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Chapter 1

Introduction and Motivation

1.1 Introduction

We shall study in these lectures parabolic PDEs, which will be mostly non
linear. The general type of equations we have in mind is of the form

∂u

∂t
(t, x) = F (t, x, u(t, x), Du(t, x), D2u(t, x))+G(t, x, u(t, x), Du(t, x))

·
W (t, x),

or in the semi linear case
∂u

∂t
(t, x) = ∆u+ f(t, x, u(t, x)) + g(t, x, u(t, x))

·
W (t, x).

We shall make precise what we mean by
·
W (t, x). We shall distinguish two

cases

1.
·
W is white noise in time and colored noise in space.

2.
·
W is white both in time and in space.

In both cases, we can define
·
W in the distributional sense, as a centered

Gaussian process, indexed by test functions h : IR+ × IRd → IR :
·
W= {

·
W (h); h ∈ C∞(IR+ × IRd)},

whose covariance is given by

IE
( ·
W (h)

·
W (k)

)
=

∫ ∞

0

dt

∫
IRd

dx

∫
IRd

dy h(t, x)k(t, y)ϕ(x− y) in case 1

=

∫ ∞

0

dt

∫
IRd

dx h(t, x)k(t, x) in case 2.
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6 CHAPTER 1. INTRODUCTION AND MOTIVATION

Here ϕ is a “reasonable” kernel, which might blow up to infinity at 0. Note
that the first formula converges to the second one, if we let ϕ converge to the
Dirac mass at 0. On the other hand, the solution of a PDE of the form

∂u

∂t
(t, x) = ∆u(t, x) + f(t, x, u(t, x))

can be considered

1. either as a real valued function of (t, x);

2. or else as a function of t with values in an infinite dimensional space of
functions of x (typically a Sobolev space).

Likewise, in the case of an SPDE of one of the above types, we can consider
the solution

1. either as a one dimensional random field, solution of a multiparameter
SDE;

2. or else as a stochastic process indexed by t, and taking values in an
infinite dimensional function space, solution of an infinite dimensional
SDE.

There are several serious difficulties in the study of SPDEs, which are due to
the lack of regularity with respect to the time variable, and the interaction
between the regularity in time and the regularity in space. As a result,
as we will see, the theory of nonlinear SPDEs driven by space–time white
noise, and with second order PDE operators, is limited to the case of a
one dimensional space variable. Also, there is no really satisfactory theory of
strongly nonlinear SPDEs. See the work of Lions and Souganidis on viscosity
solutions of SPDEs, so far essentially unpublished.

1.2 Motivation

We now introduce several models from various fields, which are expressed as
SPDEs.
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1.2.1 Turbulence

Several mathematicians and physicists have advocated that the Navier–
Stokes equation with additive white noise forcing is a relevant model for
turbulence. This equation in dimension d = 2 or 3 reads

∂u

∂t
(t, x) = ν∆u(t, x) +

d∑
i=1

ui(t, x)
∂u

∂xi

(t, x) +
∂W

∂t
(t, x)

u(0, x) = u0(x),

where u(t, x) = (u1(t, x), . . . , ud(t, x)) is the velocity of the fluid at time t
and point x. The noise term is often choosen of the form

W (t, x) =
∑̀
k=1

W k(t)ek(x),

where {W 1(t), . . . ,W `(t), t ≥ 0} are mutually independent standard Brow-
nian motions.

1.2.2 Population dynamics, population genetics

The following model has been proposed by D. Dawson in 1972, for the evo-
lution of the density of a population

∂u

∂t
(t, x) = ν

∂2u

∂x2
(t, x) + α

√
u(t, x)

·
W (t, x),

where
·
W is a space–time white noise. In this case, one can derive closed

equations for the first two moments

m(t, x) = IE[u(t, x)], V (t, x, y) = IE[u(t, x)u(t, y)].

One can approach this SPDE by a model in discrete space as follows. u(t, i),
i ∈ Z denotes the number of individuals in the colony i at time t. Then

• α2

2
u(t, i) is both the birth and the death rate;

• νu(t, i) is the emigration rate, both from i to i− 1 and to i+ 1.

W. Fleming has proposed an analogous model in population genetics, where
the term α

√
u is replaced by α

√
u(1− u).
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1.2.3 Neurophysiology

The following model has been proposed by J. Walsh [27], in order to describe
the propagation of an electric potential in a neuron (which is identified with
the interval [0, L]).

∂V

∂t
(t, x) =

∂2V

∂x2
(t, x)− V (t, x) + g(V (t, x))

·
W (t, x).

Here again
·
W (t, x) denotes a space–time white noise.

1.2.4 Evolution of the curve of interest rate

This model has been studied by R. Cont in 1998. Let {u(t, x), 0 ≤ x ≤
L, t ≥ 0} the interest rate for a loan at time t, and duration x. We let

u(t, x) = r(t) + s(t)(Y (x) +X(t, x)),

where Y (0) = 0, Y (L) = 1; X(t, 0) = 0, X(t, L) = 1; {(r(t), s(t)), t ≥ 0}
is a two dimensional diffusion process, and X solves the following parabolic
SPDE

∂X

∂t
(t, x) =

k

2

∂2X

∂x2
(t, x) +

∂X

∂x
(t, x) + σ(t,X(t, x))

·
W (t, x).

Several authors have proposed a first order parabolic SPDE (i. e. the above
equation for X with k = 0), with a finite dimensional noise.

1.2.5 Non Linear Filtering

Consider the IRd+k–valued process {(Xt, Yt) t ≥ 0}, solution of the system of
SDEs

Xt = X0 +

∫ t

0

b(s,Xs, Y )ds+

∫ t

0

f(s,Xs, Y )dVs +

∫ t

0

g(s,Xs, Y )dWs

Yt =

∫ t

0

h(s,Xs, Y )ds+Wt,

where the coefficients b, f, g and h may depend at each time s upon the
whole past of Y before time s. We are interested in the evolution in t of the
conditionnal law of Xt, given FY

t = σ{Ys, 0 ≤ s ≤ t}. It is known that if
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we denote by {σt, t ≥ 0} the measure–valued process solution of the Zakai
equation

σt(ϕ) = σ0(ϕ) +

∫ t

0

σs(LsY ϕ)ds+
k∑

`=1

∫ t

0

σs(L
`
sY ϕ)dY `

s , t ≥ 0, ϕ ∈ C∞
b (IRd)

where σ0 denotes the law of X0, and, if a = ff ∗ + gg∗,

LsY ϕ(x) =
1

2

d∑
i,j=1

aij(t, x, Y )
∂2ϕ

∂xi∂xj

(x) +
d∑

i=1

bi(t, x, Y )
∂ϕ

∂xi

(x),

L`
sY ϕ(x) = h`(t, x, Y )ϕ(x) +

d∑
j=1

gi`(t, x, )
∂ϕ

∂xi

(x)

then

IE(ϕ(Xt)|Ft) =
σt(ϕ)

σt(1)
,

i. e. σt, is equal, up to a normalization factor, to the conditionnal law of Xt,
given Ft, see e. g. [22]. Note that whenever the random measure σt posseses
a density p(t, x), the latter satisfies the following SPDE

dp(t, x) =

(
1

2

∑
i,j

∂2(aijp)

∂xi∂xj

(t, x, Y )dt−
∑

i

∂(bip)

∂xi

(t, x, Y )

)
dt

+
∑

`

(
h`p(t, x, Y )−

∑
i

∂(gi`p)

∂xi

(t, x, Y )

)
dY `

t .

1.2.6 Movement by mean curvature in random envi-
ronment

Suppose that each point of a hypersurface in IRd moves in the direction
normal to the hypersurface, with a speed gien by

dV (x) = v1(Du(x), u(x))dt+ v2(u(x)) ◦ dWt,

where {Wt, t ≥ 0} is a one–dimensional standard Brownian motion, and
the notation ◦ means that the stochastic integral is understood in the
Stratonovich sense.
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The hypersurface at time t is a level set of the function {u(t, x), x ∈ IRd},
where u solves a nonlinear SPDE of the form

du(t, x) = F (D2u,Du)(t, x)dt+H(Du)(t, x) ◦ dWt,

where

F (X, p) = tr

[(
I − p⊗ p

|p|2

)
X

]
, H(p) = α|p|.

This is our unique example of a strongly nonlinear SPDE, which cannot be
studied with the methods presented in these notes. It is one of the motivating
examples for the study of viscosity solutions of SPDEs, see Lions, Souganidis
[12].

1.2.7 Hydrodynamic limit of particle systems

The following model has been proposed by L. Bertini and G. Giacomin [2].
The idea is to describe the movement of a curve in IR2 which is the interface
between e. g. water and ice. The true model should be in IR3, but this is an
interesting simplified model.

Consider first a discrete model, where the set of interfaces is the set

Λ = {ξ ∈ ZZ, |ξ(x+ 1)− ξ(x)| = 1, ∀x ∈ Z}.

We describe the infinitesimal generator of the process of interest as follows.
For any ε > 0, we define the infinitesimal generator

Lε(ξ) =
∑
x∈Z

[
c+ε (x, ξ){f(ξ + 2δx)− f(ξ)}

+c−ε (x, ξ){f(ξ − 2δx)− f(ξ)}
]
,

where

δx(y) =

{
0, if y 6= x;

1, if y = x;

c+ε (x, ξ) =

{
1
2

+
√
ε, if ξ(x) = ξ(x−1)+ξ(x+1)

2
− 1;

0, if not;

c−ε (x, ξ) =

{
1
2
, if ξ(x) = ξ(x−1)+ξ(x+1)

2
+ 1;

0, if not.
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Define {ξε
t , t ≥ 0} as the jump Markov process with generator Lε, and

uε(t, x) =
√
ε

(
ξt/ε2

(x
ε

)
−
(

1

2ε3/2
− 1

24ε1/2

)
t

)
,

then we have the following result

Theorem 1.2.1. If
√
εξε

0

(
x
ε

)
⇒ u0(x), and some technical conditions are

met, then uε(t, x) ⇒ u(t, x), where u solves (at least formally) the following
SPDE 

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x)− 1

2

∣∣∣∣∂u∂x(t, x)

∣∣∣∣2 +
·
W (t, x),

u(0, x) = u0(x),

where
·
W denotes the space–time white noise.

The last SPDE is named the KPZ equation, after Kardar, Parisi, Zhang.
Note that if we define v(t, x) = exp[−u(t, x)], we have the following equation
for v

∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x)− v(t, x)

·
W (t, x).

If we regularize
·
W in space, then we construct corresponding sequences vn

and un, which satisfy

∂vn

∂t
(t, x) =

1

2

∂2vn

∂x2
(t, x)− vn(t, x)

·
Wn (t, x),

and

∂un

∂t
(t, x) =

1

2

∂2un

∂x2
(t, x)− 1

2

(∣∣∣∣∂un

∂x
(t, x)

∣∣∣∣2 − cn

)
+

·
Wn (t, x),

where cn → 0, as n→∞.

1.2.8 Fluctuations of an interface on a wall

Funaki and Olla [8] have proposed the following model in discrete space
for the fluctuations of the microscopic height of an interface on a wall (the
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interface is forced to stay above the wall)

dvN(t, x) = − [V ′(vN(t, x)− vN(t, x− 1)) + V ′(vN(t, x)− vN(t, x+ 1)] dt

+ dW (t, x) + dL(t, x), t ≥ 0, x ∈ Γ = {1, 2, . . . , N − 1},
vN(t, x) ≥ 0, L(t, x) is nondecreasing in t, for all x ∈ Γ∫ ∞

0

vN(t, x)dL(t, x) = 0, for all x ∈ Γ

vN(t, 0) = vN(t, N) = 0, t ≥ 0,

where V ∈ C2(IR), is symetric and V ′′ is positive, bounded and bounded away
from zero, and {W (t, 1), . . . ,W (t, N − 1), t ≥ 0} are mutually independent
standard Brownian motions. The above is a coupled system of reflected
SDEs. Assuming that vN(0, ·) is a randomvector whose law is the invariant
distribution of the solution of that system of reflected SDEs, one considers
the rescaled macroscopic height

vN(t, x) =
1

N

∑
y∈Γ

vN(N2t, y)1[y/N−1/2N,y/N+1/2N ](x), 0 ≤ x ≤ 1,

which here converges to 0, as N →∞. Now the fluctuations, defined by

uN(t, x) =
1√
N

∑
y∈Γ

vN(N2t, y)1[y/N−1/2N,y/N+1/2N ](x), 0 ≤ x ≤ 1,

converge, as N → ∞, towards the solution of the reflected stochastic heat
equation

∂u

∂t
(t, x) = ν

∂2u

∂x2
(t, x)+

·
W (t, x) + ξ(t, x)

u(t, x) ≥ 0, ξ is a random measure ,

∫
IR+×[0,1]

u(t, x)ξ(dt, dx) = 0

u(t, 0) = u(t, 1) = 0,

where
·
W (t, x) stands for the “space–time” white noise, and ν is a constant

which is in particular a function of V . Note that this reflected stochastic
heat equation has been studied in Nualart, P. [20].



Chapter 2

SPDEs as infinite dimensional
SDEs

2.1 Itô calculus in Hilbert space

Let (Ω,F , (Ft), IP) be a probability space equipped with a filtration (Ft)
which is supposed to be right continuous and such that F0 contains all the
IP–null sets of F .

Martingales Let H be a Hilbert space, and {Mt, 0 ≤ t ≤ T} be a contin-
uous H–valued martingale, which is such that sup0≤t≤T IE(‖Mt‖2) <∞.

Then {‖Mt‖2, 0 ≤ t ≤ T} is a continuous real–valued submartingale, and
there exists a unique continuous increasing Ft–adapted process {〈M〉t, 0 ≤
t ≤ T} such that {‖Mt‖2 − 〈M〉t, 0 ≤ t ≤ T} is a martingale.

We denote by {Mt ⊗Mt, 0 ≤ t ≤ T} the L1
+(H)–valued process defined

by

((Mt ⊗Mt)h, k)H = (Mt, h)H × (Mt, k)H ,

h, k ∈ H. We have used the notation L1
+(H) to denote the set of self–adjoint

semi–definite linear positive trace–class operators fromH into itself. We have
the following Theorem, whose last assertion is due to Métivier and Pistone

Theorem 2.1.1. To any continuous square integrable H–valued martingale
{Mt, 0 ≤ t ≤ T}, we can associate a unique continuous adapted increasing
L1

+(H)–valued process {〈〈M〉〉t, 0 ≤ t ≤ T} such that {Mt⊗Mt−〈〈M〉〉t, 0 ≤

13
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t ≤ T} is a martingale. Moreover, there exists a unique predictable L1
+(H)–

valued process {Qt, 0 ≤ t ≤ T} such that

〈〈M〉〉t =

∫ t

0

Qsd〈M〉s, 0 ≤ t ≤ T.

Note that since Tr is a linear operator,

Tr(Mt ⊗Mt − 〈〈M〉〉t) = ‖Mt‖2 − Tr〈〈M〉〉t

is a real valued martingale, hence Tr〈〈M〉〉t = 〈M〉t. Consequenty, we have
that 〈M〉t =

∫ t

0
TrQsd〈M〉s, and

TrQt = 1, t a. e., a. s. (2.1)

Example 2.1.2. H–valued Wiener process Let {Bk
t , t ≥ 0, k ∈ IN} be

a collection of mutually independent standard scalar Brownian motions, and
Q ∈ L1

+(H). If {ek, k ∈ IN} is an orthonormal basis of H. Then the process

Wt =
∑
k∈IN

Bk
t Q

1/2ek, t ≥ 0

is an H–valued square integrable martingale, with 〈W 〉t = TrQ × t, and
Qt = Q/TrQ. It is called an H–valued Wiener process, or Brownian motion.

Conversely, if {Mt, 0 ≤ t ≤ T} is a continuous H–valued martingale,
such that 〈M〉t = c × t and Qt = Q, where c ∈ IR+ and Q ∈ L1

+(H) are
deterministic, then {Mt, 0 ≤ t ≤ T} is an H–valued Wiener process (this is
an infinite dimensional version of a well–known theorem due to P. Lévy).

Example 2.1.3. Cylindrical Brownian motion This should be called a
“counter–example”, rather than an example. Let again {Bk

t , t ≥ 0, k ∈ IN}
be a collection of mutually independent standard scalar Brownian motions,
and {ek, k ∈ IN} an orthonormal basis of H. Then the series

Wt =
∑
k∈IN

Bk
t ek

does not converge in H. In fact it converges in any larger space K such that
the injection from H into K is Hilbert–Schmidt. We shall call such a process
a cylindrical Wiener process on H (which does not take its values in H !).
Formally, 〈〈W 〉〉t = tI, which is not trace class !
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Stochastic integral with respect to an H–valued martingale Let
{ϕt, 0 ≤ t ≤ T} be a predictable H–valued process such that∫ T

0

(Qtϕt, ϕt)Hd〈M〉t <∞ a. s.

Then we can define the stochastic integral∫ t

0

(ϕs, dMs)H , 0 ≤ t ≤ T.

More precisely, we have that∫ t

0

(ϕs, dMs)H = lim
n→∞

n−1∑
i=1

(
1

tni − tni−1

∫ tni

tni−1

ϕsds,Mtni+1∧t −Mtni ∧t

)
H

,

with for example tni = iT/n. The above limit holds in probability.
The process {

∫ t

0
(ϕs, dMs)H , 0 ≤ t ≤ T} is a continuous IR–valued local

martingale, with

〈
∫ ·

0

(ϕs, dMs)H〉t =

∫ t

0

(Qsϕs, ϕs)Hd〈M〉s,

and if moreover

IE

∫ T

0

(Qtϕt, ϕt)Hd〈M〉t <∞,

then the above stochastic integral is a square integrable martingale.

Stochastic integral with respect to a cylindrical Brownian motion
Let again {ϕt, 0 ≤ t ≤ T} be a predictable H–valued process, and we
suppose now that ∫ T

0

‖ϕt‖2
Hdt <∞ a. s.

It is then not very difficult to show that∫ t

0

(ϕs, dWs) = lim
n→∞

n∑
k=1

∫ t

0

(ϕs, ek)dB
k
s

exists as a limit in probability.
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Itô formula Let {Xt}, {Vt} and {Mt} be H–valued processes, where

• Xt = X0 + Vt +Mt, t ≥ 0,

• {Vt} is a bounded variation process with V0 = 0,

• {Mt} is a local martingale with M0 = 0.

Let moreover Φ : H → IR be such that Φ ∈ C1(H; IR), and for any h ∈ H,
Φ′′(h) exists in the Gateau sense, and moreover ∀Q ∈ L1(H), the mapping
h→ Tr(Φ′′(h)Q) is continuous. Then we have

Φ(Xt) = Φ(X0) +

∫ t

0

(Φ′(Xs), dVs) +

∫ t

0

(Φ′(Xs), dMs)

+
1

2

∫ t

0

Tr(Φ′′(Xs)Qs)d〈M〉s

Example 2.1.4. The case where Φ(h) = ‖h‖2
H will be important in what

follows. In that case, we have

‖Xt‖2 = ‖X0‖2 + 2

∫ t

0

(Xs, dVs) + 2

∫ t

0

(Xs, dMs) + 〈M〉t,

since here Φ′′/2 = I, and TrQs = 1, see (2.1).

2.2 SPDE with additive noise

This is the simplest case, where the existence–uniqueness theory needs almost
no more than the theory of deterministic PDEs. We are motivated by the
two following examples :

1. The heat equation with additive noise. Let us consider our last example
from section 1.2.8, but whithout the reflection, i. e. the SPDE (here
in arbitrary dimension, x ∈ D ⊂ IRd)

∂u

∂t
(t, x) = ν∆u(t, x) +

∂W

∂t
(t, x), t ≥ 0, x ∈ D

u(0, x) = u0(x), u(t, x) = 0, t ≥ 0, x ∈ ∂D,

where {W (t, x), t ≥ 0, x ∈ D} denotes a Wiener process with respect
to the time variable, with arbitrary correlation in the spatial variable
(possibly white in space).
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2. The two–dimensional Navier–Stokes equation with additive finite di-
mensional noise. Its vorticity formulation is as follows

∂ω

∂t
(t, x) +B(ω, ω)(t, x) = ν∆ω(t, x) +

∂W

∂t
(t, x)

ω(0, x) = ω0(x),

where x = (x1, x2) ∈ T2, the two-dimensional torus [0, 2π] × [0, 2π],
ν > 0 is the viscosity constant, ∂W

∂t
is a white–in–time stochastic forcing

of the form

W (t, x) =
∑̀
k=1

Wk(t)ek(x),

where {W1(t), . . . ,W`(t)} are mutually independent standard Brownian
motions and

B(ω, ω̃) =
2∑

i=1

ui(x)
∂ω̃

∂xi

(x)

where u = K(ω). Here K is the Biot-Savart law which in the two-
dimentsional periodic setting can be expressed

K(ω) =
∑
k∈Z2

∗

k⊥

|k|2
[
βk cos(k · x)− αk sin(k · x)

]
(2.2)

where k⊥ = (−k2, k1) and ω(t, x) =
∑

k∈Z2
∗
αk cos(k · x) + βk sin(k · x)

with Z2
∗ = {(j1, j2) ∈ Z2 : j2 ≥ 0, |j| > 0}.

Let us start with some results on PDEs, sketching two different approaches.

2.2.1 The semi–group approach to linear parabolic
PDEs

First consider the following abstract linear parabolic equation
∂u

∂t
(t) = Au(t), t ≥ 0

u(0) = u0,
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where A is (possibly unbounded) linear operator in some Hilbert space H,
i. e. A maps its domain D(A) ⊂ H into H. Suppose that u0 ∈ H, and we
are looking for a solution which should take its values in H. For each t > 0,
the mapping u0 → u(t) is a linear mapping P (t) ∈ L(H), and the mappings
{P (t), t ≥ 0} form a semigroup, in the sense that P (t + s) = P (t)P (s).
A is called the infinitesimal generator of this semigroup. Suppose now that
H = L2(D), where D is some domain in IRd. Then the linear operator P (t)
has a kernel p(t, x, y) such that ∀h ∈ L2(D),

[P (t)h](x) =

∫
D

p(t, x, y)h(y)dy.

Example 2.2.1. If D = IRd, and A = 1
2
∆, then

p(t, x, y) =
1

(2πt)d/2
exp

(
−|x− y|2

2t

)
.

Consider now the PDE
∂u

∂t
(t) = Au(t) + f(t), t ≥ 0

u(0) = u0,

where f(·) is an H–valued function of t. The solution of this last equation is
given by the variation of constants formula

u(t) = P (t)u0 +

∫ t

0

P (t− s)f(s)ds.

Consider now the parabolic equation with additive white noise, i. e.
du

dt
(t) = Au(t) +

dW

dt
(t), t ≥ 0

u(0) = u0,
(2.3)

where {W (t), t ≥ 0} is an H–valued Wiener process. Then the variation of
constants formula, generalized to this situation, yields the following formula
for u(t) :

u(t) = P (t)u0 +

∫ t

0

P (t− s)dW (s),
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in terms of a Wiener integral. In the case H = L2(D), W (t) = W (t, x)
and this formula can be rewritten in terms of the kernel of the semigroup as
follows

u(t, x) =

∫
D

p(t, x, y)u0(y)dy +

∫ t

0

∫
D

p(t− s, x, y)W (ds, y)dy.

In the case of the cylindrical Wiener process, i. e. if the equation is driven
by space–time white noise, then the above formula takes the form

u(t, x) =

∫
D

p(t, x, y)u0(y)dy +

∫ t

0

∫
D

p(t− s, x, y)W (ds, dy),

where {W (t, x), t ≥ 0, x ∈ D} denotes the so–called Brownian sheet, and
the above is a two–parameter stochastic integral, which we will discuss in
more detail in chapter 3. We just considered a case where W (t) does not
take its values in H.

Let us now discuss the opposite case, where W (t) takes its values not
only in H, but in fact in D(A). Then considering again the equation (2.3),
and defining v(t) = u(t)−W (t), we have the following equation for v :

dv

dt
(t) = Av(t) + AW (t)

v(0) = u0,

which can be solved ω by ω, whithout any stochastic integration.

2.2.2 The variational approach to linear and nonlinear
parabolic PDEs

We now sketch the variational approach to deterministic PDEs, which was
developped among others by J. L. Lions. We first consider the case of

Linear equations From now on, A will denote an extension of the un-
bounded operator from the previous section. That is, instead of considering

A : D(A) −→ H,

we shall consider
A : V −→ V ′,
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where

D(A) ⊂ V ⊂ H ⊂ V ′.

More precisely, the framework is as follows.

H is a separable Hilbert space. We shall denote by | · |H or simply by | · |
the norm in H and by (·, ·)H or simply (·, ·) its scalar product. Let V ⊂ H
be a reflexive Banach space, which is dense in H, with continuous injection.
We shall denote by ‖ ·‖ the norm in V . We shall identify H with its dual H ′,
and consider H ′ as a subspace of the dual V ′ of V , again with continuous
injection. We then have the situation

V ⊂ H ' H ′ ⊂ V ′.

More precisely, we assume that the duality pairing 〈·, ·〉 between V and V ′

is such that whenever u ∈ V and v ∈ H ⊂ V ′, 〈u, v〉 = (u, v)H . Finally, we
shall denote by ‖ · ‖∗ the norm in V ′, defined by

‖v‖∗ = sup
u∈V, ‖u‖≤1

〈u, v〉.

We can whithout loss of generality assume that whenever u ∈ V , |u| ≤ ‖u‖.
It then follows (exercise) that if again u ∈ V , ‖u‖∗ ≤ |u| ≤ ‖u‖.

Now suppose an operator A ∈ L(V, V ′) is given, which is assumed to
satisfy the following coercivity assumption :{

∃λ, α > 0 such that ∀u ∈ V,
2〈Au, u〉+ α‖u‖2 ≤ λ|u|2,

Example 2.2.2. Let D be an open domain in IRd. We let H = L2(D) and
V = H1(D), where

H1(D) = {u ∈ L2(D);
∂u

∂xi

∈ L2(D), i = 1, . . . , d}.

Equipped with the scalar product

((u, v)) =

∫
D

u(x)v(x)dx+
d∑

i=1

∫
D

∂u

∂xi

(x)
∂v

∂xi

(x)dx,
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H1(D) is a Hilbert space, as well as H1
0 (D), which is the closure in H1(D)

of the set C∞
K (D) of smooth functions with support in a compact subset of D.

We now let

∆ =
d∑

i=1

∂2

∂x2
i

.

∆ ∈ L(H1(D), [H1(D)]′), and also ∆ ∈ L(H1
0 (D), [H1

0 (D)]′). Note that pro-
vided that the boundary ∂D of D is a little bit smooth, H1

0 (D) can be identified
with the closed subset of H1(D) consisting of those functions which are zero
on the boundary ∂D (one can indeed make sense of the trace of u ∈ H1(D)
on the boundary ∂D. [H1

0 (D)]′ = H−1(D), where any element of H−1(D)
can be put in the form

f +
d∑

i=1

∂gi

∂xi

,

where f, g1, . . . , gd ∈ L2(D).

We consider the linear parabolic equation
du

dt
(t) = Au(t) + f(t), t ≥ 0;

u(0) = u0.
(2.4)

We have the

Theorem 2.2.3. If A ∈ L(V, V ′) is coercive, u0 ∈ H and f ∈ L2(0, T ;V ′),
then the equation (2.4) has a unique solution u ∈ L2(0, T ;V ), which also
belongs to C([0, T ];H).

We first need to show the following interpolation result

Lemma 2.2.4. If u ∈ L2(0, T ;V ), t → u(t) is absolutely continuous with
values in V ′, and du

dt
∈ L2(0, T ;V ′), then u ∈ C([0, T ];H) and

d

dt
|u(t)|2 = 2〈du

dt
(t), u(t)〉, t a. e.

Proof of Theorem 2.2.3 Uniqueness Let u, v ∈ L2(0, T ;V ) two solu-
tions of equation (2.4). Then the difference u− v solves

d(u− v)

dt
(t) = A(u(t)− v(t)),

u(0)− v(0) = 0.
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Then from the Lemma,

|u(t)− v(t)|2 = 2

∫ t

0

〈A(u(s)− v(s)), u(s)− v(s)〉ds ≤ λ

∫ t

0

|u(s)− v(s)|2ds,

and Gronwall’s lemma implies that u(t)− v(t) = 0, ∀t ≥ 0.
Existence We use a Galerkin approximation. Let {ek, k ≥ 1} denote an
orthonormal basis of H, made of elements of V . For each n ≥ 1, we define

Vn = span{e1, e2, . . . , en}.

For all n ≥ 1, there exists a function un ∈ C([0, T ];Vn) such that for all
1 ≤ k ≤ n,

d

dt
(un(t), ek) = 〈Aun(t), ek〉+ 〈f(t), ek〉,

(un(0), ek) = (u0, ek).

un is the solution of a finite dimensional linear ODE. We now prove the
following uniform estimate

sup
n

[
sup

0≤t≤T
|un(t)|2 +

∫ T

0

‖un(t)‖2dt

]
<∞. (2.5)

It is easily seen that

|un(t)|2 =
n∑

k=1

(u0, ek)
2 + 2

∫ t

0

〈Aun(s) + f(s), un(s)〉ds.

Hence we deduce from the coercivity of A that

|un(t)|2 + α

∫ t

0

‖un(s)‖2ds ≤ |u0|2 +

∫ T

0

‖f(s)‖2
∗ds+ (λ+ 1)

∫ t

0

|un(s)|2ds,

and (2.5) follows from Gronwall’s lemma.
Now there exists a subsequence, which, by an abuse of notation, we still

denote {un}, which converges in L2(0, T ;V ) weakly to some u. Since A is
linear and continuous from V into V ′, it is also continuous for the weak
topologies, and taking the limit in the approximating equation, we have a
solution of (2.4). �

Let us now indicate how this approach can be extended to
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Nonlinear equations Suppose now that A : V → V ′ is a nonlinear
operator satisfying again the coercivity assumption. We can repeat the first
part of the above proof. However, taking the limit in the approximating
sequence is now much more involved. The problem is the following. While a
continuous linear operator is continuous for the weak topologies, a nonlinear
operator which is continuous for the strong topologies, typically fails to be
continuous with respect to the weak topologies.

In the framework which has been exposed in this section, there are two
possible solutions, which necessitate two different assumptions.

1. Monotonicity. If we assume that the non linear operator A satisfies
in addition the condition

〈A(u)− A(v), u− v〉 ≤ λ|u− v|2,

together with some boundedness condition of the type ‖A(u)‖∗ ≤ c(1+
‖u‖), and some continuity condition, then the above difficulty can be
solved. Indeed, following the proof in the linear case, we show both
that {un} is a bounded sequence in L2(0, T ;V ) and that {A(un)} is a
bounded sequence in L2(0, T ;V ′). Hence there exists a subsequence,
still denoted the same way, along which un → u in L2(0, T ;V ) weakly,
and A(un) → ξ weakly in L2(0, T ;V ′). It remains to show that ξ =
A(u). Let us explain the argument, in the case where the monotonicity
assumption is satisfied with λ = 0. Then we have that for all v ∈
L2(0, T ;V ), ∫ T

0

〈A(un(t))− A(v(t)), un(t)− v(t)〉dt ≤ 0.

The above expression can be developped into four terms, three of which
converge whithout any difficulty to the wished limit. The only difficulty
is with the term∫ T

0

〈A(un(t)), un(t)〉dt =
1

2

[
|un(T )|2 −

n∑
k=1

(u0, ek)
2

]
−
∫ T

0

〈f(t), un(t)〉dt.

Two of the three terms of the right hand side converge. The first one
DOES NOT. But it is not hard to show that the subsequence can
be choosen in such a way that un(T ) → u(T ) in H weakly, and the
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mapping which to a vector in H associates the square of its norm is
convex and strongly continuous, hence it is the upper envelope of linear
continuous (hence also weakly continuous) mappings, hence it is l. s.
c. with respect to the weak topology of H, hence

liminfn|un(T )|2 ≥ |u(T )|2,
and consequently we have that, again for all v ∈ L2(0, T ;V ),∫ T

0

〈ξ(t)− A(v(t)), u(t)− v(t)〉dt ≤ 0.

We now choose v(t) = u(t) − θw(t), with θ > 0, divide by θ, and let
θ → 0, yielding ∫ T

0

〈ξ(t)− A(u(t)), w(t)〉dt ≤ 0.

Since w is an arbitrary element of L2(0, T, ;V ), the left hand side must
vanish, hence ξ ≡ A(u).

Example 2.2.5. The simplest example of an operator which is mono-
tone in the above sense is an operator of the form

A(u)(x) = ∆u(x) + f(u(x)),

where f : IR → IR is the sum of a Lipschitz and a decreasing function.

2. Compactness We now assume that the injection from V into H is
compact (in the example V = H1(D), H = L2(D), this implies that
D be bounded). Note that in the preceding arguments, there was
no serious diffculty in proving that the sequence {dun

dt
} is bounded in

L2(0, T ;V ′). But one can show the following compactness Lemma (see
Lions [11]) :

Lemma 2.2.6. Let the injection from V into H be compact. If a
sequence {un} is bounded in L2(0, T ;V ), while the sequence {dun

dt
} is

bounded in L2(0, T ;V ′), then one can extract a subsequence of the se-
quence {un}, which converges strongly in L2(0, T ;H).

Let us explain how this Lemma can be used in the case of the Navier–
Stokes equation. The nonlinear term is the sum of terms of the form
ui(t, x)

∂u
∂xi

, i. e. the product of a term which converges strongly with
a term which converges weakly, i. e. one can take the limit in that
product.
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PDE with additive noise Let us now consider the parabolic PDE
du

dt
(t) = A(u(t)) + f(t) +

dW

dt
(t), t ≥ 0;

u(0) = u0.

If we assume that the trajectories of the Wiener process {W (t)} belong to
L2(0, T ;V ), then we can define v(t) = u(t) −W (t), and note that v solves
the PDE with random coefficents

dv

dt
(t) = A(v(t) +W (t)) + f(t), t ≥ 0;

u(0) = u0,

which can again be solved ω by ω, whithout any stochastic integration. How-
ever, we want to treat equations driven by a noise which does not necessarily
takes its values in V , and also may not be additive.

2.3 Variational approach to SPDEs

The framework is the same as in the last subsection.

2.3.1 Monotone – coercive SPDEs

Let A : V → V ′ and for each k ≥ 1, Bk : V → H, so that B = (Bk, k ≥ 1) :
V → H = `2(H).

We make the following four basic assumptions :
Coercivity

(H1)

{
∃α > 0, λ, ν such that ∀u ∈ V,
2〈A(u), u〉+ |B(u)|2H + α‖u‖2 ≤ λ|u|2 + ν,

Monotonicity

(H2)

{
∃λ > 0 such that ∀u, v ∈ V,
2〈A(u)− A(v), u− v〉+ |B(u)−B(v)|2H ≤ λ|u− v|2.

Linear growth

(H3) ∃c > 0 such that ‖A(u)‖∗ ≤ c(1 + ‖u‖), ∀u ∈ V,
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Weak continuity

(H4)

{
∀u, v, w ∈ V,
the mapping λ→ 〈A(u+ λv), w〉 is continuous from IR into IR.

Note that

|B(u)|2H =
∞∑

k=1

|Bk(u)|2, |B(u)−B(v)|2H =
∞∑

k=1

|Bk(u)−Bk(v)|2.

We want to study the equation

u(t) = u0 +

∫ t

0

A(u(s))ds+

∫ t

0

B(u(s))dWs

= u0 +

∫ t

0

A(u(s))ds+
∞∑

k=1

∫ t

0

Bk(u(s))dW
k
s ,

(2.6)

where u0 ∈ H, and {Wt = (W k
t , k = 1, 2, . . .), t ≥ 0} is a sequence of

mutually independent Ft–standard scalar Brownian motions. We shall look
for a solution u whose trajectories should satisfy u ∈ L2(0, T ;V ), for all
T > 0. Hence A(u(·)) ∈ L2(0, T ;V ′), for all T > 0. In fact, the above
equation can be considered as an equation in the space V ′, or equivalently
we can write the equation in the so–called weak form

(u(t), v) = (u0, v) +

∫ t

0

〈A(u(s)), v〉ds+

∫ t

0

(B(u(s)), v)dWs, ∀v ∈ V, t ≥ 0,

(2.7)
where the stochatic integral term should be interpreted as∫ t

0

(B(u(s)), v)dWs =
∞∑

k=1

∫ t

0

(Bk(u(s)), v)dW
k
s .

Remark 2.3.1. Since |u| ≤ ‖u‖, it follows from (H1) + (H3) that for some
constant c′, |B(u)|H ≤ c′(1 + ‖u‖).

We can w. l. o. g. assume that λ is the same in (H1) and in (H2). In
fact one can always reduce to the case λ = 0, since v = e−λt/2u solves the
same equation, with A replaced

e−λt/2A(eλt/2·)− λ

2
I,
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and B replaced by

e−λt/2B(eλt/2·),

and in many cases this new pair satisfies (H1) and (H2) with λ = 0.

Remark 2.3.2. We can replace in (H1) ‖u‖2 by ‖u‖p, with p > 2, provided
we replace (H3) by

(H3)p ∃c > 0 such that ‖A(u)‖∗ ≤ c(1 + ‖u‖p−1), ∀u ∈ V.

This modified set of assumptions is well adapted for treating certain non
linear equations, see the last example in the next subsection. Note that the
operator A can be the sum of several Ai’s with different associated pi’s.

We can now state the main result of this section.

Theorem 2.3.3. Under the assumptions (H1), (H2), (H3) and (H4), if
u0 ∈ H, there exists a unique adapted process {u(t), t ≥ 0} whose trajectories
belong a. s. for any T > 0 to the space L2(0, T ;V )∩C([0, T ];H), which is a
solution to equation (2.6).

An essential tool for the proof of this Theorem is the following ad hoc Itô
formula:

Lemma 2.3.4. Let u0 ∈ H, {u(t), 0 ≤ t ≤ T} and {v(t), 0 ≤ t ≤ T}
be adapted processes with trajectories in L2(0, T ;V ) and L2(0, T ;V ′) respec-
tively, and {Mt, 0 ≤ t ≤ T} be a continuous H–valued local martingale, such
that

u(t) = u0 +

∫ t

0

v(s)ds+Mt.

Then

(i) u ∈ C([0, T ];H) a. s.

(ii) the following formula holds ∀0 ≤ t ≤ T and a. s.

|u(t)|2 = |u0|2 + 2

∫ t

0

〈v(s), u(s)〉ds+ 2

∫ t

0

(u(s), dMs) + 〈M〉t.
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Proof: Proof of (ii) Since V is dense in H, there exists an orthonormal
basis {ek, k ≥ 1} of H with each ek ∈ V . For the sake of this proof, we shall
assume that V is a Hilbert space, and that the above basis is also orthogonal
in V . Also these need not be true, it holds in many interesting examples.
The general proof is more involved that the one which follows. We have,
with the notation Mk

t = (Mt, ek),

|u(t)|2 =
∑

k

(u(t), ek)
2

=
∑

k

[
(u0, ek)

2 + 2

∫ t

0

〈v(s), ek〉(ek, u(s))ds+ 2

∫ t

0

(u(s), ek)dM
k
s + 〈Mk〉t

]
= |u0|2 + 2

∫ t

0

〈v(s), u(s)〉ds+ 2

∫ t

0

(u(s), dMs) + 〈M〉t.

Proof of (i) It clearly follows from our assumptions that u ∈ C([0, T ];V ′)
a. s. Moreover, from (ii), t → |u(t)| is a. s. continuous. It suffices to
show that t → u(t) is continuous into H equipped with its weak topology,
since whenever un → u in H weakly and |un| → |u|, then un → u in H
strongly (easy exercise, exploiting the fact that H is a Hilbert space). Now,
clearly u ∈ L∞(0, T ;H) a. s., again thanks to (ii). Now let h ∈ H and
a sequence tn → t, as n → ∞ be arbitrary. All we have to show is that
(u(tn), h) → (u(t), h) a. s. Let {hm, m ≥ 1} ⊂ V be such that hm → h in
H, as m → ∞. Let us choose ε > 0 arbitrary, and m0 large enough, such
that

sup
0≤t≤T

|u(t)| × |h− hm| ≤ ε/2, m ≥ m0.

It follows that

|(u(t), h)− (u(tn), h)| ≤ |(u(t), h− hm0)|+ |(u(t)− u(tn), hm0)|+ |(u(tn), h− hm0)|
≤ ‖u(t)− u(tn)‖∗ × ‖hm0‖+ ε,

hence
limsupn|(u(t), h)− (u(tn), h)| ≤ ε,

and the result follows from the fact that ε is arbitrary. �
We give a further result, which will be needed below.

Lemma 2.3.5. Under the assumptions of Lemma 2.3.4, and given a function
Φ from H into IR, which satisfies all the assumptions from the Itô formula
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in section 2.1, plus the fact that Φ′(u) ∈ V whenever u ∈ V , and that the
mapping u → Φ′(u) is continuous from V into V equipped with the weak
topology, and for some c, all u ∈ V ,

‖Φ′(u)‖ ≤ c(1 + ‖u‖).

Then we have the Itô formula

Φ(Xt) = Φ(X0) +

∫ t

0

〈vs,Φ
′(Xs)〉ds+

∫ t

0

(Φ′(Xs), dMs)

+
1

2

∫ t

0

Tr(Φ′′(Xs)Qs)d〈M〉s

Proof of Theorem 2.3.3 Uniqueness Let u, v ∈ L2(0, T ;V ) ∩
C([0, T ];H) a. s. be two adapted solutions. For each n ≥ 1, we define
the stopping time

τn = inf{t ≤ T ; |u(t)|2 ∨ |v(t)|2 ∨
∫ t

0

(‖u(s)‖2 + ‖v(s)‖2)ds ≥ n}.

We note that τn → ∞ a. s., as n → ∞. Now we apply Lemma 2.3.4 to the
difference u(t)− v(t), which satisfies

u(t)− v(t) =

∫ t

0

[A(u(s))− A(v(s))]ds+

∫ t

0

[B(u(s))−B(v(s))]dWs.

Clearly Mt =
∫ t

0
[B(u(s)) − B(v(s))]dWs is a local martingale, and 〈M〉t =∫ t

0
|B(u(s))−B(v(s))|2Hds. Hence we have

|u(t)− v(t)|2 = 2

∫ t

0

〈A(u(s))− A(v(s)), u(s)− v(s)〉ds

+ 2

∫ t

0

(u(s)− v(s), B(u(s))−B(v(s)))dWs

+

∫ t

0

|B(u(s))−B(v(s))|2Hds

If we write that identity with t replaced by t∧ τn = inf(t, τn), it follows from
the first part of Remark 2.3.1 that the stochastic integral∫ t∧τn

0

(u(s)− v(s), B(u(s))−B(v(s)))dWs
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is a martingale with zero mean. Hence taking the expectation and exploiting
the monotonicity assumption (H2) yields

IE[|u(t ∧ τn)− v(t ∧ τn)|2] = 2IE

∫ t∧τn

0

〈A(u(s))− A(v(s)), u(s)− v(s)〉ds

+ IE

∫ t∧τn

0

|B(u(s))−B(v(s))|2Hds

≤ λIE

∫ t∧τn

0

|u(s)− v(s)|2ds

≤ λIE

∫ t

0

|u(s ∧ τn)− v(s ∧ τn)|2ds,

hence from Gronwall’s Lemma, u(t∧τn)−v(t∧τn) = 0 a. s., for all 0 ≤ t ≤ T
and all n ≥ 1. Uniqueness is proved.
Existence We use a Galerkin approximation. Again, {ek, k ≥ 1} denotes
an orthonormal basis of H, made of elements of V . For each n ≥ 1, we define

Vn = span{e1, e2, . . . , en}.

The two main steps in the proof of existence is contained in the two following
Lemmas :

Lemma 2.3.6. For all n ≥ 1, there exists an adapted process un ∈
C([0, T ];Vn) a. s. such that for all 1 ≤ k ≤ n,

(un(t), ek) = (u0, ek)+

∫ t

0

〈A(un(s)), ek〉ds+
n∑

`=1

∫ t

0

(B`(un(s)), ek)dW
`
s . (2.8)

Lemma 2.3.7.

sup
n

IE

[
sup

0≤t≤T
|un(t)|2 +

∫ T

0

‖un(t)‖2dt

]
<∞.

Let us admit for a moment these two Lemmas, and continue the proof
of the Theorem. Lemma 2.3.7 tells us that the sequence {un, n ≥ 1} is
bounded in L2(Ω;C([0, T ];H) ∩ L2(Ω × [0, T ];V ). It then follows from our
assumptions that

1. the sequence {A(un), n ≥ 1} is bounded in L2(Ω× [0, T ];V ′);
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2. the sequence {B(un), n ≥ 1} is bounded in L2(Ω× [0, T ];H).

Hence there exists a subsequence of the original sequence (which, by an abuse
of notation, we do not distinguish from the original sequence), such that

un ⇀ u in L2(Ω;L2(0, T ;V ) ∩ L∞(0, T ;H))

A(un) ⇀ ξ in L2(Ω× (0, T );V ′)

B(un) ⇀ η in L2(Ω× (0, T );H)

weakly (and in fact weakly ? in the L∞ space). It is now easy to let n→∞
in equation (2.8), and deduce that for all t ≥ 0, k ≥ 1,

(u(t), ek) = (u0, ek) +

∫ t

0

〈ξ(s), ek〉ds+
∞∑

`=1

∫ t

0

(η`(s), ek)dW
`
s . (2.9)

It thus remains to prove that

Lemma 2.3.8. We have the identities ξ = A(u) and η = B(u).

We now need to prove the three Lemmas.
Proof of Lemma 2.3.6 If we write the equation for the coefficients of
un(t) in the basis of Vn, we obtain a usual finite dimensional Itô equation,
to which the classical theory does not quite apply, since the coefficients of
that equation need not be Lipschitz. However, several results allow us to
treat the present situation. We shall not discuss this point further, since
it is technical, and in all the examples we have in mind, the coefficients of
the approximate finite dimensional equation are locally Lipschitz, which the
reader can as well assume for convenience.
Proof of Lemma 2.3.7 We first show that

sup
n

[
sup

0≤t≤T
IE(|un(t)|2) + IE

∫ T

0

‖un(s)‖2ds

]
<∞. (2.10)

From equation (2.8) and Itô’s formula, we deduce that for all 1 ≤ k ≤ n,

(un(t), ek)
2 = (u0, ek)

2 + 2

∫ t

0

(un(s), ek)〈A(un(s)), ek〉ds

+ 2
n∑

`=1

∫ t

0

(un(s), ek)(B`(un(s)), ek)dW
`
s +

n∑
`=1

∫ t

0

(B`(un(s)), ek)
2ds
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Summing from k = 1 to k = n, we obtain

|un(t)|2 =
n∑

k=1

(u0, ek)
2 + 2

∫ t

0

〈A(un(s)), un(s)〉ds

+ 2
n∑

`=1

∫ t

0

(B`(un(s)), un(s))dW `
s +

n∑
`=1

n∑
k=1

∫ t

0

(B`(un(s)), ek)
2ds,

(2.11)

from which we deduce that

|un(t)|2 ≤ |u0|2 + 2

∫ t

0

〈A(un(s)), un(s)〉ds

+ 2
n∑

`=1

∫ t

0

(B`(un(s)), un(s))dW `
s +

∫ t

0

|B(un(s))|2Hds,
(2.12)

Now we take the expectation in the above inequality :

IE(|un(t)|2) ≤ |u0|2 + 2IE

∫ t

0

〈A(un(s)), un(s)〉ds+ IE

∫ t

0

|B(un(s))|2Hds,

and combine the resulting inequality with the assumption (H1), yielding

IE

(
|un(t)|2 + α

∫ t

0

‖un(s)‖2ds

)
≤ |u0|2 + λIE

∫ t

0

|un(s)|2ds+ νt. (2.13)

Combining with Gronwall’s Lemma, we conclude that

sup
n

sup
0≤t≤T

IE(|un(t)|2) <∞, (2.14)

and combining the last two inequalities, we deduce that

sup
n

IE

∫ T

0

‖un(t)‖2dt <∞. (2.15)

The estimate (2.10) follows from (2.14) + (2.15). We now take the sup over
t in (2.12), yielding

sup
0≤t≤T

|un(t)|2 ≤ |u0|2 + 2

∫ T

0

|〈A(un(s)), un(s)〉|ds

+ 2 sup
0≤t≤T

∣∣∣∣∣
n∑

`=1

∫ t

0

(B`(un(s)), un(s))dW `
s

∣∣∣∣∣+
∫ T

0

|B(un(s))|2Hds.

(2.16)
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Now the Davis–Burkholder–Gundy inequality tells us that

IE

[
2 sup

0≤t≤T

∣∣∣∣∣
n∑

`=1

∫ t

0

(B`(un(s)), un(s))dW `
s

∣∣∣∣∣
]

≤ cIE

√√√√ n∑
`=1

∫ T

0

(B`(un(t)), un(t))2dt

≤ cIE

 sup
0≤t≤T

|un(t)|

√∫ T

0

|B(un(t))|2Hdt


≤ 1

2
IE

(
sup

0≤t≤T
|un(t)|2

)
+
c2

2
IE

∫ T

0

|B(un(t))|2Hdt

Combining (2.16) with the assumption (H1) and this last inequality, we
deduce that

IE

(
sup

0≤t≤T
|un(t)|2

)
≤ 2|u0|2 + c′IE

∫ T

0

(1 + |un(t)|2dt.

The result follows from this and (2.14).

Proof of Lemma 2.3.8 We are going to exploit the monotonicity assump-
tion (H2), which for simplicity we assume to hold with λ = 0 (this is in fact
not necessary, but is also not a restriction). (H2) with λ = 0 implies that
for all v ∈ L2(Ω× (0, T );V ) and all n ≥ 1,

2IE

∫ T

0

〈A(un(t)−A(v(t)), un(t)−v(t)〉dt+IE

∫ T

0

|B(un(t))−B(v(t))|2Hdt ≤ 0.

(2.17)
Weak convergence implies that∫ T

0

〈A(un(t)), v(t)〉dt ⇀
∫ T

0

〈ξ(t), v(t)〉dt,∫ T

0

〈A(v(t)), un(t)〉dt ⇀
∫ T

0

〈A(v(t)), u(t)〉dt,∫ T

0

(B(un(t)), B(v(t)))Hdt ⇀

∫ T

0

(η(t), B(v(t)))Hdt.

(2.18)
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in L2(Ω) weakly. Suppose we have in addition the inequality

2IE

∫ T

0

〈ξ(t), u(t)〉dt+ IE

∫ T

0

|η(t)|2Hdt

≤ liminfn→∞IE

[
2

∫ T

0

〈A(un(t)), un(t)〉dt+

∫ T

0

|B(un(t)|2Hdt
]
.

(2.19)

It follows from (2.17), (2.18) and (2.19) that for all v ∈ L2(Ω× (0, T );V ),

2IE

∫ T

0

〈ξ(t)−A(v(t)), u(t)−v(t)〉dt+IE

∫ T

0

|η(t)−B(v(t))|2Hdt ≤ 0. (2.20)

We first choose v = u in (2.20), and deduce that η ≡ B(u). Moreover (2.20)
implies that

IE

∫ T

0

〈ξ(t)− A(v(t)), u(t)− v(t)〉dt ≤ 0.

Next we choose v(t) = u(t) − θw(t), with θ > 0 and w ∈ L2(Ω × (0, T );V ).
After division by θ, we obtain the inequality

IE

∫ T

0

〈ξ(t)− A(u(t)− θw(t)), w(t)〉dt ≤ 0.

We now let θ → 0, and thanks to the assumption (H4), we deduce that

IE

∫ T

0

〈ξ(t)− A(u(t)), w(t)〉dt ≤ 0, ∀w ∈ L2(Ω× (0, T );V ).

It clearly follows that ξ ≡ A(u).
It remains to establish the inequality (2.19). It follows from (2.11) that

2IE

∫ T

0

〈A(un(t)), un(t)〉dt+ IE

∫ T

0

|B(un(t)|2Hdt ≥ IE
[
|un(T )|2 − |un(0)|2

]
,

and from Lemma 2.3.4 applied to u(t) satisfying (2.9) that

2IE

∫ T

0

〈ξ(t), u(t)〉dt+ IE

∫ T

0

|η(t)|2Hdt = IE
[
|u(T )|2 − |u0|2

]
.

Hence (2.19) is a consequence of the inequality

IE
[
|u(T )|2 − |u0|2

]
≤ liminfn→∞IE

[
|un(T )|2 − |un(0)|2

]
.
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But clearly un(0) =
∑n

k=1(u0, ek)ek → u0 in H. Hence the result will follow
from the convexity of the mapping ρ → IE(|ρ|2) from L2(Ω,FT , IP;H) into
IR, provided we show that un(T ) → u(T ) in L2(Ω,FT , IP, H) weakly. Since
the sequence {un(T ), n ≥ 1} is bounded in L2(Ω,FT , IP, H), we can w. l. o.
g. assume that the subsequence has been choosen in such a way that un(T )
converges weakly in L2(Ω,FT , IP, H) as n→∞. On the other hand, for any
n0 and v ∈ Vn0 , whenever n ≥ n0,

(un(T ), v) = (u0, v) +

∫ T

0

〈A(un(t)), v〉dt+
n∑

`=1

∫ T

0

(B`(un(t)), v)dW `
t .

The right–hand side converges weakly in L2(Ω,FT , IP; IR) towards

(u0, v) +

∫ T

0

〈ξ(t), v〉dt+
∞∑

`=1

∫ T

0

(η`(t), v)dW
`
t = (u(T ), v).

The result follows.

2.3.2 Examples

A simple example We start with a simple example, which will illustrate
the coercivity condition. Consider the following parabolic “bilinear” SPDE
with space dimension equal to one, driven by a one dimensional Wiener
process, namely

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + θ

∂u

∂x
(t, x)

dW

dt
(t); u(0, x) = u0(x).

The coercivity condition, when applied to this SPDE, yields the restriction
|θ| < 1. Under that assumption, the solution, starting from u0 ∈ H, is in V
for a. e. t > 0, i. e. we have the regularization effect of a parabolic equation.

When θ = 1 (resp. θ = −1), we deduce from Itô’s formula the explicit
solution u(t, x) = u0(x + W (t)) (resp. u(t, x) = u0(x −W (t))). It is easily
seen that in this case the regularity in x of the solution is the same at each
time t > 0 as it is at time 0. This should not be considered as a parabolic
equation, but rather as a first order hyperbolic equation.

What happens if |θ| > 1 ? We suspect that solving the SPDE in that
case raises the same type of difficulty as solving a parabolic equation (like
the heat equation) backward in time.
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Note that the above equation is equivalent to the following SPDE in the
Stratonovich sense

∂u

∂t
(t, x) =

1− θ2

2

∂2u

∂x2
(t, x) + θ

∂u

∂x
(t, x) ◦ dW

dt
(t); u(0, x) = u0(x),

which perhaps explains better the above discussion.

Zakai’s equation We look at the equation for the density p in the above
example 1.2.5. We assume that the following are bounded functions defined
on IRd : a, b, h, g,

∂aij

∂xj
, ∂gi`

∂xi
, for all 1 ≤ i, j ≤ d, 1 ≤ ` ≤ k. The equation for

p is of the form

∂p

∂t
(t, x) = Ap(t, x) +

k∑
`=1

B`p(t, x)
dW`

dt
(t),

if we let

Au =
1

2

∑
i,j

∂

∂xi

(
aij

∂u

∂xj

)
+
∑

i

∂

∂xi

((∑
j

1

2

∂aij

∂xj

− bi

)
u

)

and

B` = −
∑

i

gi`
∂u

∂xi

+

(
h` −

∑
i

∂gi`

∂xi

)
u.

We note that

2〈Au, u〉+
k∑

`=1

|B`u|2 =
∑
i,j

∫
IRd

(gg∗ − a)ij(x)
∂u

∂xi

(x)
∂u

∂xj

(x)dx

+
∑

i

∫
IRd

ci(x)
∂u

∂xi

(x)u(x)dx+

∫
IRd

d(x)u2(x)dx.

Whenever ff ∗(x) > βI > 0 for all x ∈ IRd, the coercivity assumption is
satisfied with any α < β, some λ > 0 and ν = 0. Note that it is very
natural that the ellipticity assumption concerns the matrix ff ∗. Indeed, in
the particular case where h ≡ 0, we observe the Wiener process W , so the
uncertainty in the conditionnal law of Xt given FY

t depends on the diffusion
matrix ff ∗ only. The case whithout the restriction that ff ∗ be elliptic can
be studied, but we need some more regularity of the coefficients.
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Nonlinear examples One can always add a term of the form

f1(t, x, u) + f2(t, x, u)

to A(u), provided u→ f1(t, x, u) is decreasing for all (t, x), and f2(t, x, u) is
Lipchitz in u, with a uniform Lipschitz constant independent of (t, x). Note
that a typical decreasing f1 is given by

f1(t, x, u) = −c(t, x)|u|p−2u, provided that c(t, x) ≥ 0.

Similarly, one can add to B(u) a term g(t, x, u), where g have the same
property as f2.

Another nonlinear example The following operator (with p > 2)

A(u) =
d∑

i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi

)
− |u|p−2u

possesses all the required properties, if we let H = L2(IRd),

V = W 1,p(IRd) = {u ∈ Lp(IRd),
∂u

∂xi

∈ Lp(IRd), i = 1, . . . , d}

and V ′ = W−1,q(IRd), where 1/p+ 1/q = 1.

2.3.3 Coercive SPDEs with compactness

We keep the assumptions (H1) and (H3) from the previous subsection, and
we add the following conditions.
Sublinear growth of B

(H5)

{
∃c, δ > 0 such that ∀u ∈ V,
|B(u)|H ≤ c(1 + ‖u‖1−δ)

Compactness

(H6) The injection from V into H is compact.

Continuity

(H7)

{
u→ A(u) is continuous from Vweak ∩H into V ′

weak

u→ B(u) is continuous from Vweak ∩H into H
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We now want to formulate our SPDE as a martingale problem. We choose

Ω = C([0, T ];Hweak) ∩ L2(0, T ;V ) ∩ L2(0, T ;H),

which we equip with the sup of the topology of uniform convergence with val-
ues in H equipped with its weak topology, the weak topology of L2(0, T ;V ),
and the strong topology of L2(0, T ;H). Moreover we let F be the associated
Borel σ–field. For 0 ≤ t ≤ T , let Ωt denote the same space as Ω, but with T
replaced by t, and Πt be the projection from Ω into Ωt, which to a function
defined on the interval [0, T ] associates its restriction to the interval [0, t].
Now Ft will denote the smallest sub–σ–field of F , which makes the projec-
tion Πt measurable, when Ωt is equipped with its own Borel σ–field. From
now on , in this subection, we define u(t, ω) = ω(t). Let us formulate the

Definition 2.3.9. A probability IP on (Ω,F) is a solution to the martingale
problem associated with the SPDE (2.6) whenever

(i) IP(u(0) = u0) = 1;

(ii) the process

Mt := u(t)− u(0)−
∫ t

0

A(u(s))ds

is a continuous H–valued IP–martingale with associated increasing pro-
cess

〈〈M〉〉t =

∫ t

0

B(u(s))B∗(u(s))ds.

There are several equivalent formulations of (ii). Let us give the for-
mulation which we will actually use below. Let {ei, i = 1, 2, . . .} be an
orthonormal basis of H, with ei ∈ V , ∀i ≥ 1.

(ii)’ For all i ≥ 1, ϕ ∈ C2
b (IR), 0 ≤ s ≤ t, Φs continuous, bounded and

Fs–measurable mapping from Ω into IR,

IEIP

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
= 0, where

M i,ϕ
t = ϕ[(u(t), ei)]− ϕ[(u0, ei)]−

∫ t

0

ϕ′[(u(s), ei)]〈A(u(s)), ei〉ds

+
1

2

∫ t

0

ϕ′′[(u(s), ei)](BB
∗(u(s))ei, ei)ds.
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This formulation of a martingale problem for solving stochastic differential
equations was first introduced by Stroock and Varadhan fo solving finite
dimensinal SDEs, and by Viot [26] for solving SPDEs. It is his results which
we present here.

We first note that if we have a solution to the SPDE, its probability law
on Ω solves the martingale problem. Conversely, if we have a solution to
the martingale problem, then we have a probability space (Ω,F , IP), and
an H–valued process {u(t), 0 ≤ t ≤ T} defined on it, with trajectories in
L2(0, T ;V ), such that

u(t) = u0 +

∫ t

0

A(u(s))ds+Mt,

where {Mt, 0 ≤ t ≤ T} is a continuous H–valued martingale, and

〈〈M〉〉t =

∫ t

0

B(u(s))B∗(u(s))ds.

It follows from a representation theorem similar to a well–known result in
finite dimension that there exists, possibly on a larger probability space, a
Wiener process {W (t), t ≥ 0} such that (2.6) holds. A solution of the
martingale problem is called a weak solution of the SPDE, in the sense that
one can construct a pair {(u(t),W (t)), t ≥ 0} such that the second element
is a Wiener process, and the first solves the SPDE driven by the second,
while until now we have given ourselves {W (t), t ≥ 0}, and we have found
the corresponding solution {u(t), t ≥ 0}.

We next note that whenever a SPDE is such that it admits at most one
strong solution (i. e., to each given Wiener process W , we can associate at
most one solution u of the SPDE driven by W ), then the martingale problem
has also at most one solution.

We now prove the

Theorem 2.3.10. Under the assumptions (H1), (H3), (H5), (H6) and
(H7), there exists a solution IP to the martingale problem, i. e. which satis-
fies (i) and (ii).

Proof: We start with the same Galerkin approximation as we have used
before. Again {e1, . . . , en, . . .} is an orthonormal basis of H, with each en ∈
V ,

Vn = span{e1, . . . , en}
πn = the orthogonal projection operator in H upon Vn.
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We first note that for each n ≥ 1, there exists a probability measure IPn on
(Ω,F) such that

(0)n Supp(IPn) ⊂ C([0, T ];Vn);

(i)n IPn(u(0) = πnu0) = 1

(ii)n ∀i ≤ n, ϕ ∈ C2
b (IR), 0 ≤ s ≤ t ≤ T ,

IEn

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
= 0, where

{M i,ϕ
t } and Φs are defined exactly as in condition (ii) and (ii)’ of Defi-

nition 2.3.9.

Indeed, the existence of each Pn is obtained by solving a finite dimensional
martingale problem (or a finite dimensional SDE). This works whithout any
serious difficulty, and we take this result for granted.

Let us accept for a moment the

Lemma 2.3.11. The sequence of probability measures {IPn, n = 1, 2, . . .}
on Ω is tight.

We shall admit the fact (which has been proved by M. Viot in his thesis)
that Prohorov’s theorem is valid in the space Ω. This is not obvious, since
Ω is not a Polish space, but it is true. Hence we can extract from the
sequence {Pn, n = 1, 2, . . .} a subsequence, which as an abuse of notation we
still denote {Pn}, such that IPn ⇒ IP. Now IP satisfies clearly (i), and the
mapping

ω → (M i,ϕ
t (ω)−M i,ϕ

s (ω))Φs(ω)

is continuous from Ω into IR. Moreover, it follows from the coercivity as-
sumption (H1) that the estimate

sup
n

IEn

[
sup

0≤t≤T
|u(t)|2 +

∫ T

0

‖u(t)‖2dt

]
<∞ (2.21)

from Lemma 2.3.7 is still valid. Now this plus the conditions (H3) and (H5)
implies that there exists some p > 1 (the exact value of p depends upon the
value of δ in condition (H5) such that

sup
n

IEn

[
|M i,ϕ

t −M i,ϕ
s |p

]
<∞.
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Hence

IEn

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
→ IE

(
(M i,ϕ

t −M i,ϕ
s )Φs

)
,

and condition (ii) is met. It remains to proceed to the

Proof of Lemma 2.3.11 (sketch): Let us denote by

• τ1 the weak topology on L2(0, T ;V ),

• τ2 the uniform topology on C([0, T ];Hweak),

• τ3 the strong topology on L2(0, T ;H).

It suffices to show that the sequence {IPn, n ≥ 1} is τi–tight successively for
i = 1, 2, 3. We choose

K =

{
u, sup

0≤t≤T
|u(t)| ≤ `,

∫ T

0

‖u(t)‖2dt ≤ k

}
.

From (2.21), IPn(Kc) can be made arbitrarily small by choosing ` and k large
enough.

1. τ1–tightness. K is relatively compact for the weak topology τ1, since it
is a bounded set of L2(0, T ;V ), which is a reflexive Banach space.

2. τ2–tightness. We need to show that K is relatively compact for the
topology τ2. For this, it suffices to show that for all h ∈ H with
|h| = 1, the set of functions

{t→ (u(t), h), u ∈ K}

is a compact subset of C([0, T ]). Since u ∈ K implies that
sup0≤t≤T |u(t)| ≤ `, it is sufficient to prove that for any r > 0, v ∈ V
with ‖v‖ = r, the set of functions

{t→ (u(t), v), u ∈ K}

is a compact subset of C([0, T ]). Now sup0≤t≤T |(u(t), v)| is well con-
trolled. So, using Arzela–Ascoli’s theorem, it suffices to control uni-
formly the modulus of continuity of {t→ (u(t), v)} uniformly in u ∈ K.
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But

(u(t), v) = (u0, v) +

∫ t

0

〈A(u(s)), v〉ds+M v
t , and

IEn

∣∣∣∣∫ t

s

〈A(u(r)), v〉dr
∣∣∣∣ ≤ ‖v‖

√
t− s

√
IEn

∫ T

0

‖A(u(r))‖2
∗dr

≤ c‖v‖
√
t− s,

IEn

(
sup

s≤r≤t
|M v

r −M v
s |2p

)
≤ cp|v|pIEn

(∣∣∣∣∫ t

s

(BB∗(u(r))ei, ei)dr

∣∣∣∣p)
≤ cp|v|p(t− s)pδ

(
IEn

∫ T

0

(1 + ‖u(r)‖2)dr

)p(1−δ)

,

for all p > 0, δ being the constant from the condition (H5).

3. τ3–tightness. We just saw in fact that we can control the modulus of
continuity of {t→ u(t)} as a V ′–valued function under IPn. Recall the
bound

IEn

∫ T

0

‖u(t)‖2dt ≤ c.

It remains to exploit the next Lemma.

Lemma 2.3.12. Given that the injection from V into H is compact, from any
sequence {un, n ≥ 1} which is both bounded in L2(0, T ;V )∩L∞(0, T ;H) and
equicontinuous as V ′–valued functions, and such that the sequence {un(0)}
converges strongly in H, one can extract a subsequence which converges in
L2(0, T ;H) strongly.

We first prove the following

Lemma 2.3.13. To each ε > 0, we can associate c(ε) ∈ IR such that for all
v ∈ V ,

|v| ≤ ε‖v‖+ c(ε)‖v‖∗.

Proof: If the result was not true, one could find ε > 0 and a sequence
{vn, n ≥ 1} ⊂ V such that for all n ≥ 1,

|vn| ≥ ε‖vn‖+ n‖vn‖∗.
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We define un = |vn|−1vn. Then we have that

1 = |un| ≥ ε‖un‖+ n‖un‖∗.

This last inequality show both that the sequence {un, n ≥ 1} is bounded in
V , and converges to 0 in V ′. Hence, from the compactnes of the injection
from V into H, un → u in H strongly, and necessarily u = 0. But this
contradicts the fact that |un| = 1 for all n.

Proof of Lemma 2.3.12: From the equicontinuity in V ′ and the fact that
un(0) → u0 in H, there is a subsequence which converges in C([0, T ];V ′),
hence also in L2(0, T ;V ′), to u, and clearly u ∈ L2(0, T ;V ). Now from
Lemma 2.3.13, to each ε > 0, we can associate c′(ε) such that

∫ T

0

|un(t)− u(t)|2dt ≤ ε

∫ T

0

‖un(t)− u(t)‖2dt+ c′(ε)

∫ T

0

‖un(t)− u(t)‖2
∗dt

≤ εC + c′(ε)

∫ T

0

‖un(t)− u(t)‖2
∗dt

limsupn

∫ T

0

|un(t)− u(t)|2dt ≤ Cε,

and the result follows fom the fact that ε can be chosen arbitrarily small.

2.4 Semilinear SPDEs

We want now to concentrate on the following class of SPDEs



∂u

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂u

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂u

∂xi

(t, x)

+ f(t, x;u(t, x))

+
∑

k

(∑
i

gki(t, x)
∂u

∂xi

(t, x) + hk(t, x;u(t, x))

)
dW k

dt
(t)

u(0, x) = u0(x)

(2.22)
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Under the following standard assumptions

• ∃α > 0 such that a = a−
∑

k

gk·gk· ≥ αI;

• 2[f(t, x; r)− f(t, x; r′)](r − r′) +
∑

k

|hk(t, x; r)− hk(t, x; r
′)|2 ≤ λ|r − r′|2;

• r −→ f(t, x; r) is continuous;

• rf(t, x; r) +
∑

k

|hk(t, x; r)|2 ≤ C(1 + |r|2),

equation (2.22) has a unique solution with trajectories in C([0, T ];L2(IRd))∩
L2(0, T ;H1(IRd)).

Let us now give conditions under which the solution remains non negative.

Theorem 2.4.1. Assume that u0(x) ≥ 0, for a. e. x, and for a. e. t and x,
f(t, x; 0) ≥ 0, hk(t, x; 0) = 0, for all k. Then

u(t, x) ≥ 0, ∀t ≥ 0, x ∈ IRd.

Proof: Let us consider the new equation
∂u

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂u

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂u+

∂xi

(t, x) + f(t, x;u+(t, x))

=
∑

k

(∑
i

gki(t, x)
∂u

∂xi

(t, x) + hk(t, x;u
+(t, x))

)
dW k

dt
(t)

(2.23)
Existence and uniqueness for this new equation follows almost the same ar-
guments as for equation (2.22). We exploit the fact that the mapping r → r+

is Lipschitz. Moreover, we can w. l. o. g. assume that the ∂bi/∂xi’s are
bounded functions, since from the result of the theorem with smooth coeffi-
cients will follow the general result, by taking the limit along a converging
sequence of smooth coefficients. However, it is not hard to show that, with
this additional assumption, the mapping

u→
∑

i

bi(t, x)
∂u+

∂xi

is compatible with the coercivity and monotonicity of the pair of operator
appearing in (2.23). If we can show that the solution of (2.23) is non negative,
then it will be the unique solution of (2.22), which then will be non negative.
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Let ϕ ∈ C2(IR) be convex and such that



• ϕ(r) = 0, for r ≥ 0;

• ϕ(r) > 0, for r < 0;

• 0 ≤ ϕ(r) ≤ Cr2 ∀r;
• − c|r| ≤ ϕ′(r) ≤ 0 ∀r;
• 0 ≤ ϕ′′(r) ≤ C ∀r.

Intuitively, ϕ is a regularization of (r−)2. Let now Φ : L2(IR) → IR be defined
by

Φ(u) =

∫
IRd

ϕ(u(x))dx.

We have Φ′(h) = ϕ′(h(·)), which is well defined as an element of L2(IRd),
since |ϕ′(x)| ≤ c|x|, and Φ′′(h) = ϕ′′(h(·)), it belongs to L(L2(IRd)), since
|ϕ′′(x)| ≤ C. We let

Au =
1

2

∑
ij

∂

∂xj

(
aij

∂u

∂xi

)
+
∑

i

bi(t, x)
∂u+

∂xi

+ f(u+)

Bku =
∑

i

gki
∂u

∂xi

+ hk(u
+)

It follows from the Itô formula from Lemma 2.3.5 that

Φ(u(t)) = Φ(u0) +

∫ t

0

〈A(u(s)), ϕ′(u(s))〉ds

+
∑

k

∫ t

0

(Bk(u(s)), ϕ
′(u(s))) dW k

s

+
1

2

∑
k

∫ t

0

(Bk(u(s)), ϕ
′′(u(s))Bk(u(s))) ds,
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Now Φ(u0) = 0, and

IEΦ(u(t)) = −1

2
IE

∫ t

0

ds

∫
IRd

dx (ϕ′′(u)〈a∇u,∇u〉) (s, x)

+ IE

∫ t

0

ds

∫
IRd

dxϕ′(u)[f(u+) +
∑

i

bi
∂u+

∂xi

](s, x)

+
∑

k

IE

∫ t

0

ds

∫
IRd

dxϕ′′(u)hk(u
+)[

1

2
hk(u

+) + gkj
∂u

∂xj

](s, x)

≤ 0

where we have used the

Lemma 2.4.2. Whenever u ∈ H1(IRd), u+ ∈ H1(IRd), and moreover

∂u+

∂xi

(x)1{u<0}(x) = 0, dx a. e. ,∀1 ≤ i ≤ d.

If we admit the Lemma for a moment, we note that we have proved that
for any t ≥ 0, IEΦ(u(t)) = 0, i. e. Φ(u(t)) = 0 a. s., and in fact u(t, x) ≥ 0,
dx a. e., a. s., ∀t. It remains to proceed to the
Proof of Lemma 2.4.2: We define a sequence of approximations of the
function r → r+ of class C1:

ϕn(r) =


0, if r < 0;

nr2/2, if 0 < r < 1/n;

r − 1/2n, if r > 1/n.

Clearly, ϕn(r) → r+, and ϕ′n(r) → 1{r>0}, as n → ∞. For u ∈ H1(IRd), let
un(x) = ϕn(u(x)). Then un ∈ H1(IRd), and

∂un

∂xi

= ϕ′n(un)
∂u

∂xi

.

It is easily seen that the two following convergences hold in L2(IRd):

un → u+ ∂un

∂xi

→ 1{u>0}
∂u

∂xi

.

This proves the Lemma. �
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With a similar argument, one can also prove a comparison theorem.
Let v be the solution of a slightly different SPDE

∂v

∂t
(t, x) =

1

2

∑
ij

∂

∂xj

(
aij(t, x)

∂v

∂xi

)
(t, x) +

∑
i

bi(t, x)
∂v

∂xi

(t, x)

+ F (t, x; v(t, x))

+
∑

k

(∑
i

gki(t, x)
∂v

∂xi

(t, x) + hk(t, x; v(t, x))

)
dW k

dt
(t)

v(0, x) = v0(x)

Theorem 2.4.3. Assume that u0(x) ≤ v0(x), x a. e., that f(t, x; r) ≤
F (t, x; r), t, x a. e., and moreover one of the two pairs (f, (hk)) or (F, (hk))
satisfies the above conditions for existence–uniqueness. Then u(t, x) ≤ v(t, x)
x a. e., IP a. s., for all t ≥ 0.

Sketch of the proof of Theorem 2.4.3: The proof is similar to that
of the Theorem 2.4.1, so we just sketch it. We first replace v by u ∨ v in the
last equation, in the three palces where we changed u into u+ in the proof of
the previous Theorem. The fact that

u, v ∈ H1(IRd) ⇒ u ∨ v ∈ H1(IRd)

follows from Lemma 2.4.2 and the simple identity u ∨ v = u+ (v − u)+. If v
denotes the solution of that new equation, we show (with the same functional
Φ as in the proof of Theorem 2.4.1) that IEΦ(v(t)− u(t)) ≤ 0, which implies
that u(t, x) ≤ v(t, x), x a. e., IP a. s., for all t ≥ 0. Consequently v solves
the original equation, and the result is established.
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Chapter 3

SPDEs driven by space–time
white noise

3.1 Restriction to one–dimensional space

variable

Let us consider the following linear parabolic SPDE
∂u

∂t
(t, x) =

1

2
∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ IRd

u(0, x) = u0(x), x ∈ IRd.

The driving noise in this equation is the so called “space–time white noise”,

that is
·
W is a generalized centered Gaussian field, with covariance given by

IE[
·
W (h)

·
W (k)] =

∫ ∞

0

∫
IRd

h(t, x)k(t, x)dxdt, ∀h, k ∈ L2(IR+ × IRd).

Since the equation is linear, that is the mapping

·
W→ u

is affine, it always has a solution as a distribution, the driving noise being a
random distribution. But we want to know when that solution is a standard
stochastic process {u(t, x), t ≥ 0, x ∈ IRd}. Let

p(t, x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
.

49
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The solution of the above equation is given by

u(t, x) =

∫
IRd

p(t, x− y)u0(y)dy +

∫ t

0

∫
IRd

p(t− s, x− y)W (ds, dy),

at least if the second integral makes sense. Since it is a Wiener integral, it
is a centered Gaussian random varibale, and we just have to check that its
variance is finite. But that variance equals∫ t

0

∫
IRd

p2(t− s, x− y)dyds =
1

(2π)d

∫ t

0

ds

(t− s)d

∫
IRd

exp

(
−|x− y|2

t− s

)
dy

=
1

2dπd/2

∫ t

0

ds

(t− s)d/2
<∞

if and only if d = 1 ! When d ≥ 2, the solution is a generalized stochastic
process, given by

(u(t), ϕ) =

∫
IRd

∫
IRd

ϕ(x)p(t, x− y)u0(y)dxdy

+

∫ t

0

∫
IRd

(∫
IRd

ϕ(x)p(t− s, x− y)dx

)
W (ds, dy), t ≥ 0, ϕ ∈ C∞

C (IRd).

Here the second integral is well defined. Indeed, let us assume that suppϕ ⊂
B(0, r). Then ∫

IRd

ϕ(x)p(t− s, x− y)dx = IEyϕ(Bt−s),

where {Bt, t ≥ 0} is a standard IRd–valued Brownian motion. For |y| > r,

|IEyϕ(Bt−s)| = |IEy

[
ϕ(Bt−s)1|Bt−s|≤r

]
|

≤ ‖ϕ‖∞IPy(Bt−s| ≥ |y| − r)

≤ ‖ϕ‖∞
IE(|Bt−s|p)
(|y| − r)p

Choosing 2p > d, we conclude that∫ t

0

∫
IRd

(∫
IRd

ϕ(x)p(t− s, x− y)dx

)2

dsdy <∞.
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We note that our goal is to solve nonlinear equations of the type
∂u

∂t
(t, x) =

1

2
∆u(t, x) + f(u(t, x)) + g(u(t, x))

·
W (t, x), t ≥ 0, x ∈ IRd

u(0, x) = u0(x), x ∈ IRd,

whose solution might not be more regular than that of the linear equation we
considered above. Since we do not want to define the image by a nonlinear
mapping of a distribution (which is essentially impossible, if we want to
have some reasonable continuity properties, which is crucial when studying
SPDEs), we have to restrict ourselves to the case d = 1 !

3.2 A general existence–uniqueness result

Let us consider specifically the following SPDE with homogeneous Dirichlet
boundary conditions
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x;u(t, x)) + g(t, x;u(t, x))

·
W (t, x), t ≥ 0, 0 ≤ x ≤ 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

u(0, x) = u0(x), 0 ≤ x ≤ 1.
(3.1)

The equation turns out not to have a classical solution. So we first introduce
a weak formulation of (3.1), namely

∫ 1

0

u(t, x)ϕ(x)dx =

∫ 1

0

u0(x)ϕ(x)dx+

∫ t

0

∫ 1

0

u(s, x)ϕ′′(x)dxds

+

∫ t

0

∫ 1

0

f(s, x;u(s, x))ϕ(x)dxds+

∫ t

0

∫ 1

0

g(s, x;u(s, x))ϕ(x)W (ds, dx)

IP a. s., ∀ϕ ∈ C2(0, 1) ∩ C0([0, 1]),
(3.2)

where C0([0, 1]) stands for the set of continuous functions from [0, 1] into IR,
which are 0 at 0 and at 1. We need to define the stochastic integral which
appears in (3.2). From now on, W (ds, dx) will be considered as a random
Gaussian measure on IR+ × [0, 1]. More precisely, we define the collection{

W (A) =

∫
A

W (ds, dx), A Borel subset of IR+ × [0, 1]

}
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as a centered Gaussian random field with covariance given by

IE[W (A)W (B)] = λ(A ∩B),

where λ denotes the Lebesgus measure on IR+ × [0, 1].
We define for each t > 0 the σ–algebra

Ft = σ{W (A), A Borel subset of [0, t]× [0, 1]},

and the associated σ–algebra of predictable sets defined as

P = σ{(s, t]× Λ ⊂ IR+ × Ω : 0 ≤ s ≤ t,Λ ∈ Fs}.

The class of processes which we intend to integrate with respect to the above
measure is the set of functions

ψ : IR+ × [0, 1]× Ω → IR,

which are P ⊗ B([0, 1])–measurable and such that∫ t

0

∫ 1

0

ψ2(s, x)dxds <∞ IP a. s. ∀t ≥ 0.

for such ψ’s, the stochastic integral∫ t

0

∫ 1

0

ψ(s, x)W (ds, dx), t ≥ 0

can be constructed as the limit in probability of the sequence of approxima-
tions

∞∑
i=1

n−1∑
j=0

(ψ,1An
i−1,j

)L2(IR+×(0,1))W
(
An

i,j ∩ ([0, t]× [0, 1])
)
,

where

An
i,j =

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

That stochastic integral is a local martingale, with associated increasing pro-
cess ∫ t

0

∫ 1

0

ψ2(s, x)dxds, t ≥ 0.
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If moreover

IE

∫ t

0

∫ 1

0

ψ2(s, x)dxds, ∀t ≥ 0,

then the stochastic integral process is a square integrable martingale, the
above convergence holds in L2(Ω), and we have the isometry

IE

[(∫ t

0

∫ 1

0

ψ(s, x)W (ds, dx)

)2
]

= IE

∫ t

0

∫ 1

0

ψ2(s, x)dxds, ∀t ≥ 0.

We introduce another formulation of our white–noise driven SPDE,
namely the integral formulation, which is the following
u(t, x) =

∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y;u(s, y))dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y;u(s, y))W (ds, dy), IP a. s. , t ≥ 0, 0 ≤ x ≤ 1;

(3.3)
where p(t;x, y) is the fundamental solution of the heat equation with Dirichlet
boundary condition

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x); t ≥ 0, 0 < x < 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

and u0 ∈ C0([0, 1]). We shall admit the following Lemma (see Walsh [27])

Lemma 3.2.1. The above kernel is given explicitly by the formula

p(t;x, y) =
1√
4πt

∑
n∈Z

[
exp

(
−(2n+ y − x)2

4t

)
− exp

(
−(2n+ y + x)2

4t

)]
,

and for all T > 0, there exists CT such that

|p(t;x, y)| ≤ CT√
t

exp

(
−|x− y|2

4t

)
, 0 ≤ t ≤ T, 0 ≤ x, y ≤ 1.

We now state two assumptions on the coeffcients

(H1)

∫ t

0

∫ 1

0

(f 2(s, x; 0) + g2(s, x; 0))dsdx <∞, t ≥ 0.
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There exists a locally bounded function δ : IR → IR+ such that

(H2) |f(s, x; r)−f(s, x, 0)|+|g(s, x; r)−g(s, x, 0)| ≤ δ(r), ∀t ≥ 0, 1 ≤ x ≤ 1, r ∈ IR.

We can now establish the

Proposition 3.2.2. Under the assumptions (H1) and (H2), a continuous
P ⊗ B([0, 1])–measurable function u satisfies (3.2) if and only if it satisfies
(3.3).

Proof: Let first u be a solution of (3.2), and λ ∈ C1(IR+). Then by
integration by parts (we use (·, ·) to denote the scalar product in L2(0, 1))
λ(t)(u(t), ϕ) = λ(0)(u(0), ϕ) +

∫ t

0

(u(s), λ(s)ϕ′′ + λ′(s)ϕ)ds

+

∫ t

0

λ(s)(f(s, ·;u(s, ·)), ϕ)ds+

∫ t

0

∫ 1

0

λ(s)g(s, x;u(s, x))ϕ(x)W (ds, dx).

But any φ ∈ C1,2(IR+× (0, 1))∩C(IR+× [0, 1]) such that φ(t, 0) = φ(t, 1) = 0
is a limit of finite sums of the form

∑n
i=1 λi(t)ϕi(x). Hence we get that for

all φ as above and all t ≥ 0,
(u(t), φ(t, ·)) = (u(0), φ(0, ·)) +

∫ t

0

(u(s),
∂2φ

∂x2
(s, ·) +

∂φ

∂s
(s, ·))ds

+

∫ t

0

(f(s, ·;u(s, ·)), φ(s, ·))ds+

∫ t

0

∫ 1

0

φ(s, x)g(s, x;u(s, x))W (ds, dx).

Now, t being fixed, we choose for 0 ≤ s ≤ t, 0 ≤ x ≤ 1,

φ(s, x) =

∫ 1

0

p(t− s; y, x)ϕ(y)dy = p(t− s;ϕ, x),

where ϕ ∈ C∞
0 ([0, 1]). We deduce that

(u(t), ϕ) = (u(0), p(t;ϕ, ·)) +

∫ t

0

(f(s, ·;u(s, ·)), p(t− s;ϕ, ·))ds

+

∫ t

0

∫ 1

0

p(t− s;ϕ, y)g(s, y;u(s, y))W (ds, dy).

If we now let ϕ tend to δx, we obtain (3.3).
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Let now u be a solution of (3.3). Then for all ϕ ∈ C2(0, 1) ∩ C0([0, 1]),
t ≥ 0, we have, for all 0 ≤ s ≤ t,

(u(t), ϕ) = (u(s), p(t− s, ϕ, ·)) +

∫ t

s

(f(r, ·;u(r, ·)), p(t− r;ϕ, ·))ds

+

∫ t

s

∫ 1

0

p(t− r;ϕ, y)g(r, y;u(r, y))W (dr, dy).

We next define ti = it/n, for 0 ≤ i ≤ n, and ∆t = t/n.

(u(t), ϕ)− (u0, ϕ) =
n−1∑
i=0

[(u(ti+1), θ)− (u(ti), ϕ)]

=
n−1∑
i=0

[(u(ti+1), θ)− (u(ti), p(∆t, ϕ, ·)) + (u(ti), p(∆t, ϕ, ·))− (u(ti), ϕ)]

=
n−1∑
i=0

[∫ ti+1

ti

∫ 1

0

p(ti+1 − s, ϕ, y)f(s, y;u(s, y))dyds

+

∫ ti+1

ti

∫ 1

0

p(ti+1 − s, ϕ, y)g(s, y;u(s, y))W (dy, ds)

+

∫ ti+1

ti

∫ 1

0

u(ti, y)
∂2p

∂y2
(s− ti, ϕ, y)dyds

]
If we exploit the fact that u is a. s. continuous and adapted, we obtain that
as n→∞, the last expression tends to∫ t

0

∫ 1

0

ϕ(y)f(s, y;u(s, y))dyds+

∫ t

0

∫ 1

0

ϕ(y)g(s, y;u(s, y))W (dy, ds)

+

∫ t

0

∫ 1

0

u(s, y)ϕ′′(y)dyds.

�
In order to prove existence and uniquenes of a solution, we need to replace

the assumption (H2) by the stronger assumption

(H3) |f(t, x, r)− f(t, x, r′)|+ |g(t, x, r)− g(t, x, r′)| ≤ k|r − r′|.

We have the
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Theorem 3.2.3. Under the assumptions (H1) and (H3), if u0 ∈ C0([0, 1]),
there exists a unique continuous P ⊗B([0, 1])–measurable solution u of equa-
tion (3.3). Moreover sup0≤x≤1, 0≤t≤T IE[|u(t, x)|p] <∞, for all p ≥ 1.

Proof: Uniqueness Let u and v be two solutions. Then the difference
u = u− v satisfies

u(t, x) =

∫ t

0

∫ 1

0

p(t− s;x, y)[f(s, y;u(s, y))− f(s, y; v(s, y))]dsdy

+

∫ t

0

∫ 1

0

p(t− s;x, y)[g(s, y;u(s, y))− g(s, y; v(s, y))]W (ds, dy).

Using successively the inequality (a+ b)2 ≤ 2(a2 + b2), Cauchy–Schwarz, the
isometry property of the stochastic integral, and (H3), we obtain

IE[u2(t, x)] ≤ 2(t+ 1)k2

∫ t

0

∫ x

0

p2(t− s;x, y)IE[u2(s, y)]dyds

Let H(t) = sup0≤x≤1 IE[u2(t, x)]. We deduce from the last inequality

H(t) ≤ 2(t+ 1)

∫ t

0

[
sup

0≤x≤1

∫ 1

0

p2(t− s;x, y)dy

]
H(s)ds.

From the above estimate upon p, we deduce that

sup
0≤x≤1

∫ 1

0

p2(t− s;x, y)dy ≤ C2
T

t− s

∫
IR

exp

(
−|x− y|2

2(t− s)

)
dy ≤ C ′

√
t− s

,

and iterating twice the estimate thus obtained for H, we deduce that

H(t) ≤ C ′′
∫ t

0

H(s)ds,

hence H(t) = 0 from Gronwall’s Lemma.
Existence We use the well known Picard iteration procedure

u0(t, x) = 0

un+1(t, x) =

∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y;un(s, y))dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y;un(s, y))W (dy, ds).
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Let Hn(t) = sup0≤x≤1 IE[|un+1(t, x) − un(t, x)|2]. Then, as in the proof of
uniqueness, we have that for 0 ≤ t ≤ T ,

Hn(t) ≤ CT

∫ t

0

Hn−2(s)ds.

Iterating this inequality k times, we get

Hn(t) ≤ Ck
T

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sk−1

0

Hn−2k(sk)dsk

≤ Ck
T t

k−1

(k − 1)!

∫ t

0

dsHn−2k(s).

But

H0(t) = sup
0≤x≤1

IE

(∣∣∣∣∫ 1

0

p(t;x, y)u0(y)dy +

∫ t

0

∫ 1

0

p(t− s;x, y)f(s, y; 0)dyds

+

∫ t

0

∫ 1

0

p(t− s;x, y)g(s, y; 0)W (dy, ds)

∣∣∣∣2
)
<∞,

thanks to assumption (H1). Hence the sequence {un} is Cauchy in
L∞((0, T )×(0, 1);L2(Ω)); its limit u is P×B([0, 1])–measurable and satisfies
(3.3). We could have done all the argument with the exponent 2 replaced by
p, hence the p–th moment estimate. It remains to show that it can be taken
to be continuous, which we will do in the next Theorem.

Theorem 3.2.4. The solution u of equation (3.3) has a modification which
is a. s. Hölder continuous in (t, x), with the exponent 1/4− ε, ∀ε > 0.

Proof: It suffices to show that each term in the right hand side of (3.3) has
the required property. We shall only consider the stochastic integral term,
which is the hardest. Consider

v(t, x) =

∫ t

0

∫ 1

0

p(t− s; s, y)g(s, y;u(s, y))W (ds, dy).

We shall use the following well known Kolmogorov Lemma

Lemma 3.2.5. Is {Xα, α ∈ D ⊂ IRd} is a random field such that for some
k, p and β > 0, for all α, α′ ∈ D,

IE (|Xα −Xα′|p) ≤ k|α− α′|d+β,

then there exists a modification of the process {Xα} which is a. s. Hölder
continuous with the exponent β/p− ε, for all ε > 0.
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Proof of Theorem 3.2.4 Now

IE[|(v(t+ k, x+ h)− v(t, x)|p]1/p ≤ IE[|(v(t+ k, x+ h)− v(t+ k, x)|p]1/p

+ IE[|(v(t+ k, x)− v(t, x)|p]1/p.

We estimate first the first term (for simplicity of notations, we replace t+ k
by t). From Burholder and Hölder,

IE[|(v(t, x+ h)− v(t, x)|p]

≤ cIE

(∣∣∣∣∫ t

0

∫ 1

0

g2(u; s, y)[p(t− s;x+ h, y)− p(t− s;x, y)]2dyds

∣∣∣∣4p/2
)

≤ cp

(∫ t

0

∫ 1

0

|p(s;x, z)− p(s;x+ h, z|2p/(p−2)dzds

)(p−2)/p

But we have (with β < 3, i. e. p > 6)∫ t

0

∫ 1

0

|p(s;x, z)−p(s; y, z)|βdzds ≤ |x−y|β
∫ ∞

0

∫
IR

|p(η; x

x− y
, ξ)−p(η; y

x− y
, ξ)|βdξdη,

hence
IE[|(v(t, x+ h)− v(t, x)|p] ≤ C|y − x|(p−6)/2,

and x→ v(t, x) is Hölder with any exponent < 1/2.
Analogously

IE[|(v(t+ k, x)− v(t, x)|p]

≤ cIE

(∣∣∣∣∫ t

0

∫ 1

0

g2(u; s, y)[p(t+ k − s;x, y)− p(t− s;x, y)]2dyds

∣∣∣∣p/2
)

+ cp

(∫ t+k

t

∫ 1

0

g2(u; s, y)p2(t+ k − s;x, y)dyds

)p/2

≤ C

{∣∣∣∣∫ t

0

∫ 1

0

|p(t+ k − s;x, y)− p(t− s;x, y)|2p/(p−2)dyds

∣∣∣∣(p−2)/2

+

∣∣∣∣∫ k

0

∫ 1

0

p2p/(p−2)(s;x, y)dyds

∣∣∣∣(p−2)/2
}

≤ C
[
|t− s|(p−6)/4 + |t− s|(p−6)/2(p−2)

]
,

hence t→ v(t, x) is a. s. Hölder with any exponent < 1/4.
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3.3 More general existence and uniqueness

result

One can generalize the existence–uniqueness result to coefficients satifying
the following assumptions (see Zangeneh [28] and Gyöngy, P. [9])

(A1)

{
∀T,R, ∃K(T,R) such that ∀0 ≤ x ≤ 1, t ≤ T, |r|, |r′| ≤ R

(r − r′)[f(t, x; r)− f(t, x; r′)] + |g(t, x; r)− g(t, x; r′)|2 ≤ K(T,R)|r − r′|2

(A2)

{
∃C such that ∀t ≥ 0, r ∈ IR, 0 ≤ x ≤ 1,

rf(t, x; r) + |g(t, x; r)|2 ≤ C(1 + |r|2)

(A3) ∀t ≥ 0, , 0 ≤ x ≤ 1, r → f(t, x; r) is continuous.

Moreover, whithout the assumption (A2), the solution exists and is unique
up to some (possibly infinite) stopping time.

If one suppresses the above condition (A1), and adds the condition that

∀t ≥ 0, 0 ≤ x ≤ 1, r → g(t, x; r) is continuous,

then one can show the existence of a weak solution (i. e. a solution of the
associated martingale problem).

3.4 Positivity of the solution

Let us state the

Theorem 3.4.1. Let u and v be the two solutions of the two white–noise
driven SPDEs
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x;u(t, x)) + g(t, x;u(t, x))

·
W (t, x), t ≥ 0, 0 ≤ x ≤ 1;

u(t, 0) = u(t, 1) = 0, t ≥ 0;

u(0, x) = u0(x), 0 ≤ x ≤ 1.
(3.4)

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + F (t, x; v(t, x)) + g(t, x; v(t, x))

·
W (t, x), t ≥ 0, 0 ≤ x ≤ 1;

v(t, 0) = v(t, 1) = 0, t ≥ 0;

v(0, x) = v0(x), 0 ≤ x ≤ 1.
(3.5)



60 CHAPTER 3. SPDES DRIVEN BY SPACE–TIME WHITE NOISE

Assume that u0, v0 ∈ C0([0, 1]) and one of the two pairs (f, g) or (F, g)
satisfies the conditions for strong existence and uniqueness. Then if u0(x) ≤
v0(x) ∀x and f ≤ F , u(t, x) ≤ v(t, x) ∀t ≥ 0, 0 ≤ x ≤ 1, IP a. s.

Sketch of the proof: Let {ek, k ≥ 1} be an orthonormal basis of L2(0, 1).
Formally,

·
W (t, x) =

∞∑
k=1

·
W

k

(t)ek(x).

For each N ≥ 1, let

·
WN (t, x) =

N∑
k=1

·
W

k

(t)ek(x),

and uN (resp. vN) be the solution of (3.4) (resp. (3.5)), where
·
W has been

replaced by
·
WN . Then one can show (see Lemma 2.1 in [5]) that ∀p ≥ 1,

T ≥ 0,
lim

N→∞
sup

0≤t≤T, 0≤x≤1
IE[|(u(t, x)− uN(t, x)|p] = 0,

and the same is true for the difference v − vN . It is then easy to deduce the
result from Theorem 2.4.3.

Corollary 3.4.2. Let u0(x) ≥ 0, assume (f, g) satisfies the conditions for
strong existence–uniqueness of a solution u to equation (3.3). If moreover

f(t, x; 0) ≥ 0, g(t, x; 0) = 0, ∀t ≥ 0, 0 ≤ x ≤ 1,

then u(t, x) ≥ 0, ∀t ≥ 0, 0 ≤ x ≤ 1, IP a. s.

Proof: Let v0 ≡ 0 ≤ u0(x), F (t, x; r) = f(t, x; r) − f(t, x; 0) ≤ f(t, x; r).
Then v ≡ 0 solves (3.5), and the result follows from the comparison theorem
(reversing the orders).

3.5 Applications of Malliavin calculus to

SPDEs

We consider again equation (3.3). Our assumptions in this section are the
following

(M1)

{
∀0 ≤ x ≤ 1, t ≥ 0, r → (f(t, x; r), g(t, x; r)) is of class C1

and the derivatives are locally bounded, uniformly in t and x.
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(M2)

{
∃C such that ∀t ≥ 0, r ∈ IR, 0 ≤ x ≤ 1,

rf(t, x; r) + |g(t, x; r)|2 ≤ C(1 + |r|2)

(M3) (t, x, r) → g(t, x; r) is continuous.

(M4) ∃y ∈ (0, 1) such that g(0, y;u0(y)) 6= 0.

The aim of this section is to show the following result from [23]

Theorem 3.5.1. Under conditions (M1), (M2) and (M3), for any t > 0,
0 < x < 1, the law of the random variable u(t, x) is absolutely continuous
with respect to Lebesgue measure on IR.

Let us first state and prove one Corollary to this result

Corollary 3.5.2. Under the conditions of Theorem 3.5.1, if moreover
u0(x) ≥ 0, u0 6≡ 0, f(t, x; 0) ≥ 0, g(t, x; 0) = 0, then u(t, x) > 0, ∀t > 0, x a.
e., IP a. s.

Proof: From Corollary 3.4.2, we already know that u(t, x) ≥ 0 for all t, x,
IP a. s. Moreover IP(u(t, x) = 0) = 0, hence for each fixed (t, x), u(t, x) > 0
IP a. s. The result follows from the continuity of u. �

Let us recall the basic ideas of Malliavin calculus, adapted to our situa-
tion. We consider functionals of the Gaussian random measure W . We first
consider the so–called simple random variables, which are of the following
form :

F = f(W (k1), . . . ,W (kn)),

where f ∈ C∞
b (IRn), k1, . . . , kn ∈ H = L2(IR+ × (0, 1)). For any h ∈ H, we

define the Malliavin derivative of F in the direction h as

DhF =
d

dε
f(W (k1) + ε(h, k1), . . . ,W (kn) + ε(h, kn))|ε=0

=
n∑

i=1

∂f

∂xi

(W (k1), . . . ,W (kn))(h, ki),

and the first order Malliavin derivative of F as the random element of H
v(t, x) = DtxF given as

DtxF =
n∑

i=1

∂f

∂xi

(W (k1), . . . ,W (kn))ki(t, x).
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We next define the ‖ · ‖1,2 norm of a simple random variable as follows

‖F‖2
1,2 = IE(F 2) + IE(|DF |2H).

Now the Sobolev space ID1,2 is defined as the closure of the set of simple ran-
dom variables with respect to the ‖·‖1,2 norm. Both the directional derivative
Dh and the derivation D are closed operators, which can be extended to ele-
ments of the space ID1,2. It can even be extended to elements of ID1,2

loc, which
is defined as follows. X ∈ ID1,2

loc whenever there exists a sequence {Xn, n ≥ 1}
of elements of ID1,2, which are such that the sequence Ωn = {X = Xn} is
increasing, and IP(Ω\ ∪n Ωn) = 0. We note that for X ∈ ID1,2

loc, which is Ft

measurable, DsyX = 0 whenever s > t. One should think intuitively of the

operator Dsy as the derivation of a function of
·
W with respect to

·
W (s, y),

the white noise at point (s, y).
We shall also use the space IDh, which is the closure of the set of simple

random variables with respect to the norm whose square is defined as

‖X‖2
h = IE(F 2 + |DhF |2).

A simple consequence of a well–known result of Bouleau and Hirsch is
the

Proposition 3.5.3. Let X ∈ ID1,2
loc . If ‖DX‖H > 0 a. s., then the law of

the random variable X is absolutely continuous with respect to Lebesgue’s
measure.

Proof (taken from Nualart [19]): It suffices to treat the case where
X ∈ ID1,2 and |X| < 1 a. s. It now suffices to show that whenever g :
(0, 1) → [0, 1] is measurable,∫ 1

−1

g(y)dy = 0 ⇒ IEg(X) = 0.

There exists a sequence {gn} ⊂ C1
b ((−1, 1); [0, 1]) which converges to g a. e.

both with respect to the law of X and with respect to Lebesgue’s measure.
Define

ψn(x) =

∫ x

−1

gn(y)dy, ψ(x) =

∫ x

−1

g(y)dy.

Now ψn(X) ∈ ID1,2 and D[ψn(X)] = gn(X)DX. Now, ψn(X) → ψ(X) in
ID1,2. We observe that ψ(X) = 0, and D[ψ(X)] = g(X)DX. Now from the
assumption of the Proposition follows that g(X) = 0 a. s. �
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We shall prove that for fixed (t, x), u(t, x) ∈ ID1,2
loc, then compute the direc-

tional Malliavin derivative Dhu(t, x), and finally prove that ‖Du(t, x)‖H > 0
a. s.
Proof of Theorem 3.5.1: First step. By the localization argument, it
suffices to prove that whenever f , f ′r, g and g′r are bounded, u(t, x) ∈ ID1,2.
We first show that a directional derivative exists in any direction of the form
h(t, x) = ρ(t)e`(x), where ρ ∈ L2(IR+), and e` is an element of an orthonormal
basis of L2(0, 1). This is done by approximating (3.3) by a sequence of
finite dimensional SDEs indexed by n, driven by a finite dimensional Wiener
process. The derivative of the approximate SDE is known to solve a linearized
equation, which converges as n→∞ to the solution v(t, x) of the linearized
equation 

∂v

∂t
=
∂2v

∂x2
+ f ′(u)v + g′(u)v

·
W +g(u)h

v(0, x) = 0,
(3.6)

and the fact that Dh is closed (that means that if {Xn} ⊂ IDh, Xn → X in
L2(Ω), DhXn → Y in L2(Ω;H), then X ∈ IDh and Y = DhX), allows us
to deduce that u ∈ IDh, and v = Dhu. The fact that u ∈ ID1,2 is proved
by showing that, whenever {hn, n ≥ 1} is an orthonormal basis of H =
L2(IR+ × (0, 1)),

IE
(
‖Du(t, x)‖2

H

)
=
∑

n

IE
(
|Dhnu(t, x)|2

)
,

which can be shown to be finite using classical estimates of the kernel of the
heat equation.

Step 2 Let y be such that g(0, y;u0(y)) 6= 0, and suppose for example
that g(0, y;u0(y)) > 0. Then there exists ε > 0 and a stopping time τ such
that 0 < τ ≤ t, such that

g(s, z;u(s, z) > 0, ∀z ∈ [y − ε, y + ε], 0 ≤ s ≤ τ,

and we have

‖Du(t, x)‖H > 0 ⇔
∫ t

0

∫ 1

0

|Ds,zu(t, x)|dzds > 0

⇐
∫ τ

0

∫ y+ε

y−ε

|Ds,zu(t, x)|dzds > 0.
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But, ∀h ∈ L2(Ω × IR+ × [0, 1],P ⊗ B([0, 1]), IP × λ) such that h ≥ 0 and
supph ⊂ {(s, y); g(s, y;u(s, y)) ≥ 0}, Dhu(t, x) ≥ 0, as a consequence of
Corollary 3.4.2, applied to (3.6). Hence a sufficient condition for ‖Du(t, x)‖H

to be positive is that∫ τ

0

∫ y+ε

y−ε

Ds,zu(t, x)dzds =

∫ τ

0

v(s; t, x) > 0,

where we have defined v(s; t, x) =
∫ y+ε

y−ε
Ds,zu(t, x)dz. Let us just show that

v(t, x) = v(0; t, x) > 0. v solves the linearized SPDE
∂v

∂t
=
∂2v

∂x2
+ f ′(u)v + g′(u)v

·
W

v(0, x) = g(0, x;u0(x))1[y−ε,y+ε](x).
(3.7)

Now ∃β > 0 such that g(0, x, u0(x)) ≥ β, for x ∈ [y − ε, y + ε], then by the
comparison theorem it suffices to prove our result with the initial condition
of (3.7) replaced by β1[y−ε,y+ε](x), and by linearity it suffices to treat the case
β = 1. In order to simplify the notations, we let a = y−ε, and b = y+ε. Since
v = ectv satisfies the same equation as v, with f ′(u) replaced by f ′(u) + c,
it suffices, again by the comparison theorem, to treat the case f ′(u) ≡ 0.
Finaly we need to examine the random variable

v(t, x) = v1(t, x) + v2(t, x)

=

∫ b

a

p(t;x, z)dz +

∫ t

0

∫ 1

0

p(t− s;x, z)g′(u)(s, z)v(s, z)W (ds, dz).

Assume that x ≥ a (if this is not the case, then we have x ≤ b, and we can
adapt the argument correspondingly). Let d be such that x ≤ b+ d < 1, and
define

α =
1

2
inf

1≤k≤m
inf

a≤y≤b+dk/m

∫ b+d(k−1)/m

a

p(
t

m
; y, z)dz.

We have that α > 0. We now define, for 1 ≤ k ≤ m, the event

Ek =

{
v

(
kt

m
, ·
)
≥ αk1[a,b+kd/m](·)

}
.

Let us admit for a moment the
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Lemma 3.5.4. There exists δ0,m0 > 0 such that for all 0 < δ ≤ δ0, and
m ≥ m0,

IP(Ec
k+1|E1 ∩ · · · ∩ Ek) ≤

δ

m
, 0 ≤ k ≤ m− 1.

Now

IP(v(t, x) > 0) ≥ lim
m→∞

IP(E1 ∩ · · · ∩ Em) ≥ lim
m

(1− δ

m
)m = e−δ,

hence the result, since we can let δ → 0.
Proof of Lemma 3.5.4: Proving the Lemma amounts to prove that
IP(Ec

1) ≤ δ/m. By the very definition of α,

v1

(
t

m
, ·
)
≥ 2α1[a,b+d/m](·).

hence it suffices to show that for some δ0 > 0, and all 0 < δ ≤ δ0, and m
large enough,

IP

(
sup

0≤y≤1

∣∣∣∣v2

(
t

m
, y

)∣∣∣∣ > α

)
≤ δ

m
.

For this to be true, it suffices that there exists n, p > 1 and c > 0 such that

IE

(
sup

0≤y≤1
|v2(t, y)|n

)
≤ ctp.

But

IE(|v2(t, y)|n) ≤ c

(∫ t

0

∫ 1

0

p2(t− s; y, z)dzds

)n/2

≤ c

(∫ t

0

∫ 1

0

pr(t− s; y, z)dzds

)n/r

tn/q,

if 2
r
+ 2

q
= 1. Since we need r < 3 for the first factor to be finite, we get that

for q > 6,
IE(|v2(t, y)|n) ≤ ctn/q.

Moreover, from Walsh’s computations (see the prof of Theorem 3.2.4)

IE (|v2(t, x)− v2(t, y)|n) ≤ c|x− y|
n
2
−1tn/q.

This allows us to conclude, if we choose n > q > 6. �
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In the case where g does not vanish, and the coefficients are smooth, for
any 0 < x1 · · · < xn < 1, the law of the random vector

(u(t, x1, u(t, x2), . . . , u(t, xn))

has a density with respect to Lebesgue measure on IRn, which is everywhere
strictly positive. It is an open problem to show the same result under a
condition similar to that of Theorem 3.5.1.

In the case of the 2D Navier–Stokes equation driven by certain low di-
mensional white noises, Mattingly and P. [13] have shown that for any t > 0,
the projection of u(t, ·) on any finite dimensional subspace has a density with
respect to Lebesgue measure, which under appropriate conditions is smooth
and everywhere positive.

3.6 SPDEs and the super Brownian motion

In this section, we want to study the SPDE
∂u

∂t
=

1

2

∂2u

∂x2
+ |u|γẆ , t ≥ 0, x ∈ IR

u(0, x) = u0(x),
(3.8)

where u0(x) ≥ 0. We expect the solution to be non negative, so that we can
replace |u|γ by uγ. The behavior of the solution to this equation, which has
been the object of intense study, depends very much upon the value of the
positive parameter γ. The case γ = 1 is easy and has already been considered
in these notes. If γ > 1, then the mapping r → rγ is locally Lipschitz, and
there exists a unique strong solution, up possibly to an explosion time. C.
Mueller has shown that the solution is strictly positive, in the sense that

u0 6≡ 0 ⇒ u(t, x) > 0, ∀t > 0, x ∈ IR, IP a. s.

We shall consider here the case γ < 1.

3.6.1 The case γ = 1/2

In that case, the SPDE (3.8) is related to the super Brownian motion, which
we now define. For a more complete introduction to superprocesses and for
all the references to this subject, we refer the reader to [6]. Let Md denote
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the space of finite measures on IRd, and Cd
c+ the space of C2 functions from

IRd into IR+, with compact support. We shall use 〈·, ·〉 to denote the pairing
between measures and functions from Cd

c+.

Definition 3.6.1. The super Brownian motion is a Markov process {Xt, t ≥
0} with values in Md which is such that t→ 〈Xt, ϕ〉 is right continuous for all
ϕ ∈ Cd

c+, and whose transition probability is caracterized as follows through
its Laplace transform

IEµ[exp(−〈Xt, ϕ〉)] = exp(〈µ, Vt(ϕ)〉), ϕ ∈ Cd
c+,

where µ ∈ Md and Vt(ϕ) is the function which is the value at time t of the
solution of the nonlinear PDE

∂V

∂t
=

1

2
(∆V − V 2)

V (0) = ϕ.

Let us compute the infinitesimal generator of this diffusion.

If F (µ) = e−〈µ,ϕ〉,

lim
t→0

1

t
(IEµF (Xt)− F (µ)) = lim

t→0

1

t

(
e−〈µ,Vt(ϕ)〉 − e−〈µ,ϕ〉)

= −e−〈µ,ϕ〉 lim
t→0
〈µ, Vt(ϕ)− ϕ

t
〉

= −1

2
e−〈µ,ϕ〉〈µ,∆ϕ− ϕ2〉

= GF (µ).

From this we deduce that if F has the form F (Xt) = f(〈Xt, ϕ〉), then

GF (µ) =
1

2
f ′(〈µ, ϕ〉)〈µ,∆ϕ〉+

1

2
f ′′(〈µ, ϕ〉)〈µ, ϕ2〉.

Consequently, the process defined for ϕ ∈ Cd
c+ as

Mϕ
t = 〈Xt, ϕ〉 − 〈X0, ϕ〉 −

1

2

∫ t

0

〈Xs,∆ϕ〉ds

is a continuous martingale with associated increasing process

〈Mϕ〉t =

∫ t

0

〈Xs, ϕ
2〉ds.
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We just formulated the martingale problem which the super Brownian motion
solves. Let us show how this follows from our previous computations. We
have that whenever F (Xt) = f(〈Xt, ϕ〉),

F (Xt) = F (X0) +

∫ t

0

GF (Xs)ds is a martingale.

If we choose f(x) = x, we get that the following is a martingale

Mϕ
t = 〈Xt, ϕ〉 − 〈X0, ϕ〉 −

1

2

∫ t

0

〈Xs, ϕ〉ds.

If we choose now f(x) = x2, we get another martingale

Nt = 〈Xt, ϕ〉2 − 〈X0, ϕ〉2 −
∫ t

0

〈Xs, ϕ〉〈Xs,∆ϕ〉ds

−
∫ t

0

〈Xs, ϕ
2〉ds.

Now applying Itô’s formula to the first of the two above formulas yields

〈Xt, ϕ〉2 = 〈X0, ϕ〉2 +

∫ t

0

〈Xs, ϕ〉〈Xs,∆ϕ〉ds

+ 〈Mϕ〉t + martingale.

Comparing the two last formulas gives

〈Mϕ〉t =

∫ t

0

〈Xs, ϕ
2〉ds.

Existence of a density and SBM–related SPDE If d ≥ 2, one can
show that the measure Xt is a. s. singular with respect to Lebesgue measure.
On the contrary, if d = 1, Xt << λ. Define u(t, ·) as the density of Xt. The
formula for 〈Mx〉t implies that there exists a Gaussian random measure on
IR+ × IR such that

Mϕ
t =

∫ t

0

∫
IR

√
u(s, x)ϕ(x)W (ds, dx),

hence u(t, x) is a (weak) positive solution of the SPDE
∂u

∂t
=

1

2

∂2u

∂x2
+
√
uẆ , t ≥ 0, x ∈ IR

u(0, x) = u0(x).
(3.9)
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Uniqueness in law We now show that the law of the super Brownian
motion is uniquely determined, which implies uniqueness in law for the SPDE
(3.9).

We note that from the Markov property, and the semigroup property of
{Vt},

IEµ

(
e−〈Xt,VT−t(ϕ)〉|Fs

)
= IEXs

(
e−〈Xt−s,VT−t(ϕ)〉)

= e−〈Xs,Vt−s(VT−t(ϕ))〉

= e−〈Xs,VT−s(ϕ)〉.

We have just proved that {e−〈Xt,VT−t(ϕ)〉, 0 ≤ t ≤ T} is a martingale. Hence
in particular

IEµe
−〈XT ,ϕ〉 = e−〈µ,VT (ϕ)〉,

which caracterizes the transition probability of {Xt}, hence its law.

A construction of the SBM We start with an approximation by a
branching process.

• At time 0, let N particles have i. i. d. locations in IRd, with the
common law µ.

• At each time k/N , k ∈ IN, each particle dies with probability 1/2 and
gives birth to 2 descendants with probability 1/2.

• On each interval [k/N, (k + 1)/N ], the living particles follow mutually
independent Brownian motions.

Denote by N(t) the number of particles alive at time t, and Y i
t the position

of the i–th particle (1 ≤ i ≤ N(t)). Let {XN
t } denote the Md–valued process

XN
t =

1

N

N(t)∑
i=1

δY i
t
, 〈XN

t , ϕ〉 =
1

N

N(t)∑
i=1

ϕ(Y i
t ).

Theorem 3.6.2. XN ⇒ X, as N →∞, where X is a SBM with initial law
µ.

Corollary 3.6.3. There exists a stopping time τ , with τ < ∞ a. s., such
that Xτ = 0.
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Proof: The extinction time T of a branching process as described above
satisfies, from a result due to Kolmogorov,

IP(T > t) = IP(NT > Nt) ' C

Nt
.

Now with N independent such processes

IP( sup
i≤i≤N

Ti ≤ t) =
N∏

i=1

IP(Ti ≤ t) ' (1− C

Nt
)N → e−C/t,

as N →∞. In other words, IP(τ > t) ' 1− e−C/t. �
We will now show that whenever u0 has compact support, the same is

true with u(t, ·), ∀t > 0. This follows from the

Theorem 3.6.4. Let µ ∈ Md be such that suppµ ⊂ B(0, R0). Then, for all
R > R0,

IP(Xt(B(0, R)c) = 0, ∀t ≥ 0) = exp

(
−〈µ, u(R

−1·)〉
R2

)
,

where u is the positive solution of the PDE{
∆u = u2, |x| < 1;

u(x) →∞, x→ ±1.

Corollary 3.6.5. Under the assumptions of the theorem,

IPµ (∪t≥0suppXt is bounded) = 1.

Proof: We have

IPµ (∪t≥0suppXt is bounded)

= IPµ (∪r>R0{Xt(B(0, r)c) = 0, ∀t ≥ 0})

= lim
r→∞

exp

(
−〈µ, u(r

−1·)〉
r2

)
≥ lim

r→∞
exp

(
− 1

r2
[ sup
|y|≤R0/r

u(y)]µ(IRd)

)
= 1,

where we have used the Theorem for the second equality. �
Before we prove the Theorem, we need one more Lemma.
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Lemma 3.6.6. ∀t ≥ 0, ϕ ∈ Cd
c+, we have

IEµ exp

(
−
∫ t

0

〈Xs, ϕ〉ds
)

= exp (−〈µ, ut(ϕ)〉) ,

where {ut(ϕ), t ≥ 0} is the positive solution of the nonlinear parabolic PDE
∂u

∂t
=

1

2
(∆u− u2) + ϕ, t ≥ 0;

u(0) = 0.

Proof: Let n ∈ IN, h = t/n, ti = ih.

exp

(
−
∫ t

0

〈Xs, ϕ〉ds
)

= lim
n

exp

(
−

n∑
i=1

〈Xti , hϕ〉

)
.

Now

IEµ

(
e−〈Xtn ,hϕ〉|Ftn−1

)
= e−〈Xtn−1 ,Vh(hϕ)〉,

IEµ

(
e−〈Xtn ,hϕ〉−〈Xtn−1 ,hϕ〉|Ftn−2

)
= IEµ

(
e−〈Xtn−1 ,Vh(hϕ)+hϕ〉|Ftn−2

)
= e−〈Xtn−2 ,Vh(Vh(hϕ)+hϕ)〉,

and iterating this argument, we find that

IEµ exp

(
−

n∑
i=1

〈Xti , hϕ〉

)
= exp (−〈µ, vh(t)〉) ,

where vh solves the parabolic PDE
∂vh

∂t
=

1

2
(∆vh − v2

h), ih < t < (i+ 1)h;

vh(ih) = vh(ih
−) + hϕ

vh(0) = 0.

In other words (here P (t) stands for the semigroup generated by 1
2
∆)

vh(t) = −1

2

∫ t

0

P (t− s)v2
h(s)ds+ h

∑
0≤i: ih≤t

P (t− ih)ϕ

→, as n tends to +∞

u(t) = −1

2

∫ t

0

P (t− s)u2(s)ds+

∫ t

0

P (t− s)ϕds.
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Proof of Theorem 3.6.4: Approximating the indicator function of the
closed ball B(0, R) by regular functions ϕ, and exploiting the fact that
t → 〈Xt, ϕ〉 is a. s. right continuous, as well as the monotone convergence
theorem, we get that

IPµ(Xt(B(0, R)c) = 0, ∀t ≥ 0) = IPµ

(∫ ∞

0

Xt(B(0, R)c)dt = 0

)
= lim

θ→∞
IEµ

(
exp

[
−θ
∫ ∞

0

Xt(B(0, R)c)dt

])
= lim

θ→∞
lim

n→∞
lim

m→∞
lim

T→∞
IEµ

(
exp

[
−
∫ T

0

〈Xt, θϕR,n,m〉dt
])

= lim
θ→∞

lim
n→∞

lim
m→∞

lim
T→∞

exp [−〈µ, unm(T, ·;R, θ)〉] ,

where ϕR,n,m is zero outside [−m − 1,−R] ∪ [R,m + 1], 1 on the interval
[−m,−R − 1/n] ∪ [R + 1/n,m], increases and decreases linearly between 0
and 1; and unm(t, ·, R, θ), by the preceding Lemma, solves the parabolic PDE

∂v

∂t
=

1

2
(∆v − v2) + θϕR,n,m, 0 ≤ t ≤ T,

v(0) = 0.

Now as T →∞, unm(T, ·, R, θ) → unm(·, R, θ), which solves the PDE

−∆unm + u2
nm = 2θϕR,n,m,

and as n,m→∞, unm(·, R, θ) → u(·, R, θ), solution of

−∆u+ u2 = 2θ1|x|>R,

hence as θ →∞, u(·, R, θ) → u(·, R), solution of{
−∆u+ u2 = 0, |x| < R;

u(x) →∞, x→ ±R.

Since u(x,R) = 1
R2u(

x
R
), we finally get that

IP(Xt(B(0, R)c) = 0, ∀t ≥ 0) = exp

(
−〈µ, u(R

−1·)〉
R2

)
.
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3.6.2 Other values of γ < 1

We now prove that uniqueness in law still holds for 1/2 < γ < 1, following
Mytnik [18].

Theorem 3.6.7. Let u0 ∈ C(IR; IR+) be such that

sup
x∈IR

ep|x|u0(x) <∞, ∀p > 0.

Then the martingale problem : ∀Φ ∈ D(∆),

Zt(Φ) := 〈ut,Φ〉 − 〈u0,Φ〉 −
1

2

∫ t

0

〈us,∆Φ〉ds (3.10)

is a continuous martingale with the associated increasing process

〈Z(Φ)〉t =

∫ t

0

〈u2γ
s ,Φ

2〉ds

possesses a unique solution.

Proof Existence of a positive solution follows from weak existence theory,
usinf tightness of an approximating sequence. We now prove uniqueness. By
an argument very similar to that in the proof of Theorem 4.2 in Ethier–Kurtz
[7] (that theorem does not apply here), it suffices to show that for any t > 0,
the law of u(t, ·) is unique. We have assumed that the initial condition u(0, ·)
belongs to the space

C+
rap = {u ∈ C(IR; IR+), sup

x∈IR
ep|x|u(x) <∞, ∀p > 0}.

We first note that u(t, ·) ∈ C+
rap, ∀t > 0, and that for all T > 0, p ≥ 1,

sup
0≤t≤T, x∈IR

IE [up(t, x)] <∞.

Suppose we can find a space E, a bounded measurable mapping f : C+
rap ×

E → IR such that

• (i) the class of functions {f(·, y); y ∈ E} separates the probabilities on
C+

rap;



74 CHAPTER 3. SPDES DRIVEN BY SPACE–TIME WHITE NOISE

• (ii) ∀y ∈ E, there exists an E–valued process {Ys, 0 ≤ s ≤ t} which is
independent from {u(s, ·), 0 ≤ s ≤ t} and satisfies

IE [f(u(t, ·), y)] = IE [f(u(0, ·), Yt)] ,

Y0 = y.

Clearly the above conditions imply that the law of u(t, ·) is unique.
Such a process {Ys, 0 ≤ s ≤ t} is called dual to the process {u(s, ·), 0 ≤

s ≤ t}.
The standard method for finding a dual process is to choose both a func-

tion f and a process {Ys, 0 ≤ s ≤ t} such that, together with appropriate
integrability conditions, the following are true for a given function g :

f(u(t, ·), y)−
∫ t

0

g(u(s, ·), y)ds is a martingale, ∀y ∈ E; (3.11)

f(u, Yt)−
∫ t

0

g(u, Ys)ds is a martingale, ∀u ∈ C+
rap. (3.12)

Indeed, we deduce from those identities that for all 0 ≤ s, r ≤ t, u ∈ C+
rap,

y ∈ E,

d

ds
IEf(u(s, ·), y) = IEg(u(s, ·), y), d

dr
IEf(u, Yr) = IEg(u, Yr).

Since the two processes {u(s, ·), 0 ≤ s ≤ t} and {Ys, 0 ≤ s ≤ t} are mutually
independent, the last identities imply that

∂

∂s
IEf(u(s, ·), Yr) = IEg(u(s, ·), Yr) =

∂

∂r
IEf(u(s, ·), Yr).

In other words, if we define

h(s, r) := IEf(u(s, ·), Yr), h1(s, r) =
∂h

∂s
(s, t), h2(s, r) =

∂h

∂r
(s, t),

we have shown that h1 ≡ h2 on [0, t]2. But we have the

Lemma 3.6.8. If h1 and h2 are ds × dr–integrable on [0, t]2, and h1 ≡ h2,
then

h(t, 0) = h(0, t).
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Proof of Lemma 3.6.8 It follows from an elementary change of variable
in the integral that ∫ t

0

h(t− s, s)ds =

∫ t

0

h(s, t− s)ds.

Consequently∫ t

0

[h(s, 0)− h(0, s)]ds =

∫ t

0

[h(t− s, s)− h(0, s)]ds−
∫ t

0

[h(s, t− s)− h(s, 0)]ds

=

∫ t

0

∫ t−s

0

h1(u, s)duds−
∫ t

0

∫ t−s

0

h2(s, u)duds

= 0,

since h1 ≡ h2. The result follows from differentiating the identity which we
have shown. �

We choose E = L1
+(IR), and f(Ψ,Φ) = exp[−〈Ψ,Φ〉]. We know that for

any Φ ∈ D(∆),

e−〈u(t,·),Φ〉 − 1

2

∫ t

0

e−〈u(s,·),Φ〉 [−〈u(s, ·),∆Φ〉+ 〈u2γ(s, ·),Φ2〉
]
ds

is a martingale. Hence we wish to construct an L1
+(IR)–valued process

{Yt, t ≥ 0} such that ∀Ψ ∈ C+
rap,

e−〈Ψ,Yt〉 − 1

2

∫ t

0

e−〈Ψ,Ys〉
[
−〈Ψ,∆Ys〉+ 〈Ψ2γ, Y 2

s 〉
]
ds

is a martingale.
Formally, we would like to find a solution {Yt, t ≥ 0} of the SPDE

∂Yt

∂t
(t, x) =

1

2
∆Yt(t, x) + Y

1/γ
t (t, x)L̇(t, x),

where {Lt, t ≥ 0} would be a stable process on IR+ × IR with non–negative
jumps, whose Laplace transform would be given for Φ ∈ L2γ

+ (IR+ × IR) by

IE exp

[
−
∫ t

0

∫
IR

Φ(s, x)L(ds, dx)

]
= exp

[∫ t

0

∫
IR

Φ2γ(s, x)dxds

]
.
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Remark 3.6.9. In the case γ = 1/2, the natural choice is L̇(t, x) = −1, i.
e. L is deterministic. In that case the solution of the PDE

∂Yt

∂t
(t, x) =

1

2
∆Yt(t, x)− Y 2

t (t, x)

provides a deterministic dual. This is one way to interpret the uniqueness
proof in the previous subsection.

Unfortunately, we do not know how to solve the above SPDE for the Y
process. Hence we shall replace it by a sequence of approximating SPDEs,
corresponding to the following martingale problems. Given an arbitrary ini-
tial condition Φ ∈ L1

+(IR), for any Ψ ∈ D(∆)+,

Zn
t (Ψ) := exp [−〈Y n

t ,Ψ〉]− exp [−〈Φ,Ψ〉]

− 1

2

∫ t

0

exp [−〈Y n
s ,Ψ〉]

(
−〈Y n

s ,∆Ψ〉+ 〈[Y n
s ]2, η

∫ ∞

1/n

[e−λΨ − 1 + λΨ]
dλ

λ1+2γ
〉
)
ds

is a local martingale satisfying Zn
0 (Ψ) = 0, where η = 2γ(2γ − 1)/Γ(2− 2γ).

Note that ∫ ∞

0

(e−u − 1 + u)
du

u1+2γ
= η−1,

hence

η

∫ ∞

0

(e−λy − 1 + λy)
dλ

λ1+2γ
= y2γ.

Our uniqueness result follows from

Proposition 3.6.10. For all η ∈ C+
rap, Φ ∈ L1

+(IR), there exists a sequence of
processes {Y n

t , t ≥ 0}n≥1 with values in the set M(IR) of finite measures on
IR, such that Y n

0 = Φ, and for any t ≥ 0, any solution {u(s, ·), s ≥ 0} of the
martingale problem (3.10) corresponding to the initial condition u(0, ·) = η,
which is independent of the processes {Y n

t , t ≥ 0}n≥1, we have

IE exp [−〈u(t, ·),Φ〉] = lim
n→∞

IE exp [−〈η, Y n
t 〉]

We shall need the following technical Lemma

Lemma 3.6.11. Let {u(t, ·), t ≥ 0} denote a solution of the martingale
problem (3.10), and Ψ ∈ C1,2

b (IR+ × IR) such that∫ T

0

∫
IR

Ψ2(t, x)dxdt <∞, ∀T > 0.
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Then the process

exp[−〈u(t, ·),Ψ(t, ·)〉]

−
∫ t

0

e−〈u(s,·),Ψ(s,·)〉
[
−〈u(s, ·), 1

2
∆Ψ(s, ·) +

∂Ψ

∂s
(s, ·)〉+

1

2
〈u2γ(s, ·),Ψ2(s, ·)〉

]
ds

is a martingale.

Let us now describe the construction of the sequence {Y n
t , t ≥ 0}n≥1.

To each n ∈ IN, m ∈ M(IR), we associate the positive mild solution
{vn

t (m), t ≥ 0} of the PDE
∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x)− 1

2
bnv

2(t, x);

v(0, ·) = m;

where bn = 2γn2γ−1/Γ(2− 2γ). We have

‖vn
t (m)‖1 = m(1)− bn

2

∫ t

0

‖vn
s (m)‖2

2ds

→ 0, as t→∞,∫ ∞

0

‖vn
t (m)‖2dt = 2

m(1)

bn
.

Let for each n ≥ 1 {Sn,i, i ≥ 1} be i. i. d. exponential random variables
with parameter Kn = (2γ − 1)n2γ/Γ(2 − γ), and {Vn,i, i ≥ 1} be i. i.
d. random variables, globally independent from the Sn,i’s, whose common
density is given as c(γ, n)x−(1+2γ)1{x≥1/n}. We let

Tn,i =
i∑

k=1

Sn,k, i ≥ 1;

An
t = 〈Φ, 1〉+

∑
i≥1

Vn,i1[Tn,i,+∞)(t);

γn(t) = inf{s; 1

2

∫ s

0

‖vn
r (Φ)‖2

2dr > t}, 0 ≤ t ≤ Tn,1.

We then define

Y n
t = vn

t (Φ), 0 ≤ t < γn(Tn,1);

Y n
γn(Tn,1) = Y n

γn(Tn,1)− + Vn,1δUn,1 , if γn(Tn,1) <∞;



78 CHAPTER 3. SPDES DRIVEN BY SPACE–TIME WHITE NOISE

where

IP(Un,1 ∈ ·|Zn,1, Tn,1) = G(Y n
γn(Tn,1)− , ·),

G(f, A) =

(∫
IR

f 2(x)dx

)−1 ∫
A

f 2(x)dx.

More generally, for k ≥ 1, let

γn(t) = inf{s; γn(Tn,k) +
1

2

∫ s−γn(Tn,k)

0

‖vn
r (Y n

γn(Tn,k)‖2
2dr > t},

Tn,k ≤ t ≤ Tn,k+1;

Y n
t = vn

t−γn(Tn,k)(Y
n
γn(Tn,k)), Tn,k ≤ t < Tn,k+1;

Y n
γn(Tn,k+1) = Y n

γn(Tn,k+1)− + Vn,k+1δUn,k+1
,

where
IP(Un,k+1 ∈ ·|Fn

k+1) = G(Y n
γn(Tn,k+1)− , ·).

Clearly, we have that for all t ≥ 0,

γn(t) = inf{s;
∫ s

0

‖Y n
r−‖2

2dr > t}.

Let T ∗
n = inf{t; γ(t) = ∞}. Then

Y n
γn(T ∗

n)(1) = 0, while Y n
γn(t)(1) = An

t − bnt,

hence

T ∗
n =

∫
{t; An

t − bnt = 0}, and IP(T ∗
n <∞) = 1.

We finally let γ̃n(t) = γn(log n) ∧ t, and we finally conclude that

IE [exp (−〈u(t, ·),Φ〉)] = lim
n→∞

IE
[
exp

(
−〈u(0, ·), Y n

γ̃n(t)〉
)]
.

�

Remark 3.6.12. Mueller and Perkins [17] have proved that the compact
support property is still true if 1/2 < γ < 1. Note that that same property
holds also in the case where γ < 1/2, see Shiga [25], while no uniqueness
result is known to hold in that case.



3.7. SPDES WITH SINGULAR DRIFT, AND REFLECTED SPDES 79

3.7 SPDEs with singular drift, and reflected

SPDEs

If we consider an SPDE of the form
∂u

∂t
=
∂2u

∂x2
+ Ẇ ,

u(0, x) = u0(x) ≥ 0, u(t, 0) = u(t, 1) = 0,

clearly the solution is not going to remain non negative, due to the additive
white noise. One way to try to keep the solution positive is to add a drift
which blows up, as u → 0, namely to consider, on the set {(t, x), 0 ≤ x ≤
1, 0 ≤ t ≤ τx}, where τx = inf{t ≥ 0, u(t, x) = 0}, the SPDE

∂u

∂t
=
∂2u

∂x2
+

c

uα
+ Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0.

It has been shown, see [15], [16] that the solution of such an equation remains
strictly positive if α > 3, and has positive probability of hitting 0 if α < 3.
The case α = 3 is the most interesting, since the solution might touch zero
at isolated points, but one can define the solution for all time.

In the case α ≤ 3, one can think of reflecting the solution at 0, i. e. trying
the SPDE 

∂u

∂t
=
∂2u

∂x2
+

c

uα
+ η + Ẇ ,

u(0, x) = u0(x) ≥ 0, u(t, 0) = u(t, 1) = 0,

u ≥ 0, η ≥ 0,

∫ ∞

0

∫ 1

0

u(t, x)η(dt, dx) = 0.

In the next subsection, we shall consider that problem with c = 0, following
Nualart, P. [20]. Then we shall consider the case α = 3, c > 0 folllowing
Zambotti [29] and [30], see also [3], i. e. we shall consider the SPDE (in that
case, it turns out that no reflection term η is necessary) :

∂u

∂t
=
∂2u

∂x2
+

c

u3
+ Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0.

Moreover, the reflected SPDE whithout singular drift appears as the limit as
c→ 0 of that SPDE with a critical singular drift.
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3.7.1 Reflected SPDE

In this subsection, we want first to study the following SPDE with additive
white noise and reflection

∂u

∂t
=
∂2u

∂x2
+ η + Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0,

u ≥ 0, η ≥ 0,

∫ ∞

0

∫ 1

0

u(t, x)η(dt, dx) = 0,

(3.13)

where u0 ∈ C0([0, 1]; IR+). Whithout the measure η, the sign of the solution
would oscillate randomly. The measure η is there in order to prevent the
solution u from crossing 0, by “pushing” the solution upwards. The last
condition says the pushing is minimal, in the sense that the support of η is
included in the set where u is zero. We formulate a precise

Definition 3.7.1. A pair (u, η) is said to be a solution of equation (3.13)
whenever the following conditions are met:

1. {u(t, x), t ≥ 0, 0 ≤ x ≤ 1} is a non negative continuous and adapted
process, such that u(t, 0) = u(t, 1) = 0, ∀t ≥ 0.

2. η(dt, dx) is an adapted random measure on IR+ × [0, 1].

3. For any t > 0, any ϕ ∈ C∞
C ([0, 1]), we have

(u(t), ϕ) = (u0, ϕ) +

∫ t

0

(u(s), ϕ′′)ds+

∫ t

0

∫ 1

0

ϕ(x)W (ds, dx)

+

∫ t

0

∫ 1

0

ϕ(x)η(ds, dx).

We have the

Theorem 3.7.2. If u0 ∈ C0([0, 1]; IR+), equation (3.13) has a unique solu-
tion.

Proof: Step 1 We first reformulate the problem. Let v denote the solution
of the heat equation with additive white noise, but whithout the reflection,
i. e. v solves 

∂v

∂t
=
∂2v

∂x2
+ Ẇ ,

v(0, x) = u0(x), v(t, 0) = v(t, 1) = 0.



3.7. SPDES WITH SINGULAR DRIFT, AND REFLECTED SPDES 81

Defining z = u − v, we see that the pair (u, η) solves equation (3.13) if and
only if z solves

∂z

∂t
=
∂2z

∂x2
+ η,

z(0, x) = 0, z(t, 0) = z(t, 1) = 0,

z ≥ −v, η ≥ 0,

∫ ∞

0

∫ 1

0

(z + v)(t, x)η(dt, dx) = 0,

(3.14)

This is an obstacle problem, which can be solved path by path.
Step 2 We construct a solution by means of the penalization method. For
each ε > 0 let zε solve the penalized PDE

∂zε

∂t
=
∂2zε

∂x2
+

1

ε
(zε + v)−,

z(0, x) = 0, z(t, 0) = z(t, 1) = 0.

It is easily seen that this equation has a unique solution in
L2

loc(IR+;H2(0, 1)) ∩ C(IR+ × [0, 1]). Moreover, it is easily seen that zε in-
creases, when ε decreases to 0. If zε and ẑε are solution to the same equation,
corresponding to v and v̂ respectively, it is easy to show that

sup
0≤t≤T,0≤x≤1

|zε(t, x)− ẑε(t, x)| ≤ sup
0≤t≤T,0≤x≤1

|v(t, x)− v̂(t, x)| (3.15)

Let us show that
w = zε − ẑε − ‖v − v̂‖∞,T ≤ 0,

the other inequality being proved analogously. w solves
∂w

∂t
=
∂2w

∂x2
+

1

ε

[
(zε + v)− − (ẑε + v̂)−

]
,

w(0, x) = −k, w(t, 0) = w(t, 1) = −k,

where k = ‖v − v̂‖∞,T . If w reaches 0, it means that zε ≥ ẑε + k, hence
zε + v ≥ ẑε + v̂ and (zε + v)− ≤ (ẑε + v̂)−. In that case, the drift in the
equation pushes w downwards, i. e. w remains negative between t = 0 and
t = T . This intuitive argument can be justified by standard methods.
Step 3 We let z = limε→0 zε. We want to prove that z is continuous. If we
replace v by a smooth obstacle vn, then the difference between zε and zn,ε is
dominated by ‖v − vn‖∞,T , and in the limit as ε→ 0,

‖z − zn‖∞,T ≤ ‖v − vn‖∞,T .
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But it is known that when the obstacle vn is smooth, zn is continuous. Conse-
quently z is the uniform limit of continuous functions, hence it is continuous.

Define
ηε(dt, dx) = ε−1(zε + v)−(t, x)dtdx.

For any smooth function ψ of (t, x) which is zero whenever x = 0 or x = 1,

〈ηε, ψ〉 =

∫ ∞

0

(zε,
∂ψ

∂t
+
∂2ψ

∂x2
)dt,

hence ηε → η in the sense of distributions, as ε → 0. The limit distribution
is non negative, hence it is a measure, which satisfies

〈η, ψ〉 =

∫ ∞

0

(z,
∂ψ

∂t
+
∂2ψ

∂x2
)dt.

Now the support of ηε is included in the set {zε + v ≤ 0} which decreases
as ε → 0. Hence the support of η is included in {zε + v ≤ 0} for all ε > 0.
Consequently for all T > 0,∫ T

0

∫ 1

0

(zε + v)dη ≤ 0.

The same is true with zε replaced by z by monotone convergence. Hence∫ T

0

∫ 1

0

(z + v)dη = 0.

Step 5 If the solution would be in L2
loc(IR+;H1(0, 1)), then the uniqueness

proof would follow a very standard argument, since if (z, η) and (z, η) are
two solutions, ∫ T

0

∫ 1

0

(z − z)d(η − η) ≤ 0.

Since the above regularity does not hold, one needs to implement a delicate
regularization procedure, which we will not present here. �

3.7.2 SPDE with critical singular drift

Now, consider the SPDE with singular drift (for reasons which will become
apparent below, we choose to write c > 0 as c = (δ − 1)(δ − 3)/8, δ > 3).

∂u

∂t
=
∂2u

∂x2
+

(δ − 1)(δ − 3)

8u3
+ Ẇ ,

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0,
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where δ > 3. It can be shown that the solution of this SPDE converges to the
above reflected SPDE, as δ → 3. L. Zambotti has shown that the solution to
those equations are ergodic, and computed explicitly their invariant measure
(including in the case δ = 3), with respect to which the process is reversible.
It is the law of the δ Bessel bridge, i. e. that of the δ Bessel process,
conditionned to be at 0 at time 1. The δ Bessel process is the solution of the
one dimensional SDE

dXδ(t) =
δ − 1

2Xδ(t)
dt+ dW (t), Xδ(0) = 0.

In the case where δ is an integer, it is the law of the norm of the δ–dimensional
Brownian motion. In particular, the invariant measure of the solution of the
reflected SPDE studied in the previous subsection is the law of the norm of
3–dimensional Brownian motion, conditionned to be 0 at time t = 1.

Moreover, Dalang, Mueller and Zambotti [3] have given precise indica-
tions concerning the set of points where the solution hits zero. This set
is decreasing in δ. For δ = 3, with positive probability there exists three
points of the form (t, x1), (t, x2), (t, x3) where u is zero, and the probability
that there exists 5 points of the same form where u hits zero is zero. For
4 < δ ≤ 5, there exists one such point with positive probability, and two such
points with zero probability. For δ > 6, the probability that there exists one
point where u hits zero is zero.
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stochastiques associées, in Ecole d’été de Probabilités de Saint Flour
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