$$C_i^N = |\mathcal{C}_i^N|$$
.

Local infectious clumps

$$\blacktriangleright \ \mathcal{C}_i^N = \{ j \in \mathcal{N} : i \rightsquigarrow j \}; \ \mathcal{C}_i^N = |\mathcal{C}_i^N|.$$

 In early stages, clumps don't overlap if N is large (unless local epidemic is supercritical).

Threshold parameter R_*

- As N → ∞, process of *infected clumps* tends to a branching process having offspring random variable R ~ Poi(λ_GA), where A = ∑_{j∈C} I_j.
- Major outbreak occurs if and only if this branching process does not go extinct.
- We therefore have a threshold parameter

$$R_* = \mathbb{E}[R] = \lambda_G \mathbb{E}[A] = \lambda_G \mathbb{E}\left[\sum_{j \in \mathcal{N}} I_j \mathbb{1}_{\{j \in \mathcal{C}\}}\right]$$
$$= \lambda_G \sum_{j=1}^N \mathbb{E}[I_j] \mathbb{P}(j \in \mathcal{C}) = \lambda_G \mu_I \mathbb{E}[\mathcal{C}].$$

• Thus $p_{\rm maj} > 0 \iff R_* > 1$.

Local susceptibility set S_i^N

- $\blacktriangleright \ \mathcal{S}_i^N = \{ j \in \mathcal{N} : j \rightsquigarrow i \}; \ \mathcal{S}_i^N = |\mathcal{S}_i^N|.$
- *i* is ultimately infected $\iff S_i^N$ is contacted globally.

Final outcome of major outbreak

Suppose N is large and there are few initial infectives. Set

- z = expected proportion of the population infected by the epidemic and
- $\pi=$ probability that a typical individual avoids global infection.
 - Then z and π satisfy the following equations:

$$\pi = \exp\left(-\frac{\lambda_G}{N}Nz\mu_I\right) = \exp(-\lambda_G z\mu_I),\tag{3}$$

 $1-z = \mathbb{P}(\text{typical susceptible avoids infection by epidemic})$

 $= \mathbb{P}(\text{typical local susceptibility set avoids global infection})$ $= \sum_{k=1}^{\infty} \mathbb{P}(S = k)\pi^{k} = f_{S}(\pi) = f_{S}(e^{-\lambda_{G} z \mu_{I}}).$ (4)

- If $R_* \leq 1$ then z = 0 is the only solution of (3)–(4) in [0, 1].
- If R_{*} > 1 then there is a unique second solution z^{*} ∈ (0,1), giving mean 'size' of major outbreak.
- Proof of this (and CLT) available using Scalia-Tomba (1985) embedding technique. (Local digraphs and global Sellke-type construction.)

Final outcome of major outbreak

To show that equation (4),

$$1-z=f_{\mathsf{S}}(\mathrm{e}^{-\lambda_{\mathsf{G}}z\mu_{\mathsf{I}}}),$$

has a *unique* solution in (0, 1] when $R_* > 1$, consider a Galton-Watson process with offspring random variable, R say, having a Poisson distribution with random mean $\lambda_G \mu_I S$.

Then

$$\mathbb{E}[R] = \lambda_G \mu_I \mathbb{E}[S] = R_*$$

and

$$f(s) = \mathbb{E}\left[s^{R}\right] = \mathbb{E}\left[\mathbb{E}\left[s^{R} \mid S\right]\right] = \mathbb{E}\left[e^{-\lambda_{G}\mu_{I}S(1-s)}\right] = f_{S}\left(e^{-\lambda_{G}\mu_{I}(1-s)}\right)$$

Suppose that R_∗ > 1. Then f(s) = s has a unique solution in [0, 1). Hence, setting z = 1 − s, shows that (4) has a unique solution in (0, 1].

General two-level mixing model

- Analyse early spread of epidemic via local infectious clumps.
- Analyse final size properties of a major outbreak by local susceptibility sets.

Great circle model

$$S_i = \{i\} \cup S_L \cup S_R$$

$$p_L = \mathbb{P}(i \text{ infects } i+1 \text{ locally}) = 1 - \mathbb{E}[e^{-\lambda_L l}]$$

$$\mathbb{P}(S_L = k) = \mathbb{P}(S_R = k) = (1 - p_L)p_L^k$$

$$(k = 0, 1, \dots)$$

- S_L and S_L are independent, so $\mathbb{P}(S = k) = (1 - p_L)^2 p_L^{k-1}$ (k = 1, 2, ...)

Households model

Consider household of *n* individuals, labelled 1, 2, ..., n, and let S be the local susceptibility set of individual 1.

• Triangular system of linear equations for $\mathbb{P}(S = j)$ (j = 1, 2, ..., n)

Overlapping groups model

- Construct local susceptibility set S of typical individual i via a two-type branching process in which individuals beget only the opposite type and the offspring of a type α (β) individual are the individuals in its workplace (household) susceptibility set.
- If μ_{α} (μ_{β}) is the mean size of a household (workplace) susceptiblity set, then

$$\mathbb{E}[S] = egin{cases} rac{\mu_lpha\mu_eta}{\mu_lpha+\mu_eta-\mu_lpha\mu_eta} & ext{if } (\mu_lpha-1)(\mu_eta-1) < 1, \ \infty & ext{otherwise.} \end{cases}$$

Network: Configuration model

- Population $\mathcal{N} = \{1, 2, \cdots, N\}$.
- D = degree of typical individual,

 $p_k = \mathbb{P}(D = k)$ (k = 0, 1, ...) specified $\mu_D = \mathbb{E}[D].$

- D_1, D_2, \ldots, D_N IID copies of D.
- Attach D_i half-edges to individual i (i = 1, 2, ..., N).
- Pair up the S_N half-edges uniformly at random to form the network.

(Bollobás (2001))

Networks with casual contacts

Let D̃ = degree of typical neighbour of typical individual in the network and µ_{D̃} = 𝔼[D̃]. Then

$$\mathbb{P}(ilde{D}=k)=kp_k/\mu_D$$
 $(k=1,2,\dots)$ and $\mu_{ ilde{D}}=rac{\sigma_D^2+\mu_D^2}{\mu_D}$

- Size of typical local susceptibility set S^(N) → S as N → ∞, where S is the total size of a Galton-Watson process having offspring law Bin(D, p_L) for the initial individual and Bin(D̃ - 1, p_L) for all subsequent individuals.
- It follows that

$$\mathbb{E}[S] = egin{cases} 1+rac{\mu_D p_L}{1-(\mu_{ ilde{D}}-1)p_L} & ext{if } (\mu_{ ilde{D}}-1)p_L < 1, \ \infty & ext{otherwise.} \end{cases}$$

'Deterministic' households model

b

m households of size n, labelled $1, 2, \ldots, m$.

Let $x_i(t)$ and $y_i(t)$ be the number of susceptibles and infectives in household *i* at time *t*.

$$\begin{aligned} \frac{dx_i}{dt} &= -(\lambda_L y_i + N^{-1} \lambda_G \sum_{j=1}^m y_j) x_i, \\ \frac{dy_i}{dt} &= (\lambda_L y_i + N^{-1} \lambda_G \sum_{j=1}^m y_j) x_i - \gamma y_i \quad (i = 1, 2, \dots, m). \end{aligned}$$

• Basic Reproduction number $R_0 = (\lambda_G + n\lambda_L)/\gamma$.

▶ Proportion of susceptibles ultimately infected z^{*}_{det} given by largest root of 1 - z = exp(-R₀z) in [0, 1]

Households and great circle models Households, R₁=1. Households, z, λ_{c} =0.75. det n=5 0.8 0.8 n=4 n=2 $\lambda_G^{0.6}$ 2^{0.6} n=3 n=3 0.4 n=4n=2 0.2 n=5 0.2 R₀ =1 0^L 0 0 2_{n λ,} 3 2 n λ, 3 4 5 ٥ 1 4 5 Great circle, z, $\lambda_{c}=0.5$ Great circle, R_{*}=1. det 0.8 0.8 ۰6.0 z λ_G 0.4 sto 0.4 0.2 0.2 R₀ =1 0^L 0 L 0 0.5 1.5 5 λ 10 2 1 λ

Critical values of (λ_L, λ_G) so that $R_* = 1$ and final outcome z^* when $I \sim \operatorname{Exp}(1)$.

Overlapping groups model, varying λ_{β}^{L}

Critical values of $(\lambda_{lpha}^L,\lambda_{G})$ so that $R_*=1$ and final outcome z^* when $l\sim \mathrm{Exp}(1)$

Overlapping groups model, varying n_β

Critical values of $(\lambda_{\beta}^L, \lambda_G)$ so that $R_* = 1$ and final outcome z^* when $l \sim \operatorname{Exp}(1)$

Networks with casual contacts

Histograms of size of 10,000 simulated epidemics per parameter combination, for a constant-degree network with $D \equiv d, I \equiv 1$ and other parameters as shown.

Illustration of CLT

Histogram of size of 10,000 simulated major outbreaks in a population of size N = 10,000 when $D \equiv 8, \lambda_G = 0$ and $p_L = 0.2$ ($I \equiv 1$ and $\lambda_L = -\log 0.8$), with asymptotic normal approximation superimposed.

Networks with casual contacts

Critical values of (λ_L, λ_G) so that $R_* = 1$ when $I \equiv 1$. (Expected number of potentially infectious contacts made by an infective is $\lambda_G + d\lambda_L$.)

Networks with casual contacts

Asymptotic proportion of population infected by major outbreak, z, for constant-degree and scale-free ($\mathbb{P}(D = k) \propto k^{-2.466956}$ (k = 3, 4, ...)) networks with $\mu_D = 8$ when $I \equiv 1$.

Section 4: Households and network model

- Standard households model has household structure and (global) homogeneous mixing.
- Use a network instead of homogeneous mixing for the global mixing.
- The model for the network is the configuration model.

Household and network SIR epidemic model

 m_n households of size n (n = 1, 2, ...). Total of $m = \sum_{n=1}^{\infty} m_n$ households and $N = \sum_{n=1}^{\infty} nm_n < \infty$ individuals. Network/global degrees $\sim D$, arbitrary.

- ▶ SIR (susceptible \rightarrow infective \rightarrow removed) progression.
- ► Infectious period ~ *I*, an arbitrary but specified distribution.
- Infection rates (individual to individual)
 - (i) local (within-household) λ_L ,
 - (ii) network (between-household) λ_G .
- (Latent period.)

(Ball, Sirl & Trapman (2009, 2010))
Analysis of household/network model

- Basic ideas are the same as for the standard households model: approximate early stages by a branching process of infected households.
- Analysis is more complex, because the within household severity doesn't give enough information to determine the number of global contacts.
- This is because individuals are heterogeneous in their connectivity.

Approximation of early stages

- Branching process of infected households (generation basis).
- Offspring of a household are the households its members infect globally.
- An individual contacted through the network has degree distributed as D

 D .
- In the initial household all individuals have degree distributed as D; in subsequent infected households the primary case has degree D.
- BP characterised by the distributions of (i) *C̃* and (ii) *C*; the number of network infectious contacts emanating from a household with a single primary case (i) infected through the network / (ii) chosen UAR.

Threshold parameter

• A major outbreak is possible if $R_* = \mathbb{E}[\tilde{C}] > 1$.

• Letting $T = \sum_{n=2}^{\infty} \tilde{\alpha}_n \mathbb{E}[Z^{(n)}]$ be the expected number of secondary cases in a household (i.e. the expected final size of $E_{n-1,1}(\lambda_L, I)$, averaged over n),

$$\mathsf{R}_* = \left(\mathbb{E}[ilde{D}-1] + \mathbb{E}[\mathsf{T}]\mathbb{E}[\mathsf{D}]\right)\mathsf{p}_{\mathsf{G}}.$$

- The first term is the expected number of network neighbours of those infected in the within-household epidemic and p_G = 1 − ℝ[e^{−λ_GI}] = 1 − φ(λ_G) is the probability of each of those neighbours being infected.
- Evaluate numerically, since $\mathbb{E}[\mathcal{T}]$ is complicated.

Major outbreak probability

- Early stages of the proliferation of infected households approximated by a GW processes with (i) 1 ancestor, (ii) offspring random variable C in first generation, (iii) offspring random variable C̃ in subsequent generations.
- Therefore p_{maj} ≈ 1 − f_C(σ), where σ is the smallest solution of f_{c̃}(s) = s in s ∈ [0, 1].
- Calculating these PGFs is difficult due to dependencies between the number of network contacts made by different individuals in the same household.
- "Final state random variables" of Ball & O'Neill (1999) can be used to overcome this.

Susceptibility sets

- For each individual in the population, take samples from the infective period distribution and the relevant Poisson processes.
- This gives a list of which individuals each individual would have infectious contact with, were it to become infected.
- Construct a (random) digraph with an arc from i to j iff j is in i's list.
- We then say that j ∈ S_i (i's susceptibility set) if there is a path from j to i in this digraph.
- Individual *i* becomes infected if a member of S_i becomes infected.

Example

Example

Final size of a major outbreak

- An exhangability argument tells us that the probability that a given individual is infected is equal to the expected proportion of individuals that are ultimately infected.
- We find that, as m→∞, in the event of a major outbreak, an initially susceptible individual is ultimately infected iff its susceptibility set is infinite.
- We construct the susceptibility set of an individual by 'generations' in much the same manner as our analysis of the early stages of an epidemic.
- This leads to a branching process approximation for the size of the susceptibility set of a typical initial susceptible.

Final size of a major outbreak

- The expected relative final size z of a major outbreak is the probability that this branching process avoids extinction.
- In this BP
 - Individuals are households that have members in the susceptibility set (of an individual chosen UAR).
 - There is 1 ancestor and the initial and subsequent generations have different offspring distributions.
- We have $z \approx 1 f_B(\xi)$, where ξ is the smallest solution of $f_B(s) = s$ in [0,1]. Here

$$\begin{split} f_{\tilde{B}}(s) &= f_{\tilde{D}-1}(1-p_G+p_G s) \, f_M(f_D(1-p_G+p_G s)), \\ f_B(s) &= f_D(1-p_G+p_G s) \, f_M(f_D(1-p_G+p_G s)), \end{split}$$

and M is the size of a typical individual's local susceptibility set.

Within-household final size

- We can also compute the distribution of the number of ultimately infected individuals within a given household in the event of a major outbreak.
- We find the probability that a set A of individuals within a household avoid infection (using the same branching process approximation of susceptibility set size).
- Some combinatorics then yields a formula for the mass function of the within-household final size, in terms of branching process extinction probabilities.

Numerical results

Simulation-based estimates of major outbreak probability against number of households, together with asymptotic value, for the model with $H \sim U(\{1, 2, 3\}), D \sim \text{Geom}(3/4), I \equiv 1, \lambda_L = 2, \lambda_G = 1/4.$ Each estimate is based on 10,000 simulations and the plot shows the sample proportions $\pm 2\text{SE}$.

Numerical results

Major outbreak probability dependence on *D*. Other parameters are $H \equiv 3$, $I \equiv 1$, $\lambda_L = 1$, $\lambda_G = 1/10$.

Vaccination

- In advance of any outbreak
- Vaccine allocation models
 - Individuals chosen UAR
 - Household based
 - Network based
- Vaccine action model

Network based vaccine allocation

- 'Best' allocation vaccinates individuals of highest degree
- 'Worst' allocation vaccinates individuals of lowest degree
- More realistically try to target individuals of higher degree
 - Sample individuals UAR from the population
 - Sampled individuals name some of their neighbours
 - These named individuals are vaccinated
- Neighbours of individuals are likely to have higher degree than typical individuals, so this achieves that aim.

Cohen et al. (2003); Britton et al. (2007); Ball & Sirl (2013)

Section 5: Multitype SIR model

- The previous sections have focused on introducing small groups/networks of individuals (local contacts) to the standard homogeneously mixing model.
- The models are analysed in the large population limit, but with these groups remaining 'small'.
- Multitype models allow for the situation where these sub-groups of the population also become large in the large population limit.
- For example, some infectious diseases have the property that there are some groups of the population that have different susceptibility to infection and/or infectivity if infected.

Multitype SIR model

- Suppose that the population can be split into k types.
- All individuals of the same type are homogeneous, with respect to infectious period distribution, susceptibility, infectivity and mixing rates.
- Types might reflect one (or more) of
 - age groups,
 - vaccination status,
 - prior immunity,
 - geographic location,

Multitype SIR epidemic model

For each i = 1, 2, ..., k, there are n_i initial susceptibles of type i and m_i initial infectives of type i. Total of $n = \sum_{i=1}^k n_i$ susceptibles and $m = \sum_{i=1}^k m_i$ infectives.

- ▶ SIR (susceptible \rightarrow infective \rightarrow removed) progression
- Type *i* individuals have infectious period ~ *l_i*, an arbitrary but specified distribution.
- A type-*i* infective infects each type-*j* susceptible at (individual to individual) rate λ_{ij}/N.
- (Latent period, movement between groups)

(Ball (1986), Ball & Clancy (1993))

Exact results

- Denote this process by $E_{n,m}(\Lambda, I)$, where $n = (n_i)_{i=1}^k$, $m = (m_i)_{i=1}^k$, $I = (l_i)_{i=1}^k$, $\Lambda = (\lambda_{ij})_{i,j=1}^k$.
- ▶ Let Z_i and T_i be the final size and severity amongst type i individuals; and write Z = (Z_i)^k_{i=1}, T = (T_i)^k_{i=1}.
- There are formulae (cf. single-type case) for
 - ▶ final size probabilities $\mathbb{P}({m Z}={m z}) \quad {m 0} \leq {m z} \leq {m n}$,
 - expected final size E[Z],
 - ▶ joint PGF/MGF of n Z and T, $\mathbb{E}[\prod_{i=1}^{k} s_{i}^{n_{i}-Z_{i}} \exp(-\theta_{i}T_{i})]$.

Large population limits

- These limits are as $n \to \infty$, with k fixed.
- Let π_i = lim_{n→∞} n_i/n be the asymptotic proportion of individuals of type i and μ_i = lim_{n→∞} m_i/n_i be the asymptotic ratio of initial infective to susceptible type i individuals.
- (Assume the matrix $(\mathbb{E}[I_i]\lambda_{ij}\pi_j)_{i,j=1}^k$ is irreducible.)
- ► There are two cases, depending on whether ∑_{i=1}^k µ_i is zero or positive.

Case $\sum_{i=1}^{k} \mu_i = 0$

- Let $Z'_i = Z_i + m_i$.
- Then (Z'_i) converges in distribution (as n→∞) to the distribution of the total progeny of a multitype branching process with
 - *m* ancestors,
 - lifetime distributions I,
 - birth rates $(\lambda_{ij}\pi_j)$.
- From this follow
 - basic reproduction number,
 - major outbreak probability.

Case
$$\sum_{i=1}^{k} \mu_i > 0$$

• Let
$$\hat{Z}_i = \frac{Z'_i}{n_i} = \frac{Z_i + m_i}{n_i}$$
.

► Then (*Ẑ_i*) converges in probability to (*z_i*), which solves the balance equations

$$1 + \mu_j - z_j = \exp\left(-\sum_{i=1}^k \pi_i z_i \mathbb{E}[I_i]\lambda_{ij}\right) \qquad (j = 1, \dots, k),$$

uniquely in $[0,1]^k$.

• The vector with entries $\sqrt{n_i}(\hat{Z}_i - z_i)$ satisfies a CLT.

Section 6: Extensions and variations

There are many directions in which these models and analyses can be extended. Here we briefly address

- Imperfect vaccine action models.
- ▶ Models with more 'levels' to represent/capture more features.
- Different branching process approximations (and reproduction numbers) in structured models.
- Inference.

And we don't address time evolution, demography, non S(E)IR progression, multiple severities, contact tracing, control measures imposed during an outbreak, \ldots

(a) Imperfect vaccine action

- Framework of Becker & Starczak (1998).
- Random vaccine response (A, B), independent for each vaccinated individual, describing relative susceptibility and relative infectivity.
- If (A, B) takes finitely many values then the models we have seen can be extended to allow for this using multi-type methods.
- (E.g. In a households model, analyse within-household spread by conditioning on the number of vaccinated individuals with each possible response to the vaccine.)

(b) Models with more levels of mixing

- Homogeneous mixing.
- Network structure/s.
- Household structure.
- Overlapping groups.
- (And multitype variations)
- Simulation-based models.

(c) Different BP approximations

- In structured population epidemic models there is more than one BP approximation (even after assuming that we just look at final size properties).
- This leads to a variety of reproduction numbers.
- Example: In households models we can set up branching processes which approximate the proliferation of
 - infected households,
 - infected individuals.
- ▶ We have focused on R_{*} as it is (generally) easiest to work with.
- ▶ Other reproduction numbers are 'nicer' but harder to calculate: R₀ and R_r.

(Pellis, Ball & Trapman (2012); Ball, Pellis & Trapman (2015))

Reproduction numbers: household/network model

- ► *R*_{*}, a household-to-household reproduction number.
- R_1 : maximum eigenvalue of $M = \begin{pmatrix} (\mu_{\tilde{D}} 1)p_G & \mu_T \\ \mu_D p_G & 0 \end{pmatrix}$.
- Here µ_T is the mean number of secondary cases in a household.
- Entries of *M* give the mean number of primary/secondary individuals infected by a primary/secondary infective; assigning all within-household infections to the primary case.
- M is a mean matrix (next-generation matrix) which attempts to reflect the proliferation of *individuals*.
- *R*₁ is a threshold parameter, but does not have a neat interpretation.

(d) Inference

- Models with multiple levels of mixing have complex features and thus likelihood functions which can be difficult to deal with analytically.
- Further difficulties arise due to the nature of the available data: missing data, final size data, partial data.
- Progress can sometimes be made by assuming independence where dependence is weak (pseudolikelihood methods).
- MCMC and data augmentation methods.

References I

- Addy, C. L., Longini, I. M. and Haber, M. (1991) A generalized stochastic model for the analysis of infectious disease final size data. *Biometrics* 47:961–974.
- Andersson, H. (1999) Epidemic models and social networks. *Math. Sci.* 24:128–147.
- Andersson, H. and Britton, T. (2000) *Stochastic Epidemic Models and Their Statistical Analysis.* (Lecture Notes in Statistics 151). Springer, New York.
- Ball, F. G. (1986) A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. *Adv. Appl. Prob.* 18:289–310.
- Ball, F. G. and Clancy, D. (1993) The final size and severity of a generalised stochastic multitype epidemic model. *Adv. Appl. Prob.* 25:721–736.
- Ball, F. G. and Donnelly, P. J. (1995) Strong approximations for epidemic models. *Stoch. Proc. Applic.* 55:1–21.

References II

- Ball, F. G. and Lyne, O. D. (2002) Optimal vaccination policies for stochastic epidemics among a population of households. *Math. Biosci.* 177&178:333–354.
- Ball, F. G. and Lyne, O. D. (2006) Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil. *Statistical Methods in Medical Research* 15:481-497.
- Ball, F. G. and Lyne, O. D. (2014) Statistical inference for epidemics among a population of households. *J. R. Statist. Soc. Ser. B*, under revision.
- Ball, F. G., Mollison, D. and Scalia-Tomba, G. (1997) Epidemics with two levels of mixing. *Ann. Appl. Prob.* 7:46–89.
- Ball, F. G. and Neal, P. (2002) A general model for stochastic SIR epidemics with two levels of mixing. *Math. Biosci.* 180:73–102.
- Ball, F. G. and Neal, P. (2003) The great circle epidemic model. *Stoch. Proc. Applic.* 107:233–268.
- Ball, F. G. and Neal, P. (2008) Network epidemic models with two levels of mixing. *Math. Biosci.* 212:69–87.

References III

- Ball, F. G. and O'Neill, P. (1999) The distribution of general final state random variables for stochastic epidemic models. *J. Appl. Prob.* 36:473–491.
 Ball, F. G., Pellis, L. and Trapman P. (2015) Reproduction numbers for epidemic models with households and other social structures II: comparisons and implications for vaccination. Submitted. (arXiv:1410.4469).
- Ball, F. G. and Sirl, D. J. (2013) Acquaintance vaccination in an epidemic on a random graph with specified degree distribution. *J. Appl. Prob.* 50:1147–1168. (Correction (2015), *ibid.* 52:908.)
- Ball, F. G., Sirl, D. J. and Trapman, P. (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. *Math. Biosci.* 224:53–73. (Erratum (2010), *ibid.* 225:81.)
- Ball, F. G., Sirl, D. J. and Trapman, P. (2009) Threshold behaviour and final outcome of an epidemic on a random network with household structure. *Adv. Appl. Prob.* 41:765–796.
- Ball, F. G., Sirl, D. J. and Trapman, P. (2014) Epidemics on random intersection graphs. *Ann. Appl. Prob.* 24:1081–1128.

References IV

- Bartoszyński, R. (1972) On a certain model of an epidemic. *Applic. Math.* 13:139–151.
- Becker, N. G. and Dietz, K. (1995) The effect of household distribution on transmission and control of highly infectious diseases. *Math. Biosci.* 127:207–219.
- Becker, N. G. and Starczak, D. (1997) Optimal vaccination strategies for a community of households. *Math. Biosci.* 139:117–132.
- Becker, N. G. and Starczak, D. (1998) The effect of random vaccine response on the vaccination coverage required to prevent epidemics.*Math. Biosci.* 154:117–135.
- Bollobás, B. (2001) Random graphs. Cambridge University Press.
- Diekmann, O., De Jong, M. C. M. and Metz, J. A. J. (1998) A deterministic epidemic model taking account of repeated contacts between the same individuals. *J. Appl. Prob.* 35:448–462.

References V

- Haccou, P., Jagers, P. and Vatutin, V. A. (2005) *Branching Processes: Variation, Growth, and Extinction of Populations.* Cambridge University Press, Cambridge.
- Kiss, I. Z., Green, D. M. and Kao, R. R. (2006) The effect of contact heterogeniety and multiple routes of transmission on final epidemic size. *Math. Biosci.* 203:124–136.
- Ludwig, D. (1975) Final size distributions for epidemics. *Math. Biosci.* 23:33–46.
- Newman, M. (2002) Spread of epidemic disease on networks. *Phys. Rev. E* 66:016128.
- Pellis, L., Ball, F. G. and Trapman, P. (2012) Reproduction numbers for epidemic models with households and other social structures I: definition and calculation of R_0 . *Math. Biosci.* 235:85–97.
- Picard, P. and Lefèvre, C. (1990) A unified analysis of the final size and severity distribution in collective Reed–Frost epidemic processes. *Adv. Appl. Prob.* 22:269–294.

Scalia-Tomba, G. (1985) Asymptotic final-size distribution for some chain-binomial processes. *Adv. Appl. Prob.* 17:477–495.