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Particle system in Rd

(1 + β) branching mechanism, 0 < β ≤ 1, with probability
generating function

g(s) = s +
1

1 + β
(1− s)1+β, 0 < s < 1.

branching is critical – mean value = 1
if β = 1 – binary branching
if β < 1 – infinite variance branching
particles move and branch independently

Empirical process
Nt : Nt (A) = number of particles in the set A at time t .
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Problem

Rescaled occupation time fluctuations

XT (t) =
1

FT

∫ Tt

0

(

Ns

− ENs)

ds, t ≥ 0

where FT is a proper norming.

Problem
find a suitable norming FT , such that XT converges in law
as T →∞ to a nontrivial limit
identification of the limit
properties of the limit
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Two cases
1 initial intensity measure = ν does not depend on T (only

speed up the time)
2 initial intensity measure = νT = HTν, HT →∞ (speed up

the time + high density)
We consider the following initial intensity measures

ν = λ (Lebesgue measure)
HTµ, where µ finite measure, HT →∞
HTµγ with

µγ(dx) =
dx

1 + |x |γ
, γ ≥ 0

either HT ≡ 1 or HT →∞ sufficiently quickly
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History and related problems

Deuschel, Wang (1994), α = 2 (Brownian particles),
Lebesgue measure, without branching
Dawson, Gorostiza, Wakolbinger (2001), convergence of
random variable XT (1), β = 1, general β only for “large”
dimensions
Iscoe (1986), for superprocesses, Lebesgue, convergence
of XT (1).
Birkner, Zähle (2007), for branching random walks on a
lattice.
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Notation

S(Rd ) – the Schwartz space of smooth quickly decreasing
functions
S ′(Rd ) – the space of tempered distributions on Rd ,
It is convenient to consider XT as a process in S ′(Rd )

pt – the transition density of the α-stable process,
(p̂t (x) = e−t |x |α)
Tt – transition semigroup Tt f = pt ∗ f ,
⇒
c

– convergence in law in C([0, τ ],S ′(Rd )), for any τ > 0
⇒
f

– convergence of finite dimensional distributions
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Expected value of the occupation time

By the Poisson property of the initial distribution:
E 〈Nt , ϕ〉 =

∫
Rd Ttϕ(x)ν(dx)

Proposition 1

Initial intensity measure ν = µγ = dx
1+|x |γ ,

E
∫ T

0
〈Nt , ϕ〉dt ∼



T 1− γ
α if γ < d , γ < α

log T γ = α < d
T 1− d

α log T γ = d < α

(log T )2 γ = d = α

T 1− d
α γ > d ,d < α

log T γ > d ,d = α

1 γ > α,d > α
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

stable random measure

Let M be independently scattered (1 + β)-stable random
measure on Rd+1 with control measure λd+1 (Lebesgue) totally
skewed to the right, i.e. for any A ∈ B(Rd+1) such that
0 < λd+1(A) <∞,M(A) is (1 + β)-stable, with characteristic
function

exp
{
−λd+1(A)|z|1+β

(
1− i(sgn z) tan

π

2
(1 + β)

)}
,

z ∈ R,

M is σ-additive and M(Aj), j = 1,2, ... are independent if Aj are
disjoint.
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Theorem 2

Assume that the initial intensity measure is ν = λ (γ = 0), then

(i) α
β < d < α(1+β)

β , F 1+β
T = T (2+β− d

α
β), then XT ⇒c Kλξ, where

ξt =

∫
Rd+1

(
11[0,t](r)

∫ t

r
pu−r (x)du

)
M(drdx), t ≥ 0,

K is a constant.

ξ is well defined for d < α(1+β)
β , since

∫
Rd

(∫ τ

0
pu(x)du

)1+β

dx <∞, for any τ > 0.
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ξt =

∫
Rd+1

(
11[0,t](r)

∫ t

r
pu−r (x)du

)
M(drdx), t ≥ 0.

Remark: If β = 1 (binary branching), then ξ is a centered
Gaussian process with covariance function

sh + th − 1
2

[
(s + t)h + |s − t |h

]
,

h = 3− d/α (0 < h < 2) (sub-fractional Brownian motion)
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Theorem

(ii) d = α(1+β)
β , F 1+β

T = T log T , then XT ⇒
f

Kλξ̃, where ξ̃ is

one-dimensional (1 + β)-stable process, totally skewed to
the right with stationary independent increments.

eiz ξ̃t = exp
{
−t |z|(1+β)

(
1− i(sgnz) tan

π

2
(1 + β)

)}
.
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(iii) d > α(1+β)
β , F 1+β

T = T , then XT ⇒
f

X, where X is a

(1 + β)-stable process with values in S ′(Rd ), it has
stationary independent increments

Eexp{i〈X (t), ϕ〉} = exp
{
−Kt

∫
Rd

[
cβϕ(x)Gϕ(x)

+
V
2
|Gϕ(x)|1+β

(
1− i(sgnGϕ(x)) tan

π

2
(1 + β)

)]
dx
}
,

ϕ ∈ S(Rd ), t ≥ 0,

where Gϕ(x) =

∫ ∞
0
Tsϕ(x)ds = Cα,d

∫
Rd

1

|x − y |d−α
ϕ(y)dy ,

cβ =

{
0 if 0 < β < 1
1 if β = 1.
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General case (gamma ≥ 0)
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Remark: If d < α
β , α = 2, then there is a.s. local extinction, i.e.

lim
t→∞

Nt (A) = 0

a.s. for any bounded A ∈ B(Rd )
Hypothesis: true also for α < 2.

High density

Theorem 2(i’)
Assume that d ≤ α

β , νT = HTλ, HT satisfies

lim
T→∞

H−βT T 1− dβ
α = 0,

F 1+β
T = HT T (2+β− d

α
β), then XT ⇒c Kλξ, where ξ as in Theorem

2 (i).
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Remark. If β = 1, then ξ is a centered Gaussian process with
covariance function

for d < α
β

−sh − th +
1
2

[(s + t)h + |s − t |h],

where h = 3− d/α (2 < h < 2 + 1
2 ).

(This function is positive definite for (2 < h < 4)).
for d = α

β

1
2

[
(s + t)2 log(s + t) + (s − t)2 log |s − t |

]
−s2 log s−t2 log t

Introducing high density in Theorem 2 does not change the
results, only FT is different.
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General case (γ ≥ 0)

initial intensity measure: HT
dx

1+|x |γ , HT →∞ sufficiently quickly,
in some cases one can take HT = 1
limits: (1 + β)-stable processes X
dimension d spatial structure temporal structure

“low” simple complicated
(X = Kλξ) (long range dependence)

“critical” simple simple
(X = Kλξ) (independent increments)

“large” complicated simple
(space inhomog.) (independent increments)

(ξ varies in different cases)
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General case (gamma ≥ 0)
Long range dependence

for low dimensions ξ has the form:
ξt =

∫ t
0

∫
Rd f (t , r , x)M(drdx)

Critical dimension:
Lebesgue measure case (γ = 0): d = 1+β

β α

finite measure case (with high density) (γ > d): d = 2+β
1+β

0 ≤ γ ≤ d : d = 2+β
β α− γ∨α

β
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Long range dependence

of the form Kλξ S ′(Rd ) process
X (t) = X (1), t > 0 lrd lrd

γ < α
1 d < 1+β

β α 2 d = 1+β
β α 3 d > 1+β

β α

γ < d

F 1+β
T = HT T 2+β− d

α
β− γ

α F 1+β
T =HT T 1− γ

α log T F 1+β
T = HT T 1− γ

α

γ = α
one can take HT = 1 4 d = 1+β

β α 5 d > 1+β
β α

γ < d if αβ + γ < d

F 1+β
T = HT (log T )2 F 1+β

T = HT log T

α < γ 6 d = 2+β
β α− γ

β
11

γ < d

F 1+β
T = HT log T F 1+β

T = HT

γ = d 7

F 1+β
T =

8 d = 2+β
1+βα

HT T 2+β− d
α

(1+β) log T F 1+β
T = HT (log T )2

γ > d 9 10 d = 2+β
1+βα

F 1+β
T =HT T 2+β− d

α
(1+β) F 1+β

T = HT log T
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General case (gamma ≥ 0)
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Case 1: Let γ < d , d < 2+β
β −

γ∨α
β , F 1+β

T = HT T 2+β−(dβ+γ)/α

lim
T→∞

T 1−(d−γ)β/αH−βT = 0 (only needed if d <
α

β
+ γ)

Then XT ⇒c Kλξ where ξ

ξt =

∫
Rd+1

(
11[0,t](r)

(∫
Rd

pr (x − y)|y |−γdy
)1/(1+β)

∫ t

r
pu−r (x)du

)
M(drdx), t ≥ 0,

back to the general scheme
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General case (gamma ≥ 0)
Long range dependence

Local extinction

Theorem
If α = 2 and d < α

β + γ and the initial intensity measure is µγ ,
then the particle system suffers a.s. local extinction, i.e. for
each bounded Borel set A

P( lim
t→∞

Nt (A) = 0) = 1.

Hypothesis: the same is true for α < 2

Theorem
Let 0 < α ≤ 2, initial intensity measure = µγ , γ < α and
d ≥ α

β + γ. Then there is no almost sure local extinction.
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

Note: there is always extinction in probability for γ > 0 since

E 〈NT , ϕ〉 ∼


T−

γ
α if γ < d

T−
d
α log T γ = d

T−
d
α γ > d
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

Case 3: Assume γ < d , γ < α, d > α1+β
β , and

F 1+β
T = HT T 1−γ/α,

with HT ≥ 1. Then XT ⇒f X , where X is an S ′(Rd )-valued
(1 + β)-stable process with independent increments

if β < 1 :

Eei〈X(t)−X(s),ϕ〉 = exp
{(

t1− γ
α − s1− γ

α

)
∫

Rd

V
2
|Gϕ(x)|1+β

(
1− i(sgn Gϕ(x)) tan

π

2
(1 + β)

)
dx
}

if β = 1, additional term with ϕ(x)Gϕ(x).

back to the general scheme
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

Case 2: Assume γ < d , γ < α, d = α1+β
β and

F 1+β
T = HT T 1−γ/α log T ,

with HT ≥ 1. Then XT ⇒f Kλη, where η is a (1 + β)-stable
process with independent, non-stationary increments (for
γ > 0) whose laws are determined by

Eeiz(ηt−ηs) = exp
{(

t1− γ
α − s1− γ

α

)
|z|1+β(

1− i(sgn z) tan
π

2
(1 + β)

)}
z ∈ R, t ≥ s ≥ 0.

back to the general scheme
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Long range dependence

Case 1: γ < d and d < α(2+β)
β − γ∨α

β .
β = 1 Gaussian case.
Let 0 ≤ u < v < s < t . Then

Cov(ξv − ξu, ξt+T − ξt+T ) ∼ CT−
d
α .

β < 1 We introduce dependence exponent:
For 0 ≤ u < v < s < t , T > 0, z1, z2 ∈ R let

DT (z1, z2; u, v , s, t)
= | log Eei(z1(ξv−ξu)+z2(ξT +t−ξT +s))

− log Eeiz1(ξv−ξu) − log Eeiz2(ξT +t−ξT +s)|.
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

dependence exponent κ is defined as

κ = inf
z1,z2∈R

inf
0≤u<v<s<t

sup{γ > 0 : DT (z1, z2; u, v , s, t) = o(T−γ) as T →∞}.

For the process ξ in 1

ξt =

∫ t

0

∫
Rd

(∫
Rd

pr (x − y) |y |−γ dy
) 1

1+β
∫ t

r
pu−r (x)duM(drdx),

we have

κ =


d
α

if α = 2 or β >
d − γ
d + α

,

d
α

(
1 + β − d − γ

α + d

)
if α < 2 and β ≤ d − γ

d + α
.
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

Cases 7 and 9: γ ≥ d , d < α2+β
1+β

general scheme

The limit process is of the form Kλζ, where

ζt =

∫
Rd+1

(
11[0,t](r)p1/(1+β)

r (x)

∫ t

r
pu−r (x)du

)
M(drdx), t ≥ 0.

Dependence exponent of ζ is

κ =
d
α
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Lebesgue measure (γ = 0)
General case (gamma ≥ 0)
Long range dependence

Other comments

The same results hold for superprocesses (some
differences if β = 1 in “large” dimensions)
Questions

probabilistic interpretation of the two long range
dependence regimes for γ < d in “low” dimensions
interpretation of the “critical” dimension
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Idea of the proof of convergence

1 Let
(

X̃ (t)
)

t∈R+

be an S ′(Rd )-valued process. Define

S ′(Rd+1)-valued random variable X̃ by:〈
X̃ ,Φ

〉
=

∫ 1

0
〈X (t),Φ(·, t)〉dt , Φ ∈ S(Rd+1)

In C([0,1],S ′(Rd )):
convergence

〈
X̃T ,Φ

〉
⇒
〈

X̃ ,Φ
〉
, in law ∀Φ ∈ S(Rd+1)

+ tightness of 〈XT , ϕ〉T≥2 in C([0,1],R), ∀ϕ ∈ S(Rd )

=⇒ convergence of XT ⇒ X in law in w C([0,1],S ′(Rd )).
(Remark: in general convergence of finite dimensional
disributions of XT < convergence in law of X̃T )
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2 Convergence of
〈

X̃ ,Φ
〉

– is reduced to te case Φ ≥ 0.

3 The limit process is totally skewed to the right⇒ one can
use Laplace transform.
We show

Ee−〈X̃T ,Φ〉 = exp

{
−
∫

Rd
vT (x ,T )νT (dx) +

1
FT

E
∫ T

0
〈Ns,Φ〉ds

}
,

where νT – initial intensity measure, vT satisfies a certain
integral equation.
(Remark: a similar formula holds for finite dimensional
distributions: (〈XT (t1), ϕ1〉 , . . . , 〈XT (tn), ϕn〉)
– by approximating

∑n
j=1 δtjϕj by Φm ∈ S(Rd+1)).
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4

Ee−〈X̃T ,Φ〉 → Ee−〈X̃ ,Φ〉, Φ ≥ 0.
5 Tightness (if the limit process is continuous)

β = 1 one can study

E |〈XT (t2)− XT (t1), ϕ〉|k

β ≤ 1. We show: there exist h, ε, r > 0 such that

P (|〈XT (t2)− XT (t1), ϕ〉| ≥ δ)

≤ Cδ
∫ 1

δ

0

(
1− Re Ee−iθ〈XT (t2)−XT (t1),ϕ〉

)
dθ

≤ C(ϕ)

δr

(
th
2 − th

1
)1+ε

for all 0 ≤ t1 ≤ t2, δ > 0.

Anna Talarczyk Occupation time fluctuations



Model
Results

Idea of the proof

Ad 3

Let

ΨT (x , s) =
1

FT

∫ 1

s
T

Φ(x , t)dt

(ηs)s≥0 – standard α-stable process
g – probability generating function of the branching mechanism
Nx – empirical process for a tree starting from one particle at
site x
Since N0 is a Poisson random measure with intensity νT , we get

Ee−〈X̃T ,Φ〉 = exp
{∫

Rd

(
Ee−

R T
0 〈N

x
s ,ΨT (·,s)〉ds − 1

)
νT (dx)

}
× exp

{∫
Rd

∫ T

0
TsΨT (·, s)(x)dsνT (dx)

}
(L)
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Let
wT (x , r , t) := Ee−

R T
0 〈N

x
s ,ΨT (·,r+s)〉ds.

Conditioning with respect to the first branching

wT (x , r , t) = e−Vt Ee−
R t

0 ΨT (ηx
s ,r+s)ds︸ ︷︷ ︸

=: hT (x , r , t)

+ V
∫ t

0
e−V (t−s) Ee

−
t−sR
0

ΨT (ηx
u ,r+u)du

g(wT (ηx
t−s, r + t − s, s))︸ ︷︷ ︸ds

=: kT (x , r , s, t − s) (1)
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Results

Idea of the proof

By the Feynman Kac Formula:{
∂
∂t hT (x , r , t) =

(
∆α + ∂

∂r −ΨT (x , r)
)

hT (x , r , t)
hT (x , r ,0) = 1{
∂
∂σkT (x , r , s, σ) =

(
∆α + ∂

∂r −ΨT (x , r)
)

kT (x , r , t)
kT (x , r , s,0) = g(wT (x , r , s))

This and (1) gives
∂
∂t wT (x , r , t) =

(
∆α + ∂

∂r −ΨT (x , r)
)

wT (x , r , t)
+ V

1+β (1− wT (x , r , t))1+β

wT (x , r ,0) = 1
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Writing the equation in the mild form and substituting
vT (x , t) = 1− wT (x ,T − t , t), (0 ≤ t ≤ T ) we obtain

vT (x , t) =

∫ t

0
Tt−s (ΨT (·,T − t)(1− vT (·, s))

− V
1 + β

(vT (·, t))1+β

)
(x)ds,

From (L) we obtain

Ee−〈X̃T ,Φ〉

= exp

{∫
Rd

[
−vT (x ,T ) +

∫ T

0
TT−sΨT (·,T − s)(x)ds

]
νT (dx)

}

= exp

{∫
Rd

∫ T

0
TT−s

[
ΨT (·,T − s)vT (·, s) + (vT (·, s))1+β

]
(x)dsνT (dx)

}
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Usually (always for β < 1, and if β = 1 – in case of low
dimensions)

lim
T→∞

Ee−〈X̃T ,Φ〉 =

lim
T→∞

exp

{
V

1 + β

∫ T

0
TT−s

(∫ s

0
Ts−uΨT (·,T − u)

)1+β

(x)νT (dx)

}
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