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Abstract

We consider a Poissonian SDE for the lack of fitness of a population
subject to a continuous change of its environment, and an accumulation of
advantageous mutations. We neglect the time of fixation of new mutations,
so that the population is monomorphic at all times. We consider the asymp-
totic of small and frequent mutations. In that limit, we establish a law of
large numbers and a central limit theorem. For small enough mutations,
the original process is Harris recurrent and ergodic. We show in which sense
the limits as t→∞ of the law of large and number and central limit theo-
rem give a good approximation of the invariant probability measure of the
original process.

Keys words: Poissonian SDE, Law of large numbers, Central limit theorem,
Approximation of invariant measure, canonical equation of adaptive dynamics,
moving optimum model.

Introduction

The present work is motivated by the moving optimum model in theoretical bi-
ology, which aims at evaluating the possibility for mutations to rescue a given
population undergoing a linear change in its environment which deteriorates its
survival conditions. We refer the reader to [8] and [11] for the presentation of this
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model. The authors have set in [13] a rigorous mathematical study of the mov-
ing optimum model by introducing a stochastic differential equation driven by a
Poisson point process describing the evolution of a quantitative one–dimensional
phenotypic trait in accordance with the biological description of this evolutionary
rescue model. They studied the large time behavior of its solution, which is Harris
recurrent when the speed of the environment v is smaller than the mean effect of
the beneficial mutations m per unit time, transient if v > m. In the case of equal-
ity between the two parameters, the solution of the stochastic differential equation
can either be transient or Harris recurrent depending upon additional technical
conditions.

One is mainly interested in the positive recurrent case. However, the limitation of
the ability to draw biological conclusions from these result is due to the difficulty
to compute explicitly any quantity related to the invariant probability measure.
This led us to study the small jumps limit, which is obtained by multiplying the
jumps’ sizes by ε, dividing the rates by ε2, and then letting ε→ 0. In this paper,
we study the limit as ε → 0 in the such rescaled multidimensional version of the
SDE from [13]. More precisely, we consider the SDE in Rd

Xε
t = Xε

0 − vt+
∫ t

0

∫
Rd

∫ 1

0
εαΓ(Xε

s− , εα, ξ)Nε(ds, dα, dξ),

where Nε is a Poisson random measure on R+ × Rd × [0, 1], with the intensity( 1
ε2ds

)
× ν(dα)× dξ.

Our first main result is
Theorem 1. If Xε

0 → x0 in probability as ε → 0, then Xε
t −−→ε→0

x̄t in probability,
locally uniformly in t, where, with a given d× d matrix L,

dx̄t
dt

= −v + Lx̄t, x̄0 = x0.

The above limiting ODE can be interpreted as the canonical equation of adap-
tive dynamics in the context of a changing environment, see [3] and [2]. This is
discussed in greater detail in [9]. The next step is to establish a Central Limit
Theorem. Indeed, we define U ε

t = ε−1/2(Xε
t − x̄t), and show

Theorem 2. Assume that Xε
0 = x̄0. Then U ε ⇒ U , where U is an Ornstein-

Uhlenbeck process:

dUt = LUtdt+ Λ 1
2 (x̄t)dBt,

U0 = 0,
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with B being a d-dimensional standard Brownian motion. In other words,

Ut =
∫ t

0
eL(t−s)Λ 1

2 (x̄s)dBs.

Moreover it is not hard to show that as t → ∞, both x̄t → x̄∞ and the law of Ut
converges to a Gaussian law N (0, S̄2).

Both x̄∞ and S̄2 can be easily computed with high accuracy, given the parameters
of the model. On the other hand, we show that there exists ε0 > 0 such that, for
any 0 < ε ≤ ε0, the process Xε

t is Harris recurrent and possesses a unique invariant
probability measure µε. Since our motivation for studying the small jumps limit
is to get informations about µε, it is desirable to show that the pair (x̄∞, S̄2) gives
a precise approximation of the invariant measure µε, for small ε. This is a delicate
question, since it amounts in a sense to invert the two limits ε→ 0 and t→∞.

We first show that the collection of probability measures {µε, ε ≤ ε0} is tight. It
is then not too difficult to deduce that µε ⇒ δx̄∞ , as ε → 0. We want to prove
more, namely that µε is close to νε, which is the law of x̄∞+

√
εξ, if ξ ' N (0, S̄2).

This is done by analysing the probability measure

µεt(A) = 1
t

∫ t

0
1A(Xε

s )ds

for large t and small ε.

We believe that those results are original, and have an interest, not only for the
specific model which we study, but could also be useful in different frameworks,
where a process converges in law to a limiting process, and one wants to compare
large time behaviors. In our case, numerical simulations tend to indicate that the
approximation is valid even for not very small values of ε, see [9].

The proofs of the first two theorems follow the following scheme : prove tightness,
and the identify the unique possible limit point. Harris recurrence for small enough
ε is proved using a criterion due to Meyn and Tweedie [12].

The paper is organized as follows: After giving some useful notations, section 1
gives a detailed presentation of the model, from the biological literature. Further-
more we present the stochastic differential equation that describes the evolution of
the vector phenotypic lag between the population and its environment, explaining
the fixation mechanism of mutations.

In section 2, we prove Theorem 1 and Theorem 2.

Section 3 is dedicated to the study of the large time behavior of Xε
t which will turn

out to be positive Harris recurrent for ε sufficiently small, admitting thus a unique

3



invariant probability measure. Then we proceed to prove that the sequence of
invariant measures is tight and converges in law. We finally give a precise statement
which describes in which sense the invariant measure is well approximated by a
combination of the limit as t→∞ of the LLN and the CLT limits. This involves
a sort of interchange of limits as ε→ 0 and as t→∞, which seems to be new.

Notation

We will deal with processes Xt with “càdlàg” paths, i.e. paths which are right–
continuous and have a left limit everywhere. This left limit is denoted Xt− :=
lims↑t,s<tXs, and for any t such that Xt 6= Xt−, we denote by ∆Xt = Xt−Xt− the
jump of X at time t. Note that a càdlàg path has at most countably many jumps
on R+.

We remind that the quadratic variation of a scalar discontinuous bounded variation
locally square integrable martingale Mt is the sum of the squares of its jumps and
is denoted by :

[M ]t =
∑
s≤t
|∆Ms|2.

Its predictable quadratic variation 〈M〉t is the unique increasing predictable pro-
cess such that [M ]t − 〈M〉t, and hence also M2

t − 〈M〉t is a local martingale.

In the d-dimensional case, we define the quadratic variation of a discontinuous
bounded variation locally square integrable martingale Mt as :

[[M ]]t =
∑
s≤t

∆Ms ⊗∆Ms.

Its predictable quadratic variation 〈〈M〉〉t is the unique Sd-valued predictable in-
creasing process such that both [[M ]]t−〈〈M〉〉t andMt⊗Mt−〈〈M〉〉t are Sd-valued
local martingales. Here Sd denotes the set of symmetric positive semi–definite
d× d matrices. Note that [[M ]]t (resp. 〈〈M〉〉t) is the matrix whose i, j element is
[M i,M j]t (resp. 〈M i,M j〉t).

We shall use the notation

[M ]t =
∑

0<s≤t
‖∆Ms‖2 = Tr[[M ]]t, and 〈M〉t = Tr〈〈M〉〉t,

so that ‖Mt‖2 − 〈M〉t is an R-valued local martingale, and the notations in the
scalar and vector case are coherent. See [17] for more details.
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Suppose now that Xt is a d–dimensional process which takes the form

Xt = X0 +
∫ t

0
Asds+Mt,

where At is d–dimensional and Mt is a d-dimensional martingale with paths of
bounded variation (hence discontinuous). Then, if ‖ · ‖ and (·, ·) denote the Eu-
clidean norm and scalar product in Rd, we have the following

‖Xt‖2 = ‖X0‖2 + 2
∫ t

0
(Xs, As)ds+ 2

∫ t

0
(Xs−, dMs) + [M ]t. (1)

This is a change of variable formula which is the content (in the case where Xt is
scalar) of Theorem 31 in [17]. Its proof is quite elementary and does not require
any stochastic calculus.

Finally in this paper we will repeatedly write integrals of vector–valued (or matrix–
valued) functions of their argument, as we already did in the definition ofXt above,
where the vector

∫ t
0 Asds was such that its i–th coordinates equals

∫ t
0 A

i
sds if Ais

stands for the i–th coordinate of As. Below in (7),
∫

(x,α)≤0 α ⊗ α ν(dα) (where
{α, (x, α) ≤ 0} is a subset of Rd) stands for the d× d matrix whose (i, j) entry is∫

(x,α)≤0 αiαj ν(dα), and
∫
(x,α)≤0 α ν(dα) stands for the d–dimensional vector whose

i–th coordinate is
∫

(x,α)≤0 αi ν(dα).

1 The model

The model from Matuszewski et al. [11] is set up as follows: a population of
constant size N is subject to Gaussian stabilizing selection with a moving optimum
that increases linearly with speed vector v ∈ Rd. That is, at time t, the phenotypic
lag between an individual with trait value z ∈ Rd and the optimum equals x =
z − vt ∈ Rd, and the corresponding fitness is

W(x) = exp
(
−x′Σ−1x

)
, (2)

where Σ describes the shape of the fitness landscape. For the adaptive-walk ap-
proximation, the population is assumed to be monomorphic at all times (i.e., its
state is completely characterized by x). Mutations arise at rate Θ/2 = Nµ (where
µ is the per-capita mutation rate and Θ = 2Nµ is a standard population-genetic
parameter), and their phenotypic effects α are drawn from a distribution p(α). We
neglect the possibility of fixation for deleterious mutations. Yet even beneficial
mutations have a significant probability of being lost due to the effects of genetic
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drift while they are rare. A mutation with effect α that arises in a population with
phenotypic lag x has a probability of fixation

g(x, α) =

1− exp(−2s(x, α)) if s(x, α) > 0,
0 otherwise

(3)

where
s(x, α) = −(2x+ α)′Σ−1α (4)

is the selection coefficient. Once a mutation gets fixed, it is assumed to do so
instantaneously (which is of course a simplification which is not realistic), and the
phenotypic lag x of the population is updated accordingly.

We make the following assumptions (see [11]):

1. v is a horizontal vector, v = (v1, 0, . . . , 0)′ with v1 > 0.

2. Σ is isotropic, i.e. Σ = σ2IRd .

It is always possible to reduce the situation to our assumptions, via a change of
variables.

The evolution of the phenotypic lag of the population can be described by the
following equation:

Xt = x0 − vt+
∫

[0,t]×Rd×[0,1]
αΓ(Xs− , α, ξ)N(ds, dα, dξ). (5)

Here, N is a Poisson point process over R+×Rd× [0, 1] with intensity ds ν(dα) dξ
where ν(dα) is the measure of new mutations and

Γ(x, α, ξ) = 1{ξ≤g(x,α)},

where the fixation probability g(x, α) of a mutation of size α that hits the popu-
lation when the lag is x, as defined by (3) and (4), can be expressed as

g(x, α) =
(
1− exp

(
2σ−2 (2x+ α, α)

))
× 1{(2x+α,α)≤0}.

Following the model by [11], we consider that

ν(dα) = Θ
2 p(α)dα, (6)

where p is the density of a centered multidimensional Gaussian distributionN (0,M),
M being a positive definite symmetric matrix. Under the above assumptions about
the speed vector v and the fitness matrix Σ,M is generally not an isotropic matrix.
Θ/2 is the rate at which new mutations are “proposed”.
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The points of this Poisson Point Process (Ti, Ai,Ξi) are such that the (Ti, Ai) form
a Poisson Point Process over R+×Rd of the mutations that hit the population with
intensity dsν(dα), and the Ξi are i.i.d. U [0, 1], globally independent of the Poisson
Point Process of the (Ti, Ai). Ti’s are the times when mutations are proposed
and Ai’s are the effect sizes of those mutations. The Ξi are auxiliary variables
determining fixation: a mutation gets instantaneously fixed if Ξi ≤ g(XTi , Ai),
and is lost otherwise.

Note that the limit of the probability of fixation as ‖x‖ → ∞, while x
‖x‖ remains a

constant unit vector, is 1{(x,α)≤0}. This means that when the process is sufficiently
far away from 0, the fixation mechanism tends to accept all mutations inside the
half space

(
x
‖x‖ , α

)
≤ 0.

Define the covariance matrix of fixed mutations :

V̄ (x) =
∫

(x,α)≤0
α⊗ α ν(dα). (7)

Proposition 1. Under the definition of ν given by (6), V̄ (x) is independent of
the direction of x and

V̄ = Θ
4 M.

Proof. The additional factor 1/2 comes from the fact that we integrate over a
half space. What is not obvious a priori is that V̄ does not depend upon x.

We assume without loss of generality that we have chosen as orthonormal basis of
Rd a basis made of eigenvectors of M , the covariance matrix of p. In other words,

M = P ′DP,

where D is a diagonal matrix and P is the matrix representing the change of basis
such that P ′ = P−1 = P ∗. First, we will show that

1
(2π) d2 (detD) 1

2

∫
(x,α)≤0

α⊗ α e−
1
2α
′D−1αdα = D

2 . (8)

This is equivalent to showing that for X1, . . . , Xd being mutually independent zero
mean Gaussian random variables, and for any vector a = (a1, . . . , ad) ∈ Rd, with
the notation E[Z;A] = E(Z1A),

E
[
X2
j ; (X, a) ≤ 0

]
= 1

2E
[
X2
j

]
, for any j ∈ {1, . . . , d}

and
E [XjX`; (X, a) ≤ 0] = 0, for any j 6= ` ∈ {1, . . . , d}.
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The first of these two identities follows from the fact that if X and Y are two
mutually independent zero mean Gaussian random variables, then

E[X2;Y < X] = 1
2E[X2].

Indeed, if FY denotes the distribution function of the zero mean Gaussian r.v. Y ,
and σ2 is the variance of X, since FY (x) + FY (−x) = 1 for all x ∈ R,

E[X2;Y ≤ X] = E[X2FY (X)]

= 1
σ
√

2π

∫ ∞
0

x2[FY (x) + FY (−x)]e−x2/2σ2
dx

= 1
2E[X2].

We now establish the second formula. All we have to compute is the following
quantity, where X, Y, Z are mutually independent zero mean Gaussian random
variables, and a, b are arbitary real numbers,

E[XY ;Z ≤ aX + bY ] = E[XY FZ(aX + bY )]

= 1
στ2π

∫
R

∫
R
xyFZ(ax+ by)e−

x2
2σ2−

y2

2τ2 dxdy

= 1
στ2π

∫ ∞
0

∫ ∞
0
xy[FZ(ax+by)+FZ(−ax−by)

−FZ(−ax+by)−FZ(ax−by)]dxdy
= 0,

since clearly FZ(ax+ by + FZ(−ax− by) = FZ(−ax+ by) + FZ(ax− by) = 1.

Now that (8) is established, the change of variables α = P ′α̃ in the integral formula
for V̄ yields

V̄ = Θ
2

(
P ′
D

2 P
)

= Θ
4 M.

�

2 Small Jumps Limit

We now introduce the rescaling

α̃ = εα and s̃ = s

ε2 with ε > 0

8



of the jumps and the time, respectively. In other words, we rewrite our process
(5) as

Xε
t = Xε

0 − vt+
∫ t

0

∫
Rd

∫ 1

0
εαΓ(Xε

s− , εα, ξ)Nε(ds, dα, dξ),

where the intensity measure of the Poisson Point Process Nε is( 1
ε2ds

)
× ν(dα)× dξ.

The above SDE can be rewritten as

Xε
t = Xε

0 − vt+
∫ t

0

1
ε2mε(Xε

s )ds+Mε
t , (9)

with

mε(x) =
∫
Rd
εαg(x, εα)ν(dα),

where g(x, εα) ≤ 2σ−2 ‖(2x+ εα, εα)‖1{(2x+εα,εα)≤0}

≤ 4σ−2ε ‖(x, α)‖1{(x,α)≤0},

and, if N ε denotes the compensated Poisson measure Nε, i.e.

N ε(ds, dα, dξ) = Nε(ds, dα, dξ)−
1
ε2dsν(dα)dξ,

Mε
t =

∫ t

0

∫
Rd

∫ 1

0
εαΓ(Xε

s− , εα, ξ)N ε(ds, dα, dξ)

is a martingale. We will sometimes consider the above SDE with a random initial
condition Xε

0 . We insist upon the fact that in such a case the Poisson Point Process
Nε will be assumed to be independent of the initial condition Xε

0 .

The goal of this section is to prove Theorem 1 below, which says that if Xε
0 → x̄0,

then Xε
t converges to the solution x̄t of a linear ODE, and Theorem 2 below, which

says the fluctuations U ε
t := ε−1/2(Xε

t − x̄t) converge to an Ornstein–Uhlenbeck
process. We prepare the proofs of those two main results by first establishing two
Lemmas and one Proposition. Lemma 1, Lemma 2, 1. and Proposition 2, 1. will
be used in the proof of Theorem 1, Lemma 2, 2. Proposition 2, 2. in the proof of
Theorem 2. The general idea of the proof of both Theorems is to prove tightness
and identify a unique possible limit. In Theorem 1, we do that for the sequence
Xε
t , while in Theorem 2 we apply this strategy not directly to U ε

t , but rather to
the right–hand side of the linear SDE whose solution is U ε

t .

Lemma 1. If the collection {Xε
0 , 0 < ε ≤ 1} of d–dimensional random vectors is

tight, then the following two properties hold:
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1. the collection {Xε, 0 < ε ≤ 1} is tight in D(R+,Rd);

2. we have
〈Mε〉t −−→

ε→0
0 in probability, locally uniformly in t.

Proof. Step 1 Proof of the Lemma under a stronger condition We
assume in this step that the following holds

sup
0<ε≤1

E(‖Xε
0‖2) <∞. (10)

It is plain that
1
ε2 ‖mε(Xε

t )‖ ≤ 4‖Xε
t ‖σ−2

∫
Rd
‖α‖2ν(dα), (11)

and

〈Mε〉t = 1
ε2

∫ t

0

∫
Rd
‖εα‖2g(Xε

s , εα)ν(dα)ds

≤ 4σ−2ε
∫ t

0

∫
(α,Xε

s )≤0
‖α‖2 ‖(α,Xε

s )‖ ν(dα)ds

≤ 4σ−2ε
(∫

Rd
‖α‖3ν(dα)

) ∫ t

0
‖Xε

s‖ ds.

(12)

Moreover for all x ∈ Rd, we have

1
ε2 (mε(x), x) ≤ 0.

On the other hand, from (1),

‖Xε
t ‖2 = ‖Xε

0‖2 − 2
∫ t

0
(v,Xε

s ) ds+ 2
ε2

∫ t

0
(mε(Xε

s ), Xε
s ) ds+ 2

∫ t

0
Xs−dM

ε
s + [Mε]t

Hence, for fixed T , we have for all 0 ≤ t ≤ T

E
(
‖Xε

t ‖2
)
≤ E

(
‖Xε

0‖2
)

+ 2v1

∫ t

0
E‖Xε

s‖ds+ E〈Mε〉t

≤ E
(
‖Xε

0‖2
)

+ v1

(
t+

∫ t

0
E
(
‖Xε

s‖2
)
ds
)

+ 2 ε
σ2

∫
Rd
‖α‖3ν(dα)

(
t+

∫ t

0
E
(
‖Xε

s‖2
)
ds
)

≤ E
(
‖Xε

0‖2
)

+
(
v1 + 2 ε

σ2

∫
Rd
‖α‖3ν(dα)

)
t

+
(
v1 + 2 ε

σ2

∫
Rd
‖α‖3ν(dα)

) ∫ t

0
E
(
‖Xε

s‖2
)
ds

≤
(
E
(
‖Xε

0‖2
)

+
(
v1 + 2 ε

σ2

∫
Rd
‖α‖3ν(dα)

)
T
)
e[v1+2 ε

σ2 (
∫
Rd ‖α‖

3ν(dα))]T ,
(13)
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since 2E‖X‖ ≤ 1 +E(‖X‖2), and where we have used Gronwall’s Lemma (see e.g.
Proposition 6.59 in [15]). We deduce from (11), (12) and (13) that the process Xε

is tight in D
(
R+,Rd

)
. Indeed, as noted in Remark 14, part 2 page 119 in [14], if

Xε
t = Xε

0 +
∫ t

0 F
ε
s ds +Mε

t , where 〈Mε〉t =
∫ t

0 G
ε
sds, tightness of the collection of

real valued r.v.’s {‖Xε
0‖+

∫ T
0 (‖F ε

t ‖2 +‖Gε
t‖2)dt, 0 < ε ≤ 1} for each T > 0 implies

tightness of Xε in D(R+;Rd) (this makes use of Aldous’ tightness criterion [1]).
Note that [14] treats real valued processes, but the proof is identical in the vector
valued case.

Finally from (12),
〈Mε〉t −−→

ε→0
0 in probability.

This convergence is locally uniformly in t since t 7→ 〈Mε〉t is increasing.

Step 2 Proof of the Lemma under the original assumption For each
n ≥ 1 let ϕn be a bounded function from Rd into itself such that ϕn(x) = x
whenever ‖x‖ ≤ n. Let now for each ε > 0 and n ≥ 1 {Xε,n

t , t ≥ 0} denote the
solution of equation (9) starting with the initial condition Xε,n

0 := ϕn(Xε
0), and

Mε,n
t =

∫ t

0

∫
Rd

∫ 1

0
εαΓ(Xε,n

s− , εα, ξ)N ε(ds, dα, dξ).

On the event {‖Xε
0‖ ≤ n}, Xε

t ≡ Xε,n
t and Mε

t ≡ M
ε,n
t . From the original

assumption, for any δ > 0, there exists nδ ≥ 1 such that P(‖Xε
0‖ > nδ) ≤ δ/2

for each ε > 0. Let T > 0 be arbitrarily fixed. From step 1 of the proof, there
exists a compact subset Kδ ⊂⊂ D([0, T ],Rd) such that P(Xε,nδ

· 6∈ Kδ) ≤ δ/2, and
εδ > 0 small enough such that P(sup0≤t≤T 〈Mε,nδ〉t ≥ δ) ≤ δ/2 for all 0 < ε ≤ εδ.
It follows readily that P(Xε 6∈ Kδ) ≤ δ for all 0 < ε ≤ 1 and P(sup0≤t≤T 〈Mε〉t ≥
δ) ≤ δ for all 0 < ε ≤ εδ. QED �

Lemma 2. For all x ∈ Rd, we have that

1. ε−2mε(x) −−→
ε→0

Lx, where

Lx = 4σ−2
∫

(x,α)≤0
α ‖(x, α)‖ ν(dα) = −4σ−2V̄ x = −Θσ−2Mx. (14)

2.
∫
α⊗ α g(x,εα)

ε
ν(dα) −−→

ε→0
Λ(x), where

Λ(x) = 4σ−2
∫

(x,α)≤0
‖ (x, α) ‖α⊗ αν(dα), (15)
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Remark 1. Note that the above two Lemmas remain true if the measure ν is not
Gaussian, but satisfies the following moment condition :∫

Rd
‖α‖4ν(dα) <∞. (16)

In this case the limit L(x) is given by the expression

L(x) = 4σ−2
∫

(x,α)≤0
α ‖(x, α)‖ ν(dα) = −4σ−2V̄ (x)x,

where V̄ depends upon the direction of x. The advantage of taking a Gaussian
measure (up to a multiplicative constant) of new mutations is the resulting linear
behavior of the limit Lx, due to the fact that V̄ (x) is a constant matrix. More
generally, V̄ (x) would depend upon x

‖x‖ .

Proof of Lemma 2. Let for all ε > 0 and x, α ∈ Rd

yε = −2σ−2 (2x+ εα, α) , and y = −4σ−2 (x, α) .

Note that ε−2mε(x) =
∫
yε≥0

1−e−εyε
ε

αν(dα). We have that

1− e−εyε
ε

1yε≥0 − y1y≥0 =
(

1− e−εyε
ε

1yε≥0 − yε1yε≥0

)
+ (yε1yε≥0 − y1y≥0) . (17)

In addition, since for all z > 0, z − z2

2 ≤ 1− e−z ≤ z,

−εy
2
ε

2 1yε≥0 ≤
1− e−εyε

ε
1yε≥0 − yε1yε≥0 ≤ 0, (18)

From yε = y − 2ε
σ2‖α‖2, yε ≤ y and 1yε≥0 ≤ 1y≥0. This combines with Cauchy–

Schwarz entails
y2
ε1yε≥0 ≤ y21y≥0 ≤ 16σ−4‖x‖2‖α‖2.

Combining the last inequality with (18), we obtain

−8σ−4ε‖x‖2‖α‖2 ≤ 1− e−εyε
ε

1yε≥0 − yε1yε≥0 ≤ 0. (19)

Again {yε ≥ 0} ⊂ {y ≥ 0}. It follows that

yε1yε≥0 − y1y≥0 = (yε − y)1y≥0 − yε1y≥0\yε≥0

= −2σ−2ε‖α‖21y≥0 − yε1y≥0\yε≥0

≥ −2σ−2ε‖α‖2.
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We have proved that

−2σ−2ε‖α‖2 ≤ yε1yε≥0 − y1y≥0 ≤ 0. (20)

We deduce from (17), (19) and (20) that

−ε
(
8σ−4‖x‖2 + 2σ−2

)
‖α‖2 ≤ 1− e−εyε

ε
1yε≥0 − y1y≥0 ≤ 0.

Hence, ∥∥∥∥∥α
(

1− e−εyε
ε

1yε≥0 − y1y≥0

)∥∥∥∥∥ ≤ ε
(
8σ−4‖x‖2 + 2σ−2

)
‖α‖3. (21)

By integrating (21) with respect to ν, we obtain∥∥∥∥ 1
ε2mε(x)− L(x)

∥∥∥∥ ≤ ε
(
8σ−4‖x‖2 + 2σ−2

) ∫
Rd
‖α‖3ν(dα). (22)

Hence,
ε−2mε(x) −−→

ε→0
Lx.

By a similar argument, we have that∥∥∥∥∥
∫
α⊗ αg(x, εα)

ε
ν(dα)− Λ(x)

∥∥∥∥∥ ≤ ε
(
8σ−4‖x‖2 + 2σ−2

) ∫
Rd
‖α‖4ν(dα), (23)

and we deduce the second result of the Lemma. �

Under the assumption of Lemma 1, we can extract a subsequence which we still
denote Xε by an abuse of notation such that Xε ⇒ X̄ (this notation means
here and below that Xε converges in law towards X̄ as D(R+,Rd)–valued random
variables), and we have the following result:

Proposition 2. If Xε ⇒ X̄, then

1. 1
ε2mε(Xε

· )⇒ LX̄· in D(R+,Rd),

and
2. 1

ε

d

dt
〈〈Mε〉〉· ⇒ Λ(X̄·) in D(R+,Rd),

Proof of 1. It follows from (22) that for all δ, C > 0, there exists εδ,C such that
if ε < εδ,C and for all ‖x‖ ≤ C,∥∥∥∥ 1

ε2mε(x)− Lx
∥∥∥∥ ≤ δ,

13



thus, for an arbitrary T > 0 and for ε < εδ,C ,

P
(

sup
t≤T

∥∥∥∥ 1
ε2mε(Xε

t )− L(Xε
t )
∥∥∥∥ > δ

)
≤ P

(
sup
t≤T
‖Xε

t ‖ > C

)
.

It follows that for all δ, C > 0,

lim sup
ε→0

P
(

sup
t≤T

∥∥∥∥ 1
ε2mε(Xε

t )− L(Xε
t )
∥∥∥∥ > δ

)
≤ sup

ε
P
(

sup
t≤T
‖Xε

t ‖ > C

)
.

From the tightness of Xε, for all η > 0, we can choose C > 0 such that

sup
ε

P
(

sup
t≤T
‖Xε

t ‖ > C

)
≤ η.

Hence for all δ, η > 0

lim sup
ε→0

P
(

sup
t≤T

∥∥∥∥ 1
ε2mε(Xε

t )− L(Xε
t )
∥∥∥∥ > δ

)
≤ η.

Moreover L(Xε) ⇒ L(X̄) in D(R+,Rd) since L is a continuous function. Conse-
quently,

1
ε2mε(Xε) = 1

ε2mε(Xε)− L(Xε) + L(Xε)⇒ L(X̄).

Proof of 2. Note that

d

dt
〈〈Mε〉〉t =

∫
Rd
α⊗ α g(Xε

t , ε α)ν(dα).

By a similar argument as in the first part of the proof, using this time (23), we
establish the second claim, thanks to the fact that∫

‖α‖4ν(dα) <∞.

�

We can now establish
Theorem 1. If Xε

0 → x0 in probability as ε → 0, then Xε
t −−→ε→0

x̄t in probability,
locally uniformly in t, where

dx̄t
dt

= −v + Lx̄t, x̄0 = x0. (24)

14



Proof. The assumption and Lemma 1 imply tightness of the collection of pro-
cesses {Xε

· , 0 < ε ≤ 1}. HenceXε converges weakly to a limit along a subsequence.
From (9), Proposition 2, 1. and Lemma 1, 2., we deduce that the limit solves the
ODE (24). Since the limit x̄t is uniquely determined and deterministic, the whole
collection Xε

t converges in probability as ε→ 0 towards x̄t, locally uniformly in t.
�
Remark 2. In case Xε

0 ⇒ X0, where X0 is a d–dimensional random vector, the
same result still holds, except that the limit is random and the convergence is in
law.

The differential equation (24) represents a deterministic approximation for the
stochastic process Xε in the limit of small jumps. We note that

x̄t −−−→
t→∞

x̄∞ = −M
−1v

Θσ−2 . (25)

To estimate the fluctuations of the process in the small-jumps limit, we now con-
sider the following process

U ε
t = Xε

t − x̄t√
ε

. (26)

Theorem 2. Assume that Xε
0 = x̄0. Then U ε ⇒ U , where U is an Ornstein-

Uhlenbeck process:

dUt = LUtdt+ Λ 1
2 (x̄t)dBt,

U0 = 0,
(27)

with B being a d-dimensional standard Brownian motion. In other words,

Ut =
∫ t

0
eL(t−s)Λ 1

2 (x̄s)dBs.

Proof. We have that

U ε
t =

∫ t

0

ε−2mε(Xε
s )− Lx̄s√
ε

ds+ 1√
ε
Mε

t ,

= L
∫ t

0

Xε
s − x̄s√
ε

ds+ 1√
ε

∫ t

0

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t

= L
∫ t

0
U ε
sds+ 1√

ε

∫ t

0

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t .

Thus by the formula for the solution of a linear ODE and an integration by parts,

U ε
t = 1√

ε

∫ t

0
eL(t−s)

( 1
ε2mε(Xε

s )− LXε
s

)
ds+ 1√

ε
Mε

t + 1√
ε

∫ t

0
eL(t−s)LMε

sds. (28)
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We deduce from (22) that

1√
ε

∫ t

0
eL(t−s)

( 1
ε2mε(Xε

s )− LXε
s

)
ds −−→

ε→0
0 (29)

in probability. Furthermore, 1√
ε
Mε are tight martingales by a similar argument

as before since

sup
{t>0, ε}

∫
R2
‖α‖2g(Xε

t , εα)ν(dα) ≤
∫
R2
‖α‖2ν(dα) <∞.

Let us admit for a moment the
Lemma 3. For any T > 0, as ε→ 0,

sup
t≤T

∥∥∥∥∥ 1√
ε

(Mε
t −Mε

t−)
∥∥∥∥∥→ 0

in probability.

Hence every converging subsequence of 1√
ε
Mε converges to a continuous process

M as ε goes to 0, and using Proposition 2, 2., we have (recall (15))

〈〈 1√
ε
Mε〉〉t =

∫ t

0
α⊗ αg(Xε

s , εα)
ε

ν(dα)ds −−→
ε→0

∫ t

0
Λ(x̄s)ds.

Let us now explain why these facts imply thatMt is a martingale such that

〈〈M〉〉t =
∫ t

0
Λ(x̄s)ds.

We first note that since Xε
0(ω) = x̄0 for all ε > 0 and ω, we deduce from (12)

and (13) that for each t > 0 the collections indexed by ε of random matrices and
vectors 1

ε
〈Mε〉t, 1

ε
Mε

t ⊗Mε
t and 1√

ε
Mε

t are uniformly integrable. On the other
hand, for any n ≥ 1, 0 < s1 < · · · < sn = s < t, Φ ∈ Cb(Rnd), we have

E
{

Φ
(
Mε

s1√
ε
, . . . ,

Mε
sn√
ε

)[
Mε

t√
ε
− M

ε
s√
ε

]}
= 0,

E
{

Φ
(
Mε

s1√
ε
, . . . ,

Mε
sn√
ε

) [1
ε
Mε

t ⊗Mε
t −

1
ε
〈〈Mε〉〉t −

1
ε
Mε

s ⊗Mε
s + 1

ε
〈〈Mε〉〉s

]}
= 0.

We may take the limit as ε → 0 in these two identities, which yields identities
which (thanks to the freedom of choice of n, s1, . . . , sn and Φ) show that bothMt

andMt ⊗Mt −
∫ t

0 Λ(x̄s)ds are continuous martingales.
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We deduce thanks to a representation theorem of continuous martingales, see e.g.
Theorem 4.5.2 from [18], that there exists a d-dimensional Brownian motion Bt

such that
Mt =

∫ t

0
Λ 1

2 (x̄s)dBs, t ≥ 0.

This being true for any converging subsequence of 1√
ε
Mε, the limit is unique (in

law). Finally, combining this with (28) and (29), we deduce that

U ε
t ⇒

∫ t

0
eL(t−s)Λ 1

2 (x̄s)dBs.

�

It remains to turn to the

Proof of Lemma 3 It is clearly sufficient to prove the result for any coordinate
of the d–dimensional processMε

t , which means that it suffices to prove the result
in case d = 1, which we assume for the rest of this proof. In other words, p is the
density of the Gaussian law N (0, γ2), with some γ > 0. Let us define

M̃ε
t =

∫
[0,t]×R×[0,1]

εαNε(ds, dα, dξ).

It is plain that

sup
t≤T

∣∣∣∣∣ 1√
ε

(Mε
t −Mε

t−)
∣∣∣∣∣ ≤ sup

t≤T

∣∣∣∣∣ 1√
ε

(
M̃ε

t − M̃ε
t−

)∣∣∣∣∣ .
Hence all we need to show is that the above right hand side tends to 0 in probability,
as ε→ 0. Let a > 0 be arbitrary. We need to estimate

P
(

sup
t≤T
|M̃ε

t − M̃ε
t− | > a

√
ε

)
.

It is plain that, with Zε := Nε([0, T ]× R× [0, 1]),

P
(

sup
t≤T
|M̃ε

t − M̃ε
t−| > a

√
ε

)
≤ P

(
Zε > Kε−2

)
+ P

(
Zε ≤ Kε−2, sup

t≤T
|M̃ε

t − M̃ε
t− | > a

√
ε

)
= A(K, ε, T ) +B(K, ε, T ).

Since the law of Zε is Poisson with mean (2ε2)−1ΘT , it follows from Chebychef’s
inequality that

A(K, ε, T ) ≤ ΘT
2K . (30)
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On the other hand, if {Yk, k ≥ 1} are i.i.d. r.v.’s with the common distribution
N (0, 1), with the notation aε = a

γ
√
ε
,

B(K, ε, T ) ≤ P
(

sup
0≤k≤Kε−2

|Yk| ≥ aε

)

≤ 2P
(

sup
0≤k≤Kε−2

Yk ≥ aε

)

= 2− 2P
(

sup
0≤k≤Kε−2

Yk ≤ aε

)
= 2− 2 (1− P(Y1 > aε))Kε

−2
.

Note that, since exp(aεY1 − a2
ε/2) has mean 1,

P(Y1 > aε) = P(eaεY1−a2
ε/2 > ea

2
ε/2) ≤ e−a

2
ε/2.

Hence
B(K, ε, T ) ≤ 2− 2

(
1− e−a2

ε/2
)Kε−2

For ε small enough, e−a2
ε/2 ≤ 1/2, from which follows that 1−e−a2

ε/2 ≥ exp(−e−a2
ε/2),

hence
B(K, ε, T ) ≤ 2

(
1− exp

[
−K
ε2 e

− a2
2γ2ε

])
. (31)

For any δ > 0, we first choose Kδ = ΘT
δ
, so that from (30), A(Kδ, ε, T ) ≤ δ/2 for

all ε > 0, and then thanks to (31) ε small enough such that B(Kδ, ε, T ) ≤ δ/2.
The result follows. �
Remark 3. We have exploited the fact that p is the density of a Gaussian distri-
bution. In fact it would suffice that P(|Y1| > a) ≤ C

a4+δ for some C, δ > 0. We note
that this is exactly what is already necessary for (16) to hold.

The Ornstein–Uhlenbeck process Ut which appears in the last Theorem is a cen-
tered Gaussian vector. It is easy to compute its covariance matrix

E(Ut ⊗ Ut) =
∫ t

0
eL(t−s)Λ(x̄s)eL(t−s)ds.

as well as the limit of the latter as t→∞
E(Ut ⊗ Ut) −−−→

t→∞
S̄2 =

∫ ∞
0

eLtΛ(x̄∞)eLtdt. (32)

It follows readily that the law of Ut converges, as t → ∞, to N (0, S̄2). In case
x̄t = x̄∞ for all t ≥ 0, then Ut solution of the linear SDE dUt = LUtdt+Λ 1

2 (x̄∞)dBt

is a time homogeneous Gauss–Markov process, and N (0, S̄2) is its unique invariant
probability measure, see Theorem 5.6.7 in Karatzas and Shreve [6]. Moreover
(x̄t, Ut) is a time homogeneous Markov process and δx̄∞ × N (0, S̄2) is its unique
invariant probability measure.
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3 Large time behavior of Xε
t for small ε > 0

In this section, we shall first prove that provided ε is small enough, Xε
t is posi-

tive Harris recurrent with a unique invariant probability measure, next that the
collection of invariant probability measures indexed by ε is tight, and finally that
the large time behavior of x̄t +

√
εUt is a good approximation of the large time

behavior of Xε
t , thus justifying a sort of interchange of the limits as ε→ 0 and as

t→∞.

3.1 Large time behavior of the process Xε
t

The aim of this subsection is to prove (in the next statement, ‖ · ‖ stands for the
total variation norm):
Theorem 3. There exists ε0 > 0 such that for any 0 < ε ≤ ε0, the process Xε

t is
positive Harris recurrent, with a unique invariant probability measure µε. Moreover
Xε
t is ergodic, in the sense that ‖P(Xε

t ∈ ·|Xε
0 = x)− µε‖ → 0, as t→∞, for all

x ∈ Rd.

Thanks to Theorem 4.2 from [12], the first part Theorem 3 follows from a positive
recurrence condition (which is called (CD2) in [12]), and the fact that a certain
ball centered at 0 is a petite set. We first establish in the next Lemma and
the subsequent Corollary an a priori estimate. The proof of the first part of the
Theorem will then consist in two steps : conclude (CD2) from the Corollary, and
verify the petite set property. The second part will follow from Theorem 5.1 in
[12].
Lemma 4. There exists three constants c, C, a > 0 (whose values depend explicitly
upon the parameters of our model) such that for all 0 < ε ≤ 1

4 , t > 0,

‖Xε
t ‖ ≤ ‖Xε

0‖+ C t− c
∫ t

0

(
‖Xε

s‖ ∧
a

ε

)
ds+N ε

t ,

where the local martingale N ε
t , which is a martingale as soon as E[‖Xε

0‖] <∞, is
given as

N ε
t =

∫
[0,t]×Rd×[0,1]

(‖Xε
s− + εα‖ − ‖Xε

s−‖)Γ(Xε
s−, εα, ξ)M̄ε(ds, dα, dξ).
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Proof. We have

‖Xε
t ‖ = ‖Xε

0‖ −
∫ t

0

(
v,

Xε
s

‖Xε
s‖

)
ds+

∑
s≤t

(‖Xε
s− + ∆Xε

s‖ − ‖Xε
s−‖)

= ‖Xε
0‖ −

∫ t

0

(
v,

Xε
s

‖Xε
s‖

)
ds

+
∫

[0,t]×Rd×[0,1]

(
‖Xε

s− + εα‖ − ‖Xε
s−‖

)
Γ(Xε

s−, εα, u)Nε(ds, dα, du)

= ‖Xε
0‖+

∫ t

0

[∫
Rd

‖Xε
s + εα‖ − ‖Xε

s‖
ε

×g(Xε
s , εα)
ε

ν(dα)−
(
v,

Xε
s

‖Xε
s‖

)]
ds+N ε

t

(33)
Recall that only mutations which improve the fitness may get fixed, since from (3)
and (4) g(x, α) > 0 requires s(x, α) > 0, i.e. (2x + α, α) < 0, hence, with again
the notation ∆Xε

s = Xε
s −Xε

s−,
‖Xε

s− + ∆Xε
s‖ − ‖Xε

s−‖ ≤ 0,
and moreover we shall restrict ourselves below to the jumps such that

‖Xε
s− + ∆Xε

s‖ − ‖Xε
s−‖ ≤ −

1
2‖∆X

ε
s‖.

For x ∈ Rd, let C(x) denote the set of vectors α such that

‖x+ α‖ − ‖x‖ ≤ −1
2‖α‖.

We define γ, the angle between the two directions −x and α, as follows. If x
and α are colinear, then γ = 0. Otherwise, we consider the plane spanned by x
and α. If we restrict ourselves to those α such that Γ(x, εα, 0) > 0, then in the
above plane, the angle between the directions −x and α is between −π/2 and
π/2. We denote by γ that angle, whose sign is unimportant, since only cos γ will
enter our computations. From the identity (again we consider only the case where
(x, α) < 0)

‖x+ α‖ =
√
‖x‖2 + ‖α‖2 − 2‖x‖ ‖α‖ cos γ,

we deduce that α ∈ C(x) iff

‖α‖ ≤ 4
3(2 cos γ − 1)‖x‖.

We note in particular that whenever α ∈ C(x) and ε ≤ 1, then εα ∈ C(x). Now∫
Rd

‖Xε
s + εα‖ − ‖Xε

s‖
ε

×g(Xε
s , εα)
ε

ν(dα) ≤ −1
2

∫
C(Xε

s )/ε
‖α‖g(Xε

s , εα)
ε

ν(dα)

≤ −(1− e−1)
∫
C(Xε

s−)/ε
‖α‖

(
(2Xε

s + εα, α)−
σ2 ∧ 1

2ε

)
ν(dα)
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where (y, z)− stands for the negative part the the scalar product of the two vectors
y and z, and we have exploited the elementary inequality

1− e−u ≥ (1− e−1)(u ∧ 1), for all u ≥ 0.

We now need to lower bound the factor of −(1− e−1) in the last right hand side.
For that sake, we consider the expression∫

α∈C(x)/ε
‖α‖

(
(2x+ εα, α)−

σ2 ∧ 1
2ε

)
ν(dα).

For ‖x‖ ≤ 2, we lower bound this integral by 0. We now consider the case ‖x‖ > 2.
We lower bound the integral by reducing the integration to the set

Aε(x) = C(x)
ε
∩ {1 ≤ ‖α‖ ≤ 2}.

It is not hard to see that whenever α ∈ Aε(x), −2 ≤
(
α, x
‖x‖

)
< −1/2. Indeed,

the lower bound is clear and from εα ∈ C(x), we deduce that 2(εα, x) + ‖α‖2 ≤
‖α‖2

4 − ‖x‖ × ‖α‖, whence (α, x
‖x‖) ≤ −

‖α]
2 ≤ −

1
2 , since ‖α‖ ≥ 1. Moreover, since

‖x‖ > 2, if α ∈ Aε(x),

−2‖x‖ < (x, α) < −‖x‖2 < −1, because ε‖α‖2 ≤ 1,

provided ε ≤ 1/4. Consequently (x, α) + ε‖α‖2 ≤ 0 and

(2x+ εα, α)− ≥ ‖(x, α)‖ ≥ ‖x‖2 ,

so that∫
Aε(x)

‖α‖
(

(2x+ εα, α)−
σ2 ∧ 1

2ε

)
ν(dα) ≥ 1

2σ2

(
‖x‖ ∧ σ

2

ε

)∫
Aε(x)

‖α‖ν(dα)

≥ β

2σ2

(
‖x‖ ∧ σ

2

ε

)
,

where β = inf‖x‖>2,ε≤1
∫
Aε(x) ‖α‖ν(dα) > 0. We have proved that, with a = σ2 and

c = (1− e−1)β/(2σ2),

‖Xε
t ‖ ≤ ‖Xε

0‖+ v1 × t− c
∫ t

0
1‖Xε

s‖>2

(
‖Xε

s‖ ∧
a

ε

)
ds+N ε

t .

The result follows with C = v1 + 2c. �
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Corollary 1. There exist 0 < ε0 ≤ 1/4, b, k > 0 and B a compact subset of Rd

such that for any 0 < ε ≤ ε0,

‖Xε
t ‖ ≤ ‖Xε

0‖ − bt+ k
∫ t

0
1B(Xε

s )ds+N ε
t . (34)

Proof. We choose B = {x; ‖x‖ ≤ 2C/c} and ε0 = ca
2C . (34) with b = C, k = 2C

now follows from Lemma 4. �

We finally turn to the

Proof of Theorem 3. Step 1. Verification of the positive recur-
rence condition The process Xε

t satisfies (34) which is exactly condition (CD2)
from [12]. Indeed, (33) implies that the function V (x) := ‖x‖ belongs to the
domain of the extended generator Aε of the Markov process Xε

t and that

AεV (x) =
∫
Rd

‖x+ εα‖ − ‖x‖
ε

× g(x, εα)
ε

ν(dα)−
(
v,

x

‖x‖

)
.

The proof of Corollary 1 implies that

AεV (x) ≤ −b+ k1B(x), again for V (x) = ‖x‖.

Step 2. B is a petite set In order to deduce positive Harris recurrence from
Theorem 4.2 in [12], it remains to show that B = {x; ‖x‖ ≤ K}, with K = 2C/c
is a closed petite set. This will follow if we show that there exist two constants
tB, CB > 0 such that for all x ∈ B,

P(Xε
tB
∈ dy|Xε

0 = x) ≥ CB1‖y‖≤1dy. (35)

We choose 0 < η < 1 and define the event

AεK,η =

 Xε
t does not jump on the time interval

[
0, 2K−η

v

]
, and

Xε
t jumps exactly once on the time interval

(
2K−η
v
, 2K
v

]
.


It is plain that P(AεK,η) > 0. Let T ε denote the first jump time of Xε

t . We note
that, provided that Xε

0 = x ∈ B, on the event AεK,η, Xε
T ε− ∈ BK,η, where

BK,η = {x ∈ Rd, −3K ≤ x1 ≤ −K + η, −K ≤ xi ≤ K, 2 ≤ i ≤ d}.

. Let Λε denote a random vector which is such that the law of ε−1Λε has the
density p defined by (6). Denote by fε(y) = εp(εy) the density of the law of Λε.
We define

Σε = Λε1{‖Xε
Tε−+Λε‖≤1+η}.

22



On the event Σε 6= 0, since K > 2 > 1 + η, g(Xε
T−,Σε) ≥ cε,K,η, where

cε,K,η = inf
x∈BK,η ,‖x+α‖≤1+η

g(x, α) > 0.

We denote by ξ the random variable with the uniform distribution on the inter-
val [0, 1], which is such that whenever ξ ≤ g(Xε

T−,Σε), the “proposed” jump Σε

happens at time T ε. Recall that 0 ≤ 2K
v
− T ε < η

v
. On the event AεK,η ∩ {Σε 6=

0} ∩ {ξ ≤ cε,K,η},
X 2K

v
= Xε

T ε− + Σε + v
(2K
v
− T ε

)
,

and for any h ∈ C(Rd,R+),

Eh
(
Xε

2K
v

)
≥ P(AεK,η ∩ {Σε 6= 0})cε,K,ηaε,K,η

∫
‖y‖≤1

h(y)dy,

with
aε,K,η = inf

x∈BK,η ,‖x+y‖≤1+η
fε(y).

(35) follows, with tB = 2K
v

and CB = P(AεK,η ∩ {Σε 6= 0})cε,K,ηaε,K,η.

Step 3. Ergodicity We apply Theorem 5.1 from [12]. All we have to show is
that their condition (S) holds, namely that all compacts sets are petite for some
skeleton chain. In fact in Step 2 of the proof, we have established that B is petite
for a skeleton chain. It is easy to verify that the same proof works when replacing
B by an arbitrary compact set. �

3.2 Tightness of the invariant probability measure of Xε
t

It follows from Theorem 3 that for any ε ≤ ε0, Xε
t possesses a unique invariant

probability measure µε. The aim of this subsection is to prove

Theorem 4. For any sequence εn ↓ 0, the sequence of invariant measures {µεn , n ≥
1} is tight.

The result will follow from the following statement

Proposition 3. There exist two constants a, C ′ > 0 such that for any M > 0, if
ε ≤ a

M
∧ 1

4 , ∫
Rd

(‖x‖ ∧M)µε(dx) ≤ C ′.
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Let us first show how Theorem 4 follows from Proposition 3.

Proof of Theorem 4. We deduce from the above Proposition that whenever
ε ≤ a

M
∧ 1

4 ,

µε(‖x‖ > M) ≤ C ′

M
.

Fix δ > 0 arbitrarily small. Let us from now on fix M ≥ C ′/δ. Let n0 be such
that εn0 ≤ a

M
∧ 1

4 . It follows from the above that for any n ≥ n0,

µεn(‖x‖ > M) ≤ δ.

It is finally easy to find M ′ ≥M such that

µεn(‖x‖ > M ′) ≤ δ

for any 1 ≤ n ≤ n0, hence the result. �

Now return to the

Proof of Proposition 3. It follows readily from Lemma 4 that whenever
Xε

0 = xε0 is deterministic, M < a/ε,

E(‖Xε
t ‖) ≤ ‖xε0‖+ Ct− c

∫ t

0
E [‖Xε

s‖ ∧ (a/ε)] ds

≤ ‖xε0‖+ Ct− c
∫ t

0
E [‖Xε

s‖ ∧M ] ds.

Since the function f(x) = ‖x‖ ∧M is bounded and continuous, it follows from
the last part of Theorem 3 that E [‖Xε

t ‖ ∧M ] →
∫
Rd(‖x‖ ∧M)µε(dx) as t → ∞.

Hence, since the first part of the proof implies that

c

t

∫ t

0
E [‖Xε

s‖ ∧M ] ds ≤ ‖x
ε
0‖
t

+ C

for all t > 0, the result follows by letting t→∞. �

3.3 Asymptotic analysis of the large time behavior of Xε
t

We now want to analyze the large time behavior of Xε
t , for small ε. We first show

Theorem 5. As ε→ 0, µε ⇒ δx̄∞.
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Proof We consider the Xε
t equation started with Xε

0 ∼ µε. Choose a sequence
εn which converges to 0 as n → ∞. Since the collection {µεn}n≥1 is tight, along
a subsequence still denoted the same way, µεn ⇒ µ0. It follows from Theorem 1
(in fact its extension explained in Remark 2) that Xεn

t ⇒ X t, where X t solves the
ODE

dX t

dt
= LX t − v, X0 ∼ µ0.

But for any f ∈ Cb(Rd), n ≥ 1, t → Ef(Xεn
t ) is a constant, so this is true in the

limit, which implies that µ0 = δx∞ . This shows that the whole collection µε ⇒ δx∞
as ε→ 0. �

We expect from the above results that for small enough ε, the invariant measure
µε is close to νε, which is the law of x̄∞ +

√
εξ, where ξ ∼ N (0, S̄2) (recall (32)).

If we interpret µε as the mass of Xε
t for large t, this is not really correct, since for

some large t, Xε
t will make a large deviation from x̄t, see [4].

Therefore, we prefer to interpret µε(A) as

lim
t→∞

1
t

∫ t

0
1A(Xε

s )ds.

We now want to give a precise description of µε for small ε > 0. For that sake, let us
introduce some notation. For any Borel set A and for all ε > 0, let Aε := x̄∞+

√
εA

and denote by λS̄2 = N (0, S̄2) the invariant Gaussian distribution of the Ornstein-
Uhlenbeck process Ut.

Theorem 6. Consider the process Xε
t , starting at time t = 0 from Xε

0 = x̄∞. Let
A be an arbitrary element of Bd such that its boundary ∂A has zero d–dimensional
Lebesgue measure. For any δ > 0 there exist tδ > 0 large enough such that for
any t ≥ tδ, there exists εt,δ > 0 such that for all ε ≤ εt,δ, with a probability larger
than 1− δ, the fraction of the time in the interval [0, t] which Xε

s spends in the set
Aε = x̄∞ +

√
εA belongs to the interval [λS̄2(A)− δ, λS̄2(A) + δ].

Proof. As ε→ 0, for any fixed t > 0, U ε
t being defined by (26),

1
t

∫ t

0
1Aε(Xε

s )ds = 1
t

∫ t

0
1A(U ε

s )ds⇒ 1
t

∫ t

0
1A(Us)ds,

and
1
t

∫ t

0
1A(Us)ds→ λS̄2(A) in probability, as t→∞.

Hence for all δ > 0, there exists tδ > 0 such that for any t ≥ tδ,

P
(∣∣∣∣1t

∫ t

0
1A(Us)ds− λS̄2(A)

∣∣∣∣ ≥ δ
)
≤ δ/2.
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From the Portmanteau theorem,

lim sup
ε→0

P
(∣∣∣∣1t

∫ t

0
1A(U ε

s )ds− λS̄2(A)
∣∣∣∣ ≥ δ

)
≤ δ/2.

Hence there exists εt,δ such that for any 0 < ε ≤ εt,δ,

P
(∣∣∣∣1t

∫ t

0
1A(U ε

s )ds− λS̄2(A)
∣∣∣∣ > δ

)
≤ δ.

Recall that

1A(U ε
s ) =

1, if Xε
s ∈ x̄∞ +

√
εA,

0, otherwise,
implying the result. �
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