
Chapter 2

Markov Chains

Introduction

A Markov chain is a sequence of random variables {Xn; n = 0, 1, 2, . . .},
defined on some probability space (Ω,F , IP), taking its values in a set E
which could be arbitrary, but which will be for us either finite or countable,
and which possesses the Markov property. Intuitively, a Markov chain has
the property that, knowing the present state Xn, one can forget the past
if one wants to predict the future. One way to construct a Markov chain
is as follows. Let {Yn, n ≥ 1} be mutually independent F–valued random
variables, which are globally independent of X0. Given a mapping f : IN ×
E × F → E, we define {Xn, n ≥ 1} recursively by

Xn = f(n,Xn−1, Yn).

In a way, this is the simplest model of non–mutually independent random
variables.

The next two chapters will present many applications of Markov chains.
Note that we shall restrict our presentation to homogeneous Markov chains
(in the above recurrence relation, f does not depend upon n, and the Yn’s
all have the same law), even though non–homogeneous chains are necessary
in many applications. Even in those cases, understanding the long time
behaviour of the homogeneous chains is crucial.
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2.1 Definitions and elementary properties

We want to define and study Markov chains {Xn;n ∈ IN} with values in
a (finite or) countable state space E. We shall denote by x, y, . . . generic
points of E. We shall use the convention that whenever a condition involves
a conditional probability IP(A|B), that condition is assumed to be satisfied
only when IP(B) > 0.

Definition 2.1.1. The E–valued stochastic process {Xn;n ∈ IN} is called
a Markov chain whenever for all n ∈ IN, the conditional law of Xn+1 given
X0, X1, . . . , Xn equals its conditional law given Xn, i.e ∀x0, . . . , xn+1 ∈ E,

IP(Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) = IP(Xn+1 = xn+1|Xn = xn).

A simple criteria, which allows us in many cases to verify that a given
process is a Markov chain, is given by the :

Lemma 2.1.2. Let E and F be two countable sets, and let f be a mapping
from IN × E × F into E. Let X0, Y1, Y2, . . . be mutually independent r. v.’s,
X0 being E–valued, and the Yn’s being F–valued. Let {Xn, n ≥ 1} be the
E–valued process defined by

Xn+1 = f(n,Xn, Yn+1), n ∈ IN.

Then {Xn, n ∈ IN} is a Markov chain.

Proof

IP(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn)

=
IP(X0 = x0, . . . , Xn = xn, Xn+1 = xn+1)

IP(X0 = x0, . . . , Xn = xn)

=
∑

{z;f(n,xn,z)=xn+1}

IP(X0 = x0, . . . , Xn = xn, Yn+1 = z)

IP(X0 = x0, . . . , Xn = xn)

=
∑

{z;f(n,xn,z)=xn+1}
IP(Yn+1 = z)

=
IP(Xn = xn, Xn+1 = xn+1)

IP(Xn = xn)

�
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A Markov chain is the analogue of a deterministic sequence which is
defined by a recurrence relation of the type :

xn+1 = f(n, xn),

as opposed to a system “with memory”, of the type :

xn+1 = f(n, xn, xn−1, . . . , x1, x0).

Here the function f(n, ·) is replaced by the “transition matrix” :

Pxy = IP(Xn+1 = y|Xn = x).

From now on, this matrix P = (Pxy; x, y ∈ E) will be assumed to be in-
dependent of the time variable n. One then says that the Markov chain is
homogeneous.

The chain constructed in Lemma 2.1.2 is homogeneous whenever f does
not depend upon n, and the Yn’s all have the same law. We now state a
variant of Lemma 2.1.2, whose proof is essentially identical, and which will
be useful below.

Lemma 2.1.3. Let E be a countable set, and f be a mapping from E× [0, 1]
into E, such that for all x, y ∈ E, the set {u ∈ [0, 1]; f(x, u) = y} is a
Borel subset of [0, 1]. Let X0, Y1, Y2, . . . be mutually independent r. v.’s,
with X0 taking its values in E, and the Yn’s being uniform on [0, 1], and let
{Xn, n ≥ 1} be the E–valued random sequence defined by

Xn+1 = f(Xn, Yn+1), n ∈ IN.

Then {Xn, n ∈ IN} is a Markov chain.

The matrix P is called Markovian (or stochastic), in the sense that it
has the property that ∀x ∈ E, the row vector (Pxy; y ∈ E) is a probability
measure on E, or in other words :

Pxy ≥ 0, ∀y ∈ E;
∑

y∈E

Pxy = 1.

Remark 2.1.4. Pxy is the entry in row x and column y of the matrix P .
This notation may be surprising for the reader, but it is very convenient. It
is more common to enumerate rows and columns, and hence to index them
by 1, 2, . . .. We note moreover that our matrices are square matrices, with
possibly an infinite number of rows and columns, in the case where |E| = ∞.
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As we will now see, the law of a Markov chain is entirely determined by
the “initial law” (µx; x ∈ E), which is the law of X0, and the transition
matrix of the chain.

Definition 2.1.5. Let µ be a probability on E, and P a Markovian ma-
trix. An E–valued random sequence {Xn; n ∈ IN} defined on a probability
space (Ω,F , IP), is called a (µ, P )–Markov chain (i.e. with initial law µ and
transition matrix P ) if :

(i) IP(X0 = x) = µx, ∀x ∈ E.

(ii) IP(Xn+1 = y|X0 = x0, . . . , Xn−1 = xn−1, Xn = x) = Pxy,
∀x0, . . . , xn−1, x, y ∈ E.

Proposition 2.1.6. A necessary and sufficient condition for an E–valued
random sequence {Xn, n ∈ IN} to be a (µ, P )–Markov chain is that ∀n ∈ IN,
the law of the r. v. (X0, X1, . . . , Xn) be given by

IP(X0 = x0, X1 = x1, . . . , Xn = xn) = µx0Px0x1 × · · · × Pxn−1xn
.

Proof Necessary Condition. If IP(X0 = x0, . . . , Xn−1 = xn−1) > 0,
then

IP(X0 = x0, . . . , Xn = xn) = IP(Xn = xn|X0 = x0, . . . , Xn−1 = xn−1)

× · · · × IP(X1 = x1|X0 = x0)IP(X0 = x0),

and the above identity follows from the definition. Otherwise, both sides of
the identity in the statement are zero (consider the smallest index k such
that IP(X0 = x0, . . . , Xk = xk) = 0).

Sufficient Condition. (i) The identity in the statement follows from
the definition. Let us prove more than (ii).

IP(Xn+1 = xn+1, . . . , Xn+p = xn+p|X0 = x0, . . . , Xn = xn)

=
µx0Px0x1 × · · · × Pxn+p−1xn+p

µx0Px0x1 × · · · × Pxn−1xn

(ii) now follows if we choose p = 1. �

We have in fact established :
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Corollary 2.1.7. If {Xn; n ∈ IN} is a (µ, P )–Markov chain, then for all
n, p, x0, . . . , xn+p

IP(Xn+1 = xn+1, . . . , Xn+p = xn+p|X0 = x0, . . . , Xn = xn)

= Pxnxn+1 × · · · × Pxn+p−1xn+p
.

A probability µ on E is considered to be a row vector, a mapping g :
E → IR as a column vector, which justifies the notations

(µP )y =
∑

x∈E

µxPxy

(Pg)x =
∑

y∈E

Pxygy,

and the integral of a function g with respect to a measure µ is written (when-
ever the sum converges absolutely) as the product of a row vector on the left
with a column vector on the right :

µg =
∑

x∈E

µxgx.

Proposition 2.1.8. Let {Xn, n ∈ IN} ba a (µ, P )–Markov chain. Then

(i) IP(Xn = y|X0 = x) = IP(Xn+p = y|Xp = x) = (P n)xy

(ii) IP(Xn = y) = (µP n)y

(iii) IE[g(Xn)|X0 = x] = (P ng)x

Proof

(i)

IP(Xn = y|X0 = x) =
∑

x1,...,xn−1

IP(Xn = y,Xn−1 = xn−1, .., X1 = x1|X0 = x)

=
∑

x1,...,xn−1

µxPxx1 × · · · × Pxn−1y

µx

=
∑

x1,...,xn−1

Pxx1 × · · · × Pxn−1y

= (P n)xy
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(ii) We note that

IP(Xn = y) =
∑

x∈E

IP(Xn = y,X0 = x)

=
∑

x∈E

IP(Xn = y|X0 = x)µx,

and we use (i).

(iii) Again we use (i) starting from :

IE[g(Xn)|X0 = x] =
∑

y∈E

gyIP(Xn = y|X0 = x)

�

2.2 Examples

2.2.1 Random walk in E = Zd

Let {Yn;n ∈ IN∗} denote an i.i.d. Zd–valued random sequence, with the
common law λ, and let X0 be a Zd–valued r. v., independent of the Yn’s.
Then the random sequence {Xn, n ≥ 0} defined by

Xn+1 = Xn + Yn+1, n ∈ IN

is a (µ, P )–Markov chain, with µ=law of X0, and Pxy = λy−x. The most
classical case is that of the symmetric random walk starting from 0, i.e.

µ = δ0, λ±ei
=

1

2d
,

where (e1, . . . , ed) is an orthonormal basis of IRd.

2.2.2 Bienaymé–Galton–Watson process

This is a branching process {Zn;n ∈ IN} where Zn denotes the number of
males in the n–th generation with a certain name, those individuals being
all descendants of a common ancestor, the unique male in the generation 0
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(Z0 = 1 p.s.). We assume that the i–th male from the n–th generation has
ξn
i male children (1 ≤ i ≤ Zn), in such a way that

Zn+1 =
Zn∑

i=1

ξn
i .

Our main assumption is that the r. v.’s {ξn
i , i = 1, 2, . . . , n = 0, 1, 2, . . .} are

i.i.d., so that in particular Zn and {ξn
1 , . . . , ξ

n
p , . . .} are independent.

The random sequence {Zn, n ∈ IN} is a (µ, P ) IN–valued Markov chain,
with µ = δ1 and

Pxy = (p∗x)y,

where p∗x denotes the x–th convolution power of the joint law p on IN of the
ξk
n’s, i.e. the law of the sum of x i.i.d. r. v.’s, all having the law p.

2.2.3 A discrete time queue

We consider a queue at a counter. Xn denotes the number of customers who
either are waiting or are being served at time n. Between time n and time
n + 1, Yn+1 new customers enter the queue, and whenever Xn > 0, Zn+1

customers leave the queue (with Zn+1 = 0 or 1). We assume that X0, Y1, Z1,
Y2, Z2 . . . are mutually independent, with 0 < IP(Yn = 0) < 1, and moreover
IP(Zn = 1) = p = 1 − IP(Zn = 0). We have

Xn+1 = Xn + Yn+1 − 1{Xn>0}Zn+1.

2.3 Strong Markov property

Let us first reformulate the Markov property. Let {Xn;n ∈ IN} be an E–
valued Markov chain, defined on the probability space (Ω,F , IP). Given a
probability measure µ on E, we shall use the notation IPµ to denote any
probability on (Ω,F) such that under IPµ the sequence {Xn, n ≥ 0} is a
Markov chain with initial law µ, in other words µ is the law of X0, that is

IPµ(X0 = x) = µx, x ∈ E.

Whenever µ = δx, we shall write IPx instead of IPδx
. IPx can be interpreted as

the conditional law of X, given that X0 = x. For any n ≥ 0, we define Fn as
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the sigma–algebra of those events which are “determined by X0, X1, . . . , Xn”,
that is

Fn =
{
{ω; (X0(ω), . . . , Xn(ω)) ∈ Bn}, Bn ∈ P(En+1)

}
,

where we have used the following notation, which will be used again in this
book : P(F ) denotes the collection of all the subsets of F .

Theorem 2.3.1. Let {Xn;n ≥ 0} be a (µ, P )–Markov chain. Then for any
n ∈ IN, x ∈ E, conditionally upon {Xn = x}, {Xn+p; p ≥ 0} is a (δx, P )
Markov chain, which is independent of (X0, . . . , Xn). In other words, for all
A ∈ Fn and any m > 0, x1, . . . , xm ∈ E,

IP (A ∩ {Xn+1 = x1, . . . , Xn+m = xm}|Xn = x)

= IP(A|Xn = x)IPx(X1 = x1, . . . , Xm = xm)

Proof It suffices to prove the result in the case where A = {X0 = y0, X1 =
y1, . . . , Xn = yn} (A is a finite or countable union of disjoint sets of that form,
and the result in the general case will then follow from the σ–additivity of
IP). It suffices to consider the case yn = x, since otherwise both sides of the
equality vanish. The left hand side of the identity in the statement equals

IP(X0 = y0, . . . , Xn = x,Xn+1 = x1, . . . , Xn+m = xm)

IP(Xn = x)
,

which, applying Proposition 2.1.6 twice, is shown to equal

IP(A)

IP(Xn = x)
× Pxx1 × Px1x2 × · · · × Pxm−1xm

,

or in other words

IP(A|Xn = x)IPx(X1 = x1, . . . , Xm = xm).

�

The preceding result says in particular that the past and the future of
the chain are conditionally independent, given the position of the chain at
the present time n.

We want now to extend the Markov property, replacing the fixed time n
by a random time (but not any random time).
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Definition 2.3.2. A r. v. T taking values in the set IN ∪ {+∞} is called a
stopping time if ∀n ∈ IN,

{T = n} ∈ Fn.

In other words, the observation of X0, X1, . . . , Xn, the trajectory of the
chain up to time n, is enough to decide whether or not T equals n.

Example 2.3.3. i) ∀x ∈ E, the first passage time Sx at state x :

Sx =

{
inf{n ≥ 0;Xn = x} if such an n exists,

+∞, otherwise;

is a stopping time, as well as the time of the first return to the state x :

Tx =

{
inf{n ≥ 1;Xn = x} if such an n exists,

+∞, otherwise.

(With the convention that the infimum of the empty set is +∞, it is
sufficient to write : Tx = inf{n ≥ 1; Xn = x}.)

Tx is a stopping time, since

{Tx = n} = {X1 6= x} ∩ . . . ∩ {Xn−1 6= x} ∩ {Xn = x}.

ii) ∀A ⊂ E, the time of the first visit to the set A

TA = inf{n ≥ 1;Xn ∈ A}

is a stopping time.
iii) On the other hand, the time of the last visit to A

LA = sup{n ≥ 1;Xn ∈ A}

is not a stopping time, since we need to know the trajectory after time n, in
order to decide whether or not LA = n.

We shall denote by FT the σ–algebra of events which are “determined by
X0, X1, . . . , XT ”, which is defined as the σ–algebra of those events B ∈ F
which are such that ∀n ∈ IN,

B ∩ {T = n} ∈ Fn.
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Theorem 2.3.4. (Strong Markov property) Let {Xn : n ≥ 0} be a (µ, P )–
Markov chain, and T a stopping time. Conditionally upon {T <∞}∩{XT =
x}, {XT+n;n ≥ 0} is a (δx, P )–Markov chain, which is independent of FT .
In other words, for all A ∈ FT , and all m > 0, x1, . . . , xm ∈ E,

IP(A ∩ {XT+1 = x1, . . . , XT+m = xm}|XT = x, T <∞)

= IP(A|XT = x, T <∞) × IPx(X1 = x1, . . . , Xm = xm)

Proof It suffices to show that ∀n ∈ IN,

IP(A ∩ {T = n} ∩ {XT+1 = x1, . . . , XT+m = xm}|XT = x)

= IP(A ∩ {T = n}|XT = x)IPx(X1 = x1, . . . , Xm = xm),

which follows from Theorem 2.3.1, and then to sum over all possible values
of n. �

2.4 Recurrent and transient states

We define as above

Tx = inf{n ≥ 1;Xn = x}, and we state

Definition 2.4.1. x ∈ E is said to be recurrent if IPx(Tx < ∞) = 1, and
transient otherwise (i.e. if IPx(Tx <∞) < 1).

We define the number of returns to the state x :

Nx =
∑

n≥1

1{Xn=x}

Proposition 2.4.2. a) If x is recurrent,

IPx(Nx = +∞) = 1.

b) If x is transient,

IPx(Nx = k) = (1 − Πx)Π
k
x, k ≥ 0,

where Πx = IPx(Tx <∞) (in particular Nx <∞, IPx a. s.)
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Proof Let

T 2
x = inf{n > Tx, Xn = x}

= Tx + inf{n ≥ 1, XTx+n = x}.

It is not hard to show that T 2
x is a stopping time.

IPx(T
2
x <∞) = IPx(T

2
x <∞|Tx <∞)IPx(Tx <∞)

=
∞∑

n=1

IPx(T
2
x = Tx + n|Tx <∞)IPx(Tx <∞).

But from Theorem 2.3.4 we deduce that

IPx(T
2
x =Tx + n|Tx <∞)

= IPx(XTx+1 6= x, . . . , XTx+n−1 6= x,XTx+n = x|Tx <∞)

= IPx(X1 6= x, . . . , Xn−1 6= x,Xn = x)

= IPx(Tx = n).

Finally

IPx(T
2
x <∞) = (IPx(Tx <∞))2, soit

IPx(Nx ≥ 2) = (IPx(Tx <∞))2,

and iterating the same argument, we deduce that

IPx(Nx ≥ k) = (IPx(Tx <∞))k, k ∈ IN.

Both statements of the Proposition follow easily from this identity. �

Corollary 2.4.3. x is recurrent if and only if

∞∑

n=0

(P n)xx = +∞

Proof

IEx(Nx) =
∑

n≥1

IPx(Xn = x)

=
∑

n≥1

(P n)xx
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It follows from the Proposition that this quantity is infinite whenever x is
recurrent. On the other hand, if x is transient,

IEx(Nx) =

∞∑

k=1

k(1 − Πx)Π
k
x

=
Πx

1 − Πx

<∞

�

Definition 2.4.4. We say that the state y is accessible from x (denoted by
x→ y) whenever there exists n ≥ 0 such that IPx(Xn = y) > 0. We say that
x and y communicate (noted ↔) whenever both x→ y and y → x.

The relation x ↔ y is an equivalence relation, and we can partition E
into equivalence classes modulo the relation ↔.

Note that x→ y ⇔ ∃n ≥ 0 s. t. (P n)xy > 0, since IPx(Xn = y) = (P n)xy

(Proposition 2.1.8(i)).

Theorem 2.4.5. Let C ⊂ E be an equivalence class for the relation ↔.
Then all states in C either are recurrent, or else they all are transient.

Proof Let x, y ∈ C. It suffices to show that x transient ⇒ y transient
(since then y recurrent ⇒ x recurrent). Since x ↔ y, ∃ n,m > 0 such that
(P n)xy > 0 et (Pm)yx > 0. But ∀r ≥ 0,

(P n+r+m)xx ≥ (P n)xy(P
r)yy(P

m)yx)

and
∞∑

r=0

(P r)yy ≤ 1

(P n)xy(Pm)yx

∞∑

n=0

(P n+r+m)xx <∞.

�

Definition 2.4.6. A (µ, P )–Markov chain is said to be irreducible when-
ever E consists of a single equivalence class. It is said to be irreducible
and recurrent if it is irreducible and all states are recurrent.
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Proposition 2.4.7. Any irreducible Markov chain on a finite state space E
is recurrent.

Proof Whenever E is finite, at least one state must be visited infinitely
many times with positive probability, hence a.s. from Proposition 2.4.2, and
that state (as well as all states) is (are) recurrent. �

2.5 The irreducible and recurrent case

In this section, we assume that the chain is both irreducible and recurrent.
We start by studying the excursions of the chain between two successive
returns to the state x :

Ek = (XT k
x
, XT k

x +1, . . . , XT k+1
x

), k ≥ 0.

These excursions are random sequences whose length is random and finite
≥ 2, composed of elements of E\{x}, except for the first and the last one,
which are equal to x. Denote by U the set of sequences

u = (x, x1, . . . , xn, x),

with n ≥ 1, xℓ 6= x, 1 ≤ ℓ ≤ n. U is countable, and it is the set of all possible
excursions E0, E1, . . .. Hence these r. v.’s take their values in a countable set,
and their probability law is characterized by the quantities

IP(Ek = u), u ∈ U.

Proposition 2.5.1. Under IPx, the sequence (E0, E1, . . .) of excursions is
i.i.d., in other words there exists a probability {pu, u ∈ U} on U such that
for all k > 0, u0, . . . , uk ∈ U ,

IPx(E0 = u0, E1 = u1, . . . , Ek = uk) =
k∏

ℓ=0

puℓ
.

Proof This is a consequence of the strong Markov property. Indeed, {E0 =
u0} ∈ FTx

, and the event

{E1 = u1, . . . , Ek = uk}
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is of the form

{XTx+1 = x1, . . . , XTx+p = xp},
for some p > 0, x1, . . . , xp ∈ E. Consequently

IPx(E0 = u0, E1 = u1, . . . , Ek = uk)

= IPx({E0 = u0} ∩ {XTx+1 = x1, . . . , XTx+p = xp}|Tx <∞)

= IPx(E0 = u0)IPx(X1 = x1, . . . , Xp = xp)

= IPx(E0 = u0)IPx(E0 = u1, . . . , Ek−1 = uk)

= IPx(E0 = u0)IPx(E0 = u1) × . . .× IPx(E0 = uk)

= pu0pu1 × · · · × puk
,

where {pu, u ∈ U} is the law of E0 under IPx. �

A measure on the set E is a “row vector” {γx; x ∈ E} such that 0 ≤ γx <

∞, ∀x. Whenever the measure is finite,
∑

x∈E

γx < ∞, we can normalize it,

to make it a probability on E,

(
γx∑
z γz

, x ∈ E

)
. A measure γ is said to be

invariant (with respect to the transition matrix P ) whenever

γP = γ, i.e.

∑

y∈E

γyPyx = γx, x ∈ E.

A measure γ is said to be strictly positive if γx > 0, ∀x ∈ E.
A probability measure γ is invariant iff the chain (γ, P ) has the property

that γ is the law of Xn, ∀n ∈ IN, hence ∀n, {Xn+m;m ∈ IN} is a (γ, P )–
Markov chain.

Remark 2.5.2. An invariant probability is a probability π which satifies
πP = π, or equivalently ∀x ∈ E,

∑

y 6=x

πyPyx = πx(1 − Pxx),

that is

IP(Xn 6= x,Xn+1 = x) = IP(Xn = x,Xn+1 6= x),
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which means that at equilibrium, the mean number of departures from the
state x between time n and time n+ 1 equals the mean number of arrivals at
the state x between time n and time n+ 1. The relation which characterizes
the invariant probability is very intuitive.

Theorem 2.5.3. Let {Xn;n ∈ IN} be a Markov chain with transition matrix
P , which we assume to be irreducible and recurrent. Then there exists a
strictly positive invariant measure γ, which is unique up to a multiplicative
constant.

Proof Existence Let γx
y denote the mean number of visits to the state y

during the excursion E0 starting from x, that is

γx
y = IEx

Tx∑

n=1

1{Xn=y}

=
∞∑

n=1

IPx(Xn = y, n ≤ Tx)

=
∑

z∈E

∞∑

n=1

IPx({Xn−1 = z, n− 1 < Tx} ∩ {Xn = y})

=
∑

z∈E

( ∞∑

n=2

IPx(Xn−1 = z, n− 1 ≤ Tx)

)
Pzy

= (γxP )y.

Note that we have used recurrence to obtain the for to last equality. We
now exploit the irreducibility of the chain. ∃ n,m such that (P n)xy > 0,
(Pm)yx > 0. Hence, since γx

x = 1,

0 < (P n)xy = γx
x(P n)xy ≤ (γxP n)y = γx

y

γx
y (Pm)yx ≤ (γxPm)x = γx

x = 1.

Consequently γx is a strictly positive measure, which satisfies γx
x = 1.

Uniqueness Let λ denote an invariant measure such that λx = 1. We shall
first prove that λ ≥ γx, then that λ = γx. Note that this part of the proof
of the theorem exploits only irreducibility (and not recurrence).
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λy = Pxy +
∑

z1 6=x

λz1Pz1y

= Pxy +
∑

z1 6=x

Pxz1Pz1y +
∑

z1,z2 6=x

λz2Pz2z1Pz1y

≥
∞∑

n=0

∑

z1,...,zn 6=x

Pxzn
Pznzn−1 × · · · × Pz1y

=
∞∑

n=0

IPx(Xn+1 = y, Tx ≥ n + 1)

= γx
y .

Hence µ = λ− γx is also an invariant measure, and µx = 0. Let y ∈ E, and
n be such that (P n)yx > 0. Then

0 = µx =
∑

z∈E

µz(P
n)zx ≥ µy(P

n)yx.

Hence µy = 0, and this holds ∀y ∈ E. �

We have seen that a state x is recurrent whenever

IPx(Tx <∞) = 1.

Let mx = IEx(Tx).
If this quantity is finite, then x is called positive recurrent, and other-

wise it is called null recurrent .

Theorem 2.5.4. Assume again that the chain is irreducible. A state x is
positive recurrent iff all the states are positive recurrent, iff there exists an
invariant probability π, with π = (πx = m−1

x , x ∈ E).

Proof Note that
mx =

∑

y∈E

γx
y

Hence if x is positive recurrent, then the probability π = (πy =
γx

y

mx
, y ∈ E)

is an invariant probability.



2.5. THE IRREDUCIBLE AND RECURRENT CASE 47

Conversely, if π is an invariant probability, from the irreducibility (see the
end of the proof of existence in Theorem 2.5.3), π is strictly positive, hence

if x is an arbitrary state, λ =

(
λy =

πy

πx

, y ∈ E

)
is an invariant measure

which satisfies λx = 1. From the irreducibility and the proof of uniqueness
in Theorem 2.5.3,

mx =
∑

y∈E

γx
y =

∑

y∈E

πy

πx

=
1

πx

<∞.

Hence x, as well as all the states, is positive recurrent. �

The following dichotomy follows from the two preceding Theorems : in
the irreducible and recurrent case, the chain is positive recurrent whenever
there exists an invariant probability, null recurrent if one (hence all) invariant
measure(s) has infinite total mass (

∑
i πi = +∞). In particular, if |E| <∞,

there do not exist null recurrent states, rather, any recurrent state is positive
recurrent.

Corollary 2.5.5. Let {Xn} be an irreducible Markov chain which is positive
recurrent. To any x ∈ E, we associate Tx = inf{n > 0, Xn = x}. Then for
all y ∈ E,

IEy(Tx) <∞.

Proof Note that
Tx ≥ Tx1{Ty<Tx},

whence taking the expectation under IPx,

mx ≥ IEx(Tx|Ty < Tx)IPx(Ty < Tx).

But it follows from the strong Markov property that IEx(Tx|Ty < Tx) >
IEy(Tx), and from the irreducibility that IPx(Ty < Tx) > 0. The result has
been established. �

Remark 2.5.6. The nonirreducible case. For simplicity, we consider
here only the case |E| <∞. There exists at least one recurrent class (which
is positive recurrent), hence there exists a least one invariant probability.
Any invariant probability charges only recurrent states. If there is only one



48 CHAPTER 2. MARKOV CHAINS

recurrent class, then the chain possesses one and only one invariant proba-
bility. Otherwise, to each recurrent class we can associate a unique invariant
probability whose support is that class, and all invariant measures are convex
linear combinations of these, which are the extremal ones. Hence as soon
as there are at least two different recurrent classes, there is an uncountable
number of invariant probabilities.

We restrict ourself again to the irreducible case. We can now establish
the ergodic theorem, which is a generalization of the law of large numbers.

Theorem 2.5.7. Suppose that the chain is irreducible and positive recurrent.
Let π = (πx, x ∈ E) denote its unique invariant probability. If f : E → IR is
bounded, then IP a. s., as n→ ∞,

1

n

n∑

k=1

f(Xk) →
∑

x∈E

πxf(x).

Proof By assumption, there exists c such that |f(x)| ≤ c, ∀x ∈ E.
Let

Nx(n) =
∑

1≤k≤n

1{Xk=x}

denote the number of returns to the state x before time n. We want to study
the limit as n→ ∞ of

Nx(n)

n
.

Let S0
x, S

1
x, . . . , S

k
x , . . . denote the lengths of the excursions E0, E1, . . . , Ek, . . .

starting from x. We have

S0
x + · · ·+ SNx(n)−1

x ≤ n < S0
x + · · ·+ SNx(n)

x .

Hence
S0

x + · · ·+ S
Nx(n)−1
x

Nx(n)
≤ n

Nx(n)
≤ S0

x + · · ·+ S
Nx(n)
x

Nx(n)

But since the r. v.’s Ek are i. i. d. (hence the same is true for the Sk
x ’s), as

n→ ∞,

S0
x + · · ·+ S

Nx(n)
x

Nx(n)
→ IEx(Tx) = mx IPx a. s.,
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since Nx(n) → +∞ IPx a. s.. Again from the law of large numbers,

n

Nx(n)
→ mx IPx a. s., that is

Nx(n)

n
→ 1

mx
IPx a. s.

This convergence is also true IPµ a. s., for any initial law µ , since the limit of
Nx(n)

n
is the same for the chain {Xn;n ≥ 0} and for the chain {XTx+n;n ≥ 0}.

Let now F ⊂ E. We define f̄ =
∑

x∈E

πxf(x), c = supx |f(x)|.

∣∣∣∣∣
1

n

n∑

k=1

f(Xk) − f̄

∣∣∣∣∣ =

∣∣∣∣∣
∑

x∈E

(
Nx(n)

n
− πx

)
f(x)

∣∣∣∣∣

≤ c
∑

x∈F

∣∣∣∣
Nx(n)

n
− πx

∣∣∣∣ + c
∑

x/∈F

(
Nx(n)

n
+ πx

)

= c
∑

x∈F

∣∣∣∣
Nx(n)

n
− πx

∣∣∣∣+ c
∑

x∈F

(
πx −

Nx(n)

n

)
+ 2c

∑

x/∈F

πx

≤ 2c
∑

x∈F

∣∣∣∣
Nx(n)

n
− πx

∣∣∣∣+ 2c
∑

x/∈F

πx

We choose a finite F such that
∑

x/∈F

πx ≤ ε

4c
, and then N(ω) such that

∀n ≥ N(ω),
∑

x∈F

∣∣∣∣
Nx(n)

n
− πx

∣∣∣∣ ≤
ε

4c
,

which proves the result. �

We shall state a central limit theorem in the next section.

2.6 The aperiodic case

We have just shown that in the irreducible, positive recurrent case,

1

n

n∑

k=1

1{Xk=y} → πy a. s.,
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as n→ ∞. Taking the expectation under IPx, we deduce that

1

n

n∑

k=1

(P k)xy → πy, ∀x, y ∈ E.

We see that the Cesaro means of the (P k)xy’s converge. This raises the
natural question : is it true under the above assumptions that as n→ ∞,

(P n)xy → πy, ∀x, y ∈ E ?

It is easily seen this is not the case
Consider a random walk on E = Z/N , where N is an even integer (we

identifiy 0 and N)
Xn = X0 + Y1 + · · ·+ Yn,

with the Yn’s i. i. d. with values in {−1, 1}, in other words

Xn = (X0 + Y1 + · · ·+ Yn) mod N.

This chain is irreducible, and positive recurrent since E is finite. But
(P 2k+1)xx = 0, for all x ∈ E. In the particular case N = 2, we have P 2k = I
and P 2k+1 = P .

In order for the desired convergence to be true, we need an additional
assumption :

Definition 2.6.1. A state x ∈ E is said to be aperiodic if ∃N such that

(P n)xx > 0, for all n ≥ N.

Lemma 2.6.2. If P is irreducible and there exists an aperiodic state x, then
∀y, z ∈ E, ∃M such that (P n)yz > 0, ∀n ≥ M . In particular, all states are
aperiodic.

Proof From the irreducibility, ∃r, s ∈ IN such that (P r)yx > 0, (P s)xz > 0.
Moreover (

P r+n+s
)

yz
≥ (P r)yx(P

n)xx(P
s)xz > 0,

as soon as n ≥ N . Hence we have the desired property with M = N + r+ s.
�
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Remark 2.6.3. Suppose we are in the irreducible, positive recurrent case.
Let π be the invariant probability, so that πy > 0, ∀y ∈ E. Hence the fact
that there exists N such that ∀n ≥ N , (P n)xy > 0 is a necessary condition for
the convergence (P n)xy → πy to hold. We shall now see that it is a sufficient
condition.

Theorem 2.6.4. Suppose that P is irreducible, positive recurrent and ape-
riodic. Let π denote the unique invariant probability. If {Xn;n ∈ IN} be a
(µ, P )–Markov chain, ∀y ∈ E,

IP(Xn = y) → πy, n→ ∞,

in other words
(µP n)y → πy,

for any initial law µ. In particular, ∀x, y ∈ E,

(P n)xy → πy.

Proof We shall use a coupling argument. Let {Yn, n ∈ IN} be a (π, P )–
Markov chain, independent of {Xn;n ∈ IN}, and x ∈ E be arbitrary. Let

T = inf{n ≥ 0; Xn = Yn = x}

Step 1 We show that IP(T <∞) = 1.
{Wn = (Xn, Yn);n ∈ IN} is an E × E–valued Markov chain, with initial

law λ (where λ(x,u) = µxπu), and transition matrix P̃(x,u)(y,v) = PxyPuv. Since
P is aperiodic, ∀x, u, y, v, for all n large enough

(P̃ n)(x,u)(y,v) = (P n)xy(P
n)uv > 0.

Hence P̃ is irreducible. Moreover, P̃ possesses an invariant probability

π̃(x,u) = πxπu.

Hence, from Theorem 2.5.4, P̃ is positive recurrent. T is the first passage
time of the chain {Wn} at the point (x, x) ; it is finite a. s.

Step 2 Define

Zn =

{
Xn, n ≤ T ;

Yn, n > T .

From the strong Markov property, both processes {XT+n; n ≥ 0} and
{YT+n);n ≥ 0} are (δx, P )–Markov chains, independent of (X0, . . . , XT ).
Consequently, {Zn, n ∈ IN} is, as well as {Xn}, a (µ, P )–Markov chain.
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Step 3 We now conclude. We have the three identities

IP(Zn = y) = IP(Xn = y)

IP(Yn = y) = πy

IP(Zn = y) = IP(Xn = y, n ≤ T ) + IP(Yn = y, n > T )

Hence

|IP(Xn = y) − πy| = |IP(Zn = y) − IP(Yn = y)|
≤ IP(n < T )

→ 0,

as n→ ∞. �

Remark 2.6.5. One can define the period of a state x ∈ E as the biggest
common divisor of the integers n such that (P n)xx > 0. One can show with
an argument very close to that of Lemma 2.6.2 that whenever P is irreducible,
all states have the same period. A state is said to be aperiodic if its period is
1. The equivalence of the two definitions of aperiodicity is proved in exercise
2.10.6 below.

We now make precise the speed of convergence in the preceding theorem,
under an additional assumption, called Doeblin’s condition :

∃ n0 ∈ IN, β > 0 and a probability ν on E such that

(D) (P n0)xy ≥ βνy, ∀x, y ∈ E.

Remark 2.6.6. Condition (D) is equivalent to the condition

∃x ∈ E, n0 ≥ 1 such that inf
y∈E

(P n0)yx > 0.

This implies that this state x is aperiodic. But it does not imply irreductibility
(it is easy to construct a counterexample). We shall see in exercise 2.10.4
that this condition implies existence of a unique recurrence class, and of a
unique invariant probability.

Lemma 2.6.7. If P is irreducible and aperiodic, and E is finite, then con-
dition (D) is satisfied.
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Proof Choose x ∈ E. ∀y ∈ E, ∃ny such that n ≥ ny ⇒ (P n)yx > 0. Let
n̄ = sup

y∈E
ny, α = inf

y
(P n̄)yx. Then α > 0, and ∀y ∈ E,

(P n̄)yx ≥ α.

Hence condition (D) is satisfied with n0 = n̄, β = α, ν = δx. �

On the other hand, Doeblin’s condition is rarely satisfied in the case
cardE = +∞, since then typically ∀n ∈ IN, y ∈ E,

inf
x∈E

(P n)xy = 0.

Theorem 2.6.8. Suppose that P is irreducible and satisfies Doeblin’s con-
dition (D). Then P is aperiodic, positive recurrent, and if π denotes its
invariant probability,

∑

y∈E

|(P n)xy − πy| ≤ 2 (1 − β)[n/n0], ∀x ∈ E, n ∈ IN,

where [n/n0] stands for the integer part of n/n0.

Let us first introduce a tool which will be useful in the proof of this
theorem.

Definition 2.6.9. A coupling of two probabilities p and q on E is any pair
(X, Y ) of E–valued r. v.’s, such that p is the law of X and q is the law of Y .

Lemma 2.6.10. Let p and q denote two probabilities on E. We have the
identity

||p− q||1 = 2 inf
(X,Y ) coupling of p, q

IP(X 6= Y ).

Proof First note that whenever (X, Y ) is a coupling of p and q,

IP(X = Y ) =
∑

x∈E

IP(X = Y = x)

≤
∑

x∈E

px ∧ qx,
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whence

IP(X 6= Y ) ≥ 1 −
∑

x∈E

px ∧ qx

=
∑

x∈E

(px − qx)
+,

and

‖p− q‖1 =
∑

x∈E

|px − qx|

≤ 2IP(X 6= Y ).

On the other hand, define α =
∑

x∈E px ∧ qx. If ξ, U , V and W are mutually
independent r. v.’s, satisfying IP(ξ = 1) = 1 − IP(ξ = 0) = α, the law
of U is r defined by rx = α−1px ∧ qx, the law of V is p̄ defined by p̄x =
(1−α)−1(px−qx)+, and the law of W is q̄ defined by q̄x = (1−α)−1(qx−px)

+,
then

X = ξU + (1 − ξ)V,

Y = ξU + (1 − ξ)W

is a coupling (X, Y ) of p and q, such that 2IP(X 6= Y ) = ‖p− q‖1. �

Proof of theorem 2.6.8 The chain being irreducible, Doeblin’s condition
(D) clearly implies that it is aperiodic.

Step 1 We first show that for any two probabilities µ and ν on E,

‖µP n − νP n‖1 ≤ 2(1 − β)[n/n0]. (2.1)

To prove this, from Lemma 2.6.10, it suffices to construct a coupling (Xn, Yn)
of the probabilities µP n and νP n such that

IP(Xn 6= Yn) ≤ (1 − β)[n/n0].

Suppose that n = kn0 + m, with m < n0. Given (X0, Y0) with the law
µ× ν on E ×E, for ℓ = 0, 1, . . . , k− 1, we define (X(ℓ+1)n0 , Y(ℓ+1)n0) in terms
of (Xℓn0, Yℓn0) as follows. Given a sequence {ξℓ, Uℓ, Vℓ, ℓ ≥ 0} of mutually
indpendent r. v. ’s, the ξℓ’s being Bernoulli with IP(ξℓ = 1) = β = 1−IP(ξℓ =
0), the law of the Uℓ’s being m̄ = β−1m and the Vℓ’s uniform on [0, 1]. Define

Qxy = (1 − β)−1((P n0)xy −my),
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and f : E × [0, 1] → E such that for all x, y ∈ E, {u; f(x, u) = y} is a Borel
subset of [0, 1], and provided V is uniform on [0, 1], the law of f(x, V ) is Qx·,
x ∈ E. We now let

X(ℓ+1)n0
= ξℓUℓ + (1 − ξℓ)f(Xℓn0, Vℓ)

Y(ℓ+1)n0 = ξℓUℓ + (1 − ξℓ)f(Yℓn0, Vℓ).

Note that we have really constructed a coupling (Xℓn0, Yℓn0) of µP ℓn0 and
νP ℓn0, for ℓ = 0, . . . , k, which is such that

IP(Xℓn0 6= Yℓn0) ≤ IP(∩ℓ
m=0ξm = 0) = (1 − β)ℓ.

It remains to construct a coupling (Xn, Yn) of µP n and νP n, such that {Xn 6=
Yn} ⊂ {Xkn0 6= Ykn0}, which is easy.

Step 2 We now show that for any probability µ on E, {µP n, n ≥ 0} is
a Cauchy sequence in the Banach space ℓ1(E). If ν = µPm, it follows from
(2.1) that

‖µP n+m − µP n‖1 = ‖νP n − µP n‖1 ≤ 2cn−n0,

where c = (1 − β)1/n0. The result follows.

Step 3 It follows from the second step that the sequence of probabilities
{µP n, n ≥ 0} converges in ℓ1(E), towards a probability π on E. But

πP = lim
n→∞

µP n+1 = π,

hence π is invariant, and the chain is positive recurrent. Consequently, from
(2.1), for any probability µ on E,

‖µP n − π‖1 ≤ 2(1 − β)[n/n0],

which establishes the claimed speed of convergence, together with aperiodic-
ity. �

We now state a central limit theorem for irreducible, positive recurrent
and aperiodic Markov chains. Such a chain, if it also satisfies

∑

y∈E

|(P n)xy − πy| ≤Mtn, x ∈ E, n ∈ IN

with M ∈ IR and 0 < t < 1, is said to be uniformly ergodic. We have just
shown that Doeblin’s condition implies uniform ergodicity. That property
implies the central limit theorem.
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Theorem 2.6.11. Let {Xn;n ∈ IN} be an E–valued Markov chain, with
an irreducible transition matrix P , which is moreover uniformly ergodic and
aperiodic. Let π denote the unique invariant probability of the chain, and
f : E → IR be such that

∑

x∈E

πxf
2(x) <∞ et

∑

x∈E

πxf(x) = 0.

Then as n→ ∞,

1√
n

n∑

1

f(Xk) converges in law to σfZ,

where Z ≃ N(0, 1) and

σ2
f =

∑

x∈E

πx(Qf)2
x −

∑

x

πx(PQf)2
x

= 2
∑

x

πx(Qf)xfx −
∑

x

πxf
2
x ,

with

(Qf)x =

∞∑

n=0

IEx[f(Xn)], x ∈ E.

Note that the uniform ergodicity property implies that the series which
defines the operator Q converges. The reader may consult [28], Corollary
5 and the references in that paper, for a proof, and other conditions under
which the theorem holds. One of the other versions (without the uniform
ergodicity, but with a stronger moment condition on f) is established in [13],
Theorem 4.3.18.

2.7 Reversible Markov chain

Consider the irreducible, positive recurrent case. The formulation of the
Markov property “past and future are conditionally independent given the
present” tells us that whenever {Xn;n ∈ IN} is a Markov chain, it follows
that ∀N , {X̂N

n = XN−n; 0 ≤ n ≤ N} is also a Markov chain. In general, the
time reversed chain is not homogeneous, except if {Xn} is initialized with its
invariant probability π.
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Proposition 2.7.1. Let {Xn;n ∈ IN} be a (π, P )–Markov chain whose tran-
sition matrix P is supposed to be irreducible. Denote by π its invariant prob-
ability. Then the time–reversed chain {X̂N

n ; 0 ≤ n ≤ N} is a (π, P̂ )–Markov
chain, with

πyP̂yx = πxPxy, ∀ x, y ∈ E

Proof

IP(X̂p+1 = x|X̂p = y)

= IP(Xn = x|Xn+1 = y)

= IP(Xn+1 = y|Xn = x) × IP(Xn = x)

IP(Xn+1 = y)
.

�

We say that the chain {Xn;n ∈ IN} is reversible if P̂ = P , which holds
iff the following detailed balance equation is satisfied :

πxPxy = πyPyx, ∀ x, y ∈ E,

where π denotes the invariant probability. It is easily checked that whenever
a probability π satisfies this relation, then it is P–invariant. The converse
need not be true.

Remark 2.7.2. If π is the invariant probability of an irreducible (and hence
also positive recurent) Markov chain, the chain need not be reversible. Sup-
pose that cardE ≥ 3. Then there may exist x 6= y such that Pxy = 0 6= Pyx.
Consequently πxPxy = 0 6= πyPyx. The transitions from y to x of the original
chain correspond to the transitions from x to y of the time reversed chain,
hence Pyx 6= 0 ⇒ P̂xy 6= 0, whence P̂ 6= P .

Remark 2.7.3. Given the transition matrix P of an irreducible positive re-
current Markov chain, one might like to compute its invariant probability.
This problem is not always solvable.

Another problem, which will appear in the next chapter, is to determine
an irreducible transition matrix P whose associated Markov chain admits a
given probability π as its invariant probability.

The second problem is rather easy to solve. In fact there are always many
solutions. The simplest way to solve this problem is to look for P such that
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the associated chain is reversible with respect to π. In other words, it suffices
to find an irreducible transition matrix P such that the quantity πxPxy be
symmetric in x, y.

In order to solve the first problem, one can try to find π such that

πxPxy = πyPyx, ∀x, y ∈ E,

which, unlike solving πP = π, implies no summation with respect to x. But
that equation has a solution only if the chain is reversible with respect to its
unique invariant probability measure, which need not be the case.

Suppose now that we are given a pair (P, π), and that we want to check
whether or not π is the invariant probability of the chain with the irreducible
transition matrix P . If the quantity πxPxy is symmetric in x, y, then the
answer is yes, and we have an additional property, namely the reversibility.
If this is not the case, one needs to check whether or not πP = π. One way to
do that verification is given by the next Proposition, whose elementary proof
is left to the reader.

Proposition 2.7.4. Let P be an irreducible transition matrix, and π a
strictly positive probability on E. For each pair x, y ∈ E, we define

P̂xy =

{
πy

πx
Pyx, if x 6= y,

Pxx, if x = y.

π is the invariant probability of the chain having the transition matrix P , and
P̂ is the transition matrix of the time–reversed chain iff for all x ∈ E,

∑

y∈E

P̂xy = 1.

2.8 Speed of convergence to equilibrium

Suppose we are in the irreducible, positive recurrent and aperiodic case. We
then know that for all x, y ∈ E, (P n)x,y → πy as n → ∞, where π denotes
the unique invariant probability measure. More generally, we expect that for
a large class of functions f : E → IR, (P nf)x → 〈f, π〉 as n → ∞ for all
x ∈ E, where here and below

〈f, π〉 =
∑

x∈E

f(x)πx.
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In this section, we want to discuss at which speed the above convergence
holds.

2.8.1 The reversible finite state case

Let us first consider the simplest case, i. e. assume that E is finite (we write
d = |E|) and that the process is reversible. We first note that we can identify
L2(π) with IRd, equipped with the product

〈f, g〉π =
∑

x∈E

f(x)g(x)πx.

Next the reversibility of P is equivalent to the fact that P , as an element of
L(L2(π)), is a selfadjoint operator, in the sense that

〈Pf, g〉π =
∑

x,y∈E

Px,yf(y)g(x)πx

=
∑

x,y∈E

Py,xf(y)g(x)πy

= 〈f, Pg〉π,
where we have used the detailed balance equation for the second identity.
We now check that the operator norm of P , as an element of L(L2(π)), is at
most one. Indeed, if ‖ · ‖π denotes the usual norm in L2(π),

‖Pf‖2
π =

∑

x∈E

[(Pf)x]
2 πx

=
∑

x∈E

(IE[f(Xt)|X0 = x])2 πx

≤ IE[f 2(Xt)|X0 = x]πx

=
∑

x∈E

f 2(x)πx,

where we have used Schwartz’s (or equivalently Jensen’s) inequality for the
inequality, and the invariance of π for the last identity.

In order to be able to work in IRd equipped with the Euclidean norm, let
us introduce the new d× d matrix

P̃x,y :=

√
πx

πy
Px,y.
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In matrix notation, P̃ = Π1/2PΠ−1/2, where Πx,y = δx,yπx is a diagonal
matrix. Moreover, if we denote by ‖ · ‖ the Euclidean norm on IRd, for any
f : E → IR, i. e. f is a collection of real numbers indexed by the d elements
of the set E, in other words an element of IRd, denoting g = Π−1/2f , we have

‖P̃ f‖2 =
∑

x∈E

(PΠ−1/2f)2
x

= ‖Pg‖2
π

≤ ‖g‖2
π

= ‖f‖2.

First note that f is an eigenvector of P̃ if and only if g = Π−1/2f is a right
eigenvector of P , and g′ = Π1/2f is a left eigenvector of P , associated with
the same eigenvalue. We have that P̃ is a symmetric d × d matrix, whose
norm is bounded by one. Hence from elementary results in linear algebra, P̃
admits the eigenvalues −1 ≤ λd ≤ λd−1 ≤ λ2 ≤ λ1 ≤ 1. Let us establish the

Lemma 2.8.1. We have λ2 < λ1 = 1 and −1 < λd.

Proof If e denotes the vector whose x–th component equals
√
πx, we have

(P̃ e)x =
√
πx

∑
y∈E Px,y = ex, and we have an eigenvector for the eigenvalue

λ1 = 1. This is also an eigenvalue of P , the associated right eigenvector being
the vector Π−1/2e = (1, 1, . . . , 1) and the associated left eigenvector being the
vector Π1/2e = π.

The equality λ2 = λ1 would mean that the eigenspace associated to the
eigenvalue 1 would be two–dimensional, in other words there would exist
f linearly independent of e such that P̃ f = f , which would imply that
f ′ = Π1/2f , considered as a row vector, would be such that f ′P = f ′. Now
there would exist α ∈ IR such that (f ′ + απ)x ≥ 0, for all x ∈ E. We would
have a second invariant measure linearly independent of π, which contradicts
irreducibility.

Finally if -1 were an eigenvalue of P̃ , it would also be an eigenvalue
of P , hence there would exist f such that Pf = −f , then we would have
P 2nf = f , hence f = limn→∞ P 2nf = 〈f, π〉. But g = Π1/2f is an eigenvector
of P̃ associated with the eigenvalue -1, hence it is orthogonal to e, in other
words 〈f, π〉 = 0, hence f ≡ 0, and -1 is not an eigenvalue. �

Denote by g1, . . . , gd the orthonormal basis of L2(π) made of right eigen-
vectors of P , corresponding respectively to the eigenvalues 1, λ2, . . . , λd. For
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any f ∈ L2(π) we have, since g1 = (1, . . . , 1),

f − 〈f, π〉 =
d∑

ℓ=2

〈f, gℓ〉πgℓ

Pf − 〈f, π〉 =
d∑

ℓ=2

λℓ〈f, gℓ〉πgℓ

P nf − 〈f, π〉 =

d∑

ℓ=2

λn
ℓ 〈f, gℓ〉πgℓ

‖P nf − 〈f, π〉‖2
π =

d∑

ℓ=2

λ2n
ℓ 〈f, gℓ〉2π

≤ sup
2≤ℓ≤d

λ2n
ℓ ‖f − 〈f, π〉‖2

π,

hence

Proposition 2.8.2.

‖P nf − 〈f, π〉‖π ≤≤ (1 − β)n‖f − 〈f, π〉‖π,

where β := (1 − λ2) ∧ (1 + λd) is the spectral gap.

2.8.2 The general case

More generally, the same is true with

β := 1 − sup
f∈L2(π), ‖f‖π=1

‖Pf − 〈f, π〉‖π.

Indeed, with this β, considering only the case f 6= 0, since all inequalities
below are clearly true for f = 0, we have

‖Pf − 〈f, π〉‖π =

∥∥∥∥P
(

f

‖f‖π

)
− 〈 f

‖f‖π
, π〉
∥∥∥∥

π

× ‖f‖π

≤ (1 − β)‖f‖π.

Finally we check that Proposition 2.8.2 still holds in the general case, with
β defined above. Note that

‖P n+1f − 〈f, π〉‖π = ‖P [P nf − 〈f, π〉]‖π

≤ (1 − β)‖P nf − 〈f, π〉‖π.
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The result follows by induction.
In practice the problem is to estimate the spectral gap β precisely. We

shall describe one such result in section 3.3 below. The notion of spectral
gap will appear again below in section 7.10.

This content of this section was inspired by the treatment in [53]. For a
more complete introduction to this topic, see [51].

2.9 Statistics of Markov chains

The aim of this section is to introduce the basic notions for the estimation
of the parameters of a Markov chain.

We have seen that for all n > 0, the law of the random vector
(X0, X1, . . . , Xn) depends only on the initial law µ and on the transition
matrix P . We want to see under which conditions one can estimate the pair
(µ, P ), given the observation of (X0, X1, . . . , Xn), in such a way that the error
tends to zero, as n→ ∞.

Let us first discuss the estimation of the invariant probability µ.
For any x ∈ E,

µ̂n
x =

1

n + 1

n∑

ℓ=0

1{Xℓ=x}

is a consistent estimator of µx, since the following is an immediate conse-
quence of the ergodic theorem :

Proposition 2.9.1. For any x ∈ E, µ̂n
x → µx a. s., as n→ ∞.

Let us now discuss the estimation of the Pxy’s, x, y ∈ E. We choose the
estimator

P̂ n
xy =

n−1∑

ℓ=0

1{Xℓ=x,Xℓ+1=y}

n−1∑

ℓ=0

1{Xℓ=x}

We have the

Proposition 2.9.2. For any x, y ∈ E, P̂ n
xy → Pxy a. s. as n→ ∞.
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Proof We clearly have

P̂ n
xy =

(
1

n

n−1∑

ℓ=0

1{Xℓ=x}

)−1

1

n

n−1∑

ℓ=0

1{Xℓ=x,Xℓ+1=y}.

We know that

1

n

n−1∑

ℓ=0

1{Xℓ=x} → µx.

For n ≥ 0, define X̃n = (Xn, Xn+1). It is not very hard to check that {X̃n, n ≥
0} is an irreducible and positive recurrent Ẽ = {(x, y) ∈ E × E, Pxy > 0}–
valued Markov chain, with transition matrix P̃(x,y)(u,v) = δyuPuv. It admits
the invariant probability µ̃(x,y) = µxPxy. The ergodic theorem applied to the

chain {X̃n} implies that a.s., as n→ ∞,

1

n

n−1∑

ℓ=0

1{Xℓ=x,Xℓ+1=y} → µxPxy

�

2.10 Exercises

Exercise 2.10.1. Show that the E = {1, 2, 3}–valued Markov chain {Xn, n ∈
IN} whose transition matrix is

P =




1 0 0
p 1 − p− q q
0 0 1


 (p, q > 0, p+ q < 1)

starting from X0 = 2, first changes its value at a random time T ≥ 1 whose
law is geometric. Show moreover that XT is independent of T , and give the
law of XT . Finally show that Xt = XT if t ≥ T .
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Exercise 2.10.2. Let {Xn; n ∈ IN} be an E = {1, 2, 3, 4, 5}–valued Markov
chain, with the transition matrix

P =




1/2 0 0 0 1/2
0 1/2 0 1/2 0
0 0 1 0 0
0 1/4 1/4 1/4 1/4

1/2 0 0 0 1/2



.

Find the equivalence classes, the transient and recurrent states, and all in-
variant measures of {Xn}.

Exercise 2.10.3. Consider a Markov chain {Xn; n ∈ IN} taking values in
the finite state E = {1, 2, 3, 4, 5, 6}, with a transition matrix P whose off–
diagonal entries are given by

P =




· 2/3 1/3 0 0 0
1/4 · 0 0 1/5 2/5
0 0 · 1/2 0 0
0 0 2/3 · 0 0
0 0 0 0 · 1/2
0 0 0 0 1/2 ·




1. Find the diagonal entries of the transition matrix P .

2. Show that E can be partitioned into three equivalence classes to be spec-
ified, of which one (T ) is transient and two (R1 and R2) are recurrent.

3. Find an invariant probability whose support is R1 and another one
whose support is R2. Find all invariant probabilities.

Exercise 2.10.4. Let P be a Markovian matrix over a finite or countable
set E, which satisfies Doeblin’s condition (D) of section 2.6.

1. Suppose first that condition (D) is satisfied with n0 = 1. Show that
there exists at least one recurrent state, which is visited infinitely often
by the chain, for any starting point. Deduce that the chain has a unique
recurrent class. (Indication : first show that there exists x ∈ E, β > 0
such that the chain can be simulated as follows : at each time n, set
Xn = x with probability β, and with probability 1 − β, do a certain
Markovian transition).
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2. Show that the result is still true in the general case of the assumption
(D). (Indication : consider the sub–chain {Xkn0, k = 0, 1, . . .}).

Exercise 2.10.5. Show that whenever x is recurrent,
∑

n≥0

(P n)xy = +∞ iff

x↔ y, = 0 iff x 6→ y.

Exercise 2.10.6 (Equivalence of the two definitions of aperiodicity). Let
x ∈ E. Define Nx = {n, (P n)xx > 0}.

1. Show that whenever Nx contains two consecutive integers, the greatest
common divisor of the elements of Nx is 1.

2. Show that if n, n+ 1 ∈ Nx, then {n2, n2 + 1, n2 + 2, . . .} ⊂ Nx.

3. Show that if the GCD of the elements of Nx is 1, then there exists
n ∈ IN such that {n, n+ 1} ⊂ Nx.

4. Conclude that the two definitions of aperiodicity of a state x are equiv-
alent.

Exercise 2.10.7. Consider an E = {1, 2, 3, 4, 5, 6}–valued Markov chain
{Xn; n ∈ IN} with the transition matrix P , whose off–diagonal entries are
specified by

P =




· 1/2 0 0 0 0
1/3 · 0 0 0 0
0 0 · 0 7/8 0

1/4 1/4 0 · 1/4 1/4
0 0 3/4 0 · 0
0 1/5 0 1/5 1/5 ·




1. Find the diagonal terms of the transition matrix P .

2. Find the equivalence classes of the chain.

3. Show that 4 and 6 are transient states, and that the other states can
be grouped in two recurrent classes to be specified. In the sequel, we
let T = {4, 6}, C be the recurrent class containing 1, and C′ the other
recurrent class. For all x, y ∈ E, define ρx := IPx(T < ∞), where
T := inf{n ≥ 0; Xn ∈ C}.
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4. Show that

ρx =

{
1, if x ∈ C;

0, if x ∈ C′;

and that 0 < ρx < 1, if x ∈ T .

5. Using the decomposition {T <∞} = {T = 0}∪{T = 1}∪{2 ≤ T <∞}
and conditioning in the computation of IPx(2 ≤ T < ∞) by the value
of X1, establish the formula

ρx =
∑

y∈E

Pxyρy, if x ∈ T .

6. Compute ρ4 and ρ6.

7. Deduce (without any serious computation !) the values of IP4(TC′ <∞)
and IP6(TC′ <∞), where TC′ := inf{n ≥ 0; Xn ∈ C′}.

Exercise 2.10.8. Consider an E = {1, 2, 3, 4, 5, 6}–valued Markov chain
{Xn; n ∈ IN} with the transition matrix P , whose off–diagonal entries are
given by

P =




· 1/4 1/3 0 0 0
1/4 · 0 1/4 1/3 0
1/2 0 · 0 0 0
0 0 0 · 1/2 1/3
0 0 0 1/2 · 1/2
0 0 0 1/3 1/4 ·



.

1. Find the diagonal entries of the transition matrix P .

2. Show that E is the union of two equivalence classes to be specified, one
R being recurrent and the other T transient.

3. Define T := inf{n ≥ 0; Xn ∈ R} and hx = IEx(T ), for x ∈ E. Show
that hx = 0 for x ∈ R, and that 1 < hx <∞ pour x ∈ T .

4. Show that for all x ∈ T ,

hx = 1 +
∑

y∈E

Pxyhy.

Deduce the values of hx, x ∈ T .
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Exercise 2.10.9. Given 0 < p < 1, we consider an E = {1, 2, 3, 4}–valued
Markov chain {Xn; n ∈ IN} with the transition matrix P given by

P =




p 1 − p 0 0
0 0 p 1 − p
p 1 − p 0 0
0 0 p 1 − p


 .

1. Show that the chain {Xn} is irreducible and recurrent .

2. Compute its unique invariant probability π.

3. Show that the chain is aperiodic. Deduce that P n tends, as n → ∞,
towards the matrix 



π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4


 .

4. Compute P 2. Show that this transition matrix coincides with the above
limit. Determine the law of X2, as well as that of Xn, n ≥ 2.

5. Define T4 = inf{n ≥ 1, Xn = 4}. Compute IE4(T4).

Exercise 2.10.10. Consider an E = {0, 1, 2, 3, 4}–valued Markov chain
{Xn, n ∈ IN} with the transition matrix :

P =




0 1
4

1
4

1
4

1
4

p 0 1−p
2

0 1−p
2

p 1−p
2

0 1−p
2

0
p 0 1−p

2
0 1−p

2

p 1−p
2

0 1−p
2

0



,

where 0 < p < 1. Let T := inf{n ≥ 1, Xn = 0}.

1. Show that the chain {Xn} is irreducible and recurrent. We shall denote
its invariant probability by π.

2. Show that under IP0, the law of T is a geometric law to be specified.
Show that IE0(T ) = p+1

p
.
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3. Let

Nn =

n∑

k=1

1{Xk=0}, Mn =

n∑

k=1

1{Xk 6=0}.

Compute the limits as n→ ∞ of n−1Nn and n−1Mn.

4. Give an intuitive argument to support the identity

π1 = π2 = π3 = π4.

Deduce the probability π, exploiting this identity .

5. Show the following general result. If there exists a one–to–one mapping
τ from E into itself, such that

Pτx,τy = Pxy, ∀x, y ∈ E,

then the invariant probability π has the following property : πτx = πx,
x ∈ E. Deduce a rigourous argument for the result in the previous
question.

Exercise 2.10.11 (Random walk in Z). Let

Xn = X0 + Y1 + · · ·+ Yn,

where the Xn’s take their values in Z, the Yn’s in {−1, 1}, X0, Y1, .., Yn, ..
being a sequence of independent r. v.’s, and for all n,

IP(Yn = 1) = p = 1 − IP(Yn = −1), 0 < p < 1.

1. Show that the chain {Xn} is irreducible.

2. Show that whenever p 6= 1/2, the chain is transient (use the law of large
numbers).

3. Consider the case p = 1/2. Show that the chain is recurrent (eval-
uate

∑
n≥1(P

n)00 with the help of Stirling’s formula n! ≃
√

2πn(n
e
)n).

Show that the chain is null recurrent (look for an invariant measure).
Determine the quantities

lim sup
n→∞

Xn and lim inf
n→∞

Xn.
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Exercise 2.10.12 (Random walk in Zd). We let

Xn = X0 + Y1 + · · · + Yn,

where the Xn’s take their values in Zd,the Yn’s being i. i. d., globally inde-
pendent of X0, and their law is specified by

IP(Yn = ±ei) = (2d)−1, 1 ≤ i ≤ d,

where {e1, . . . , ed} is the canonical basis of Zd.

1. Show that the common characteristic function of the Yn’s is given by

φ(t) = d−1

d∑

j=1

cos(tj),

and that

(P n)00 = (2π)−d

∫

[−π,π]d
φn(t)dt.

2. Deduce that for all 0 < r < 1,

∑

n≥0

rn(P n)00 = (2π)−d

∫

[−π,π]d
(1 − rφ(t))−1dt.

3. Show that ∀α > 0, the mapping

(r, t) → (1 − rφ(t))−1

is bounded on ]0, 1] × ([−π, π]d\Cα), where Cα = {t ∈ IRd, ‖t‖ ≤ α},
and that whenever ‖t‖ is sufficiently small, r → (1−rφ(t))−1 is positive
and increasing.

4. Deduce from the fact that 1− φ(t) ≃ ‖t‖2/2, as t→ 0, that {Xn} is an
irreducible Zd–valued Markov chain, which is null recurrent if d = 1, 2,
transient if d ≥ 3.

Exercise 2.10.13. Consider again the Z–valued random walk from Exercise
2.10.11 in the symmetric case (p = 1/2). The goal of this exercise is to
establish the null recurrence of the walk by a method which is completely
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different from that of Exercise 2.10.11. Suppose for simplicity that X0 = x ∈
Z.

For all a, b ∈ Z with a < x < b, let

Ta,b = inf{n ≥ 0; Xn 6∈]a, b[},
Ta = inf{n ≥ 0; Xn = a},
Tb = inf{n ≥ 0; Xn = b}.

We note that

Xn∧Ta,b
= x+

n∑

k=1

Yk1{Ta,b>k−1}.

1. Show that the r. v.’s Yk and 1{Ta,b>k−1} are independent. Deduce that

IEXn∧Ta,b
= x.

2. Show that |Xn∧Ta,b
| ≤ sup(|a|, |b|), Ta,b <∞ a. s., and

IEXTa,b
= x.

3. Establish the identities

IP(XTa,b
= a) =

b− x

b− a
, IP(XTa,b

= b) =
x− a

b− a
.

4. Show that IP(Ta < Tn) → 1, as n→ ∞.

5. Show that Ta < ∞ a. s., and similarly that Tb < ∞ a. s. Deduce that
the chain is recurrent.

6. In the sequel we consider without loss of generality the case x = 0, for
the sake of notational simplicity. Show that for all n ≥ 1,

X2
n∧Ta,b

=

n∑

k=1

(1 − 2Xk−1Yk)1{Ta,b>k−1}.

7. Deduce that IE(X2
Ta,b

) = IE(Ta,b) = −ab, and that for all a ∈ Z, IE(Ta) =
+∞, which shows that the chain is null recurrent.
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Exercise 2.10.14 (Reflected random walk). The {Yn}’s being defined as in
Exercise 2.10.11, we define the IN–valued Markov chain {Xn} by the recur-
rence formula

Xn+1 = Xn + 1{Xn>0}Yn+1 + 1{Xn=0}.

We assume that X0 ∈ IN. We shall denote below by {X ′
n} the (unreflected)

random walk from Exercise 2.10.11, with the same X0 and the same {Yn}’s.
Below we shall use freely the results from Exercise 2.10.11.

1. Show that the chain {Xn} is irreducible, as an IN–valued chain. Give
its transition matrix.

2. Show that a. s., Xn ≥ X ′
n, ∀n. Conclude that {Xn} is transient in the

case p > 1/2.

3. Let T = inf{n ≥ 0, Xn = 0}. Show that Xn = X ′
n whenever T ≥ n.

Conclude that the chain is recurrent in the case p ≤ 1/2 (one can e. g.
show that the state 1 is recurrent).

4. Show that the chain is null recurrent in the case p = 1/2, positive
recurrent in the case p < 1/2 (one might check that in the first (resp.
the second) case, the measure (1/2, 1, 1, 1, . . .) (resp. the probability µ
defined by

µ0 =
1 − 2p

2(1 − p)
, µx =

1 − 2p

2

px−1

(1 − p)x+1
, x ≥ 1)

is an invariant measure).

Exercise 2.10.15 (Birth and death Markov chain). Let {Xn} be an E = IN–
valued Markov chain with the transition P given by

Px,x−1 = qx, Px,x = rx, Px,x+1 = px,

where for all x ∈ IN, px + rx + qx = 1, q0 = 0, qx > 0 if x > 0, and px > 0
for all x ∈ IN.

For x ∈ IN, we let τx = inf{n ≥ 0, Xn = x}. Given three states a, x and
b such that a ≤ x ≤ b, we define u(x) = IPx(τa < τb). Let {γx, x ∈ IN} be
defined by γ0 = 1 and for x > 0, γx = q1 × · · · × qx/p1 × · · · × px.

1. Show that the chain is irreducible.
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2. For a < x < b, establish a relation between u(x) − u(x+ 1) and u(x−
1) − u(x). Compute u(a) − u(b) in terms of the γx’s, and deduce that
for a < x < b,

u(x) =

y=b−1∑

y=x

γy/

y=b−1∑

y=a

γy.

Consider the particular case where px = qx for all x > 0.

3. Compute IP1(τ0 = ∞) and show that the chain is recurrent iff
∑∞

0 γy =
+∞.

4. Find the invariant measures, and deduce that the chain is positive re-
current iff

∞∑

x=1

p0p1 × · · · × px−1

q1q2 × · · · × qx
<∞.

5. Show that in the positive recurrent case, the chain is reversible. (Hint :
one might first note that for x > 0 the relation πx = (πP )x can be
written

πxPx,x−1 + πxPx,x+1 = πx−1Px−1,x + πx+1Px+1,x.

Then consider the case x = 0, and show by recurrence that

πxPx,x+1 = πx+1Px+1,x, ∀x ≥ 0).

Exercise 2.10.16 (Queue). We consider a discrete time queue, which
evolves as follows : at each time n ∈ IN, one customer arrives with prob-
ability p, (0 < p < 1) and no customer arrives with probability 1− p. During
each unit time interval when at least one customer is present, one customer is
served and leaves the queue with probability q, 0 < q < 1, and nobody leaves
the queue with probability 1 − q (a customer who arrives at time n leaves at
the earliest at time n + 1). All the above events are mutually independent.
Denote by Xn the number of customers in the queue at time n.

1. Show that {Xn, n ∈ IN} is an irreducible E = IN–valued Markov chain.
Determine its transition matrix Pxy, x, y ∈ IN.
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2. Give a necessary and sufficient condition on p and q for the chain {Xn}
to possess an invariant probability. We assume below that this condition
is satisfied. Specify the unique invariant probability {πx, x ∈ IN} of the
chain {Xn}.

3. Compute IEπ(Xn).

4. We add the information that the customers are being served according
to the order in which they arrive. Denote by T the sojourn time in the
queue of a customer who arrives at an arbitrary fixed time. Assuming
that the queue is initialized with its invariant probability, what is the
expectation of T ?

Exercise 2.10.17 (Queue). We consider a queue at a counter. Xn denotes
the number of customers in the queue at time n. Between times n and n+1,
Yn+1 new customers join the queue, and provided Xn > 0, Zn+1 customers
leave the queue. We assume that X0, Y1, Z1, Y2, Z2 . . . are mutually inde-
pendent, the Yn’s having all the same law, such that 0 < IP(Yn = 0) < 1, and
the Zn’s satisfying IP(Zn = 1) = p = 1 − IP(Zn = 0).

1. Show that (Xn;n ∈ IN) is a Markov chain, and give its transition ma-
trix.

2. Let ϕ denote the common characteristic function of the Yn’s, ρ that of
the Zn’s, Ψn that of Xn. Compute Ψn+1 in terms of Ψn, ϕ and ρ.

3. Show that there is a unique invariant probability iff IE(Y1) < p, and
determine its characteristic function.

Exercise 2.10.18 (Queue). • A Let X denote the random number of
individuals in a given population, and φ(u) = IE[uX ], 0 ≤ u ≤ 1 its
generating function. Each individual is selected with probability q (0 <
q < 1), independently from the others. Let Y denote the number of
selected individuals in the initial population of X individuals. Show
that the generating function ψ of Y (defined as ψ(u) = IE[uY ]) is given
by

ψ(u) = φ(1 − q + qu).

• B We consider a service system (equipped with an infinite number of
servers), and we denote by Xn (n = 0, 1, 2, . . .) the number of customers
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who are present in the system at time n. We assume that at time
n + 1/3 each of the Xn customers leaves the system with probability
1− p, and stays with probability p (independently from the others, and
of all the other events) (we denote by X ′

n the number of remaining
customers), and at time n+2/3 Yn+1 new customers join the queue. We
assume that the random variables X0, Y1, Y2, . . . are mutually indepen-
dent, and globally independent of the ends of services, and that the joint
law of the Yn’s is the Poisson distribution with parameter λ > 0 (i. e.
IP(Y = k) = e−λλk/k!, and IE[uYn] = exp[λ(u− 1)]).

1. Show that {Xn; n ≥ 0} is an irreducible E = IN–valued Markov
chain.

2. Compute IE[uXn+1|Xn = x] in terms of u, p, λ and x.

3. Denote by φn(u) = IE[uXn] the generating function of Xn. Com-
pute φn+1 in terms of φn, and show that

φn(u) = exp

[
λ(u− 1)

n−1∑

0

pk

]
φ0(1 − pn + pnu).

4. Show that ρ(u) = limn→∞ φn(u) exists and does not depend on φ0,
and that ρ is the generating function of a Poisson distribution,
whose parameter is to be specified in terms of λ and p.

5. Show that {Xn; n ≥ 0} is positive recurrent and specify its invari-
ant probability.

Exercise 2.10.19. Let X0, A0, D0, A1, D1, . . . be IN–valued mutually inde-
pendent random variables. The Dn’s are Bernoulli random variables with
parameter q, i. e. IP(Dn = 1) = 1 − IP(Dn = 0) = q, 0 < q < 1. The An’s
all have the same law defined by IP(An = k) = rk, k ∈ IN, where 0 ≤ rk < 1,
0 < r0 < 1 and

∑∞
k=0 rk = 1. We assume that p =

∑
k krk <∞.

We consider the sequence of r. v. {Xn; n ∈ IN} defined by

Xn+1 = (Xn + An −Dn)+, n ≥ 0,

with the usual notation x+ = sup(x, 0).

1. Show that {Xn; n ∈ IN} is an E = IN–valued Markov chain. Give its
transition matrix P , and show that the chain is irreducible.

We assume from now on that X0 = 0. Let T = inf{n > 0; Xn = 0}.
Define Sn =

∑n−1
k=0(Ak −Dk).
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2. Show that Xn ≥ Sn, and that Xn+1 = Sn+1 on the event {T > n}.

3. Show that Sn/n → p− q a. s., as n→ ∞.

4. Show that whenever p < q, T <∞ a. s.

5. Assume that p > q. Show that {Xn; n ∈ IN} visits 0 at most a finite
number of times.

6. In the case p 6= q, specify in which case the chain is recurrent, and in
which case it is transient.

Assume from now on that IP(An = 1) = 1 − IP(An = 0) = p, where
0 < p < 1 (p is again the expectation of An).

7. Specify the transition matrix P in this case.

8. Show that if p = q, the chain is null recurrent. (one might use the result
of question 3. from Exercise 2.10.11 in order to show the recurrence,
and then look for an invariant measure).

9. Assume that p < q. Show that the chain has a unique invariant prob-
ability π on IN, and that πk = (1 − a)ak, with a = p(1 − q)/q(1 − p)
(one might first establish a recurrence relation for the sequence ∆k =
πk − πk+1). Show that the chain is positive recurrent.

Exercise 2.10.20 (Discrete Aloha). The aim of this exercise is to study the
following communication protocol : users arrive at times {1, 2, . . . , n, . . .} and
they want to transmit a message through a channel, which has the capacity to
transmit only one message at a time. Whenever several users try to transmit
a message at the same time, no message is transmitted, each user knows this,
and he makes a new attempt later. We look for a “distributed” retransmission
policy, i. e. such that each user may decide when to try to retransmit, without
knowing the intentions of the other users. The “discrete Aloha” protocol
prescribes that each user whose message has been blocked at time n makes a
new attempt at time n+ 1 with probability p. If he decides not to try at time
n+ 1, he again makes an attempt at time n+ 2 with probability p, and so on
until by chance he does try. Let Yn denote the number of “new” messages (i.
e. which have not been presented before) arriving at time n. We assume that
the {Yn}’s are i. i. d., with IP(Yn = i) = ai, i ∈ IN, and IE(Yn) > 0. Let Xn

denote the number of delayed messages which are waiting to be transmitted
at time n.
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1. Show that {Xn} is a Markov chain, and give its transition matrix.

2. Show that {Xn} is irreducible, but not positive recurrent.

Exercise 2.10.21 (Programming). Consider again the queue from Exercise
2.10.16.

1. Simulate and plot a trajectory {Xn, n ≥ 0} from n = 1 to n = 1000,
with p = 1/2 and successively q = 3/5, 7/13, 15/29, 1/2.

2. Since {Xn} is irreducible, positive recurrent and aperiodic, (P n)yx →
πx. Plot either the empirical histogram or the empirical distribution
function of (P n)y·, for n = 100, 500, 1000, and a sample size of 104.
Show the histogram (resp. the distribution function) of π on the same
picture. Treat the cases p = 1/2, q = 3/5, 7/13.

3. Graphically compare the quantities

n−1
n∑

k=1

1{Xk=x}, x ∈ IN

and the histogram of π, for n = 103, 104, 105. Treat the cases p = 1/2,
q = 3/5, 7/13. For each value of q, choose the interval of values of x
from the previous results.

Exercise 2.10.22 (Ordering a database). Suppose that the memory of a
computer contains n items 1, 2, . . . , n. This memory receives successive re-
quests, each consisting of one of the items. The closer the item is to the head
of the list, the faster the access is. Assume that the successive requests are i.
i. d. r. v.’s. If the common law of those r. v.’s were known, the best choice
would be to order the data in decreasing order of their associated probability
of being requested. But this probability (p1, p2, . . . , pn) is either unknown or
slowly varying. Assume that pk > 0, ∀1 ≤ k ≤ n.

We need to choose a method of replacement of the data after their request,
in such a way that in the long run the time taken to get the requested data
will be as small as possible.

We will compare two such methods. The first one consists of replacing
systematically any item which has been requested at the head of the list. The
second one consists of moving each item which has been requested one step
ahead. In both cases, we have an irreducible Markov chain with values in the
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set E of all permutations of the set {1, 2, . . . , n}. Denote by Q the transition
matrix of the first chain, and by π the associated invariant measure, by P
the transition matrix of the second chain and µ the corresponding invariant
measure. To the Markov chain with transition matrix Q, we associate the
quantity

JQ
def

=

n∑

k=1

π(position of k)pk,

where π(position of k) is the expectation under π of the position of the ele-
ment k.

To the Markov chain with transition matrix P , we associate the quantity

JP
def
=

n∑

k=1

µ(position of k)pk.

1. Show that the chain with the transition matrix Q is not reversible.

2. Show that any irreducible and positive recurrent Markov chain which
satisfies

(i) Pkℓ > 0 ⇔ Pℓk > 0

(ii) For any excursion k, k1, k2, . . . , km, k,

Pkk1

m∏

i=2

Pki−1ki
Pkmk = Pkkm

1∏

i=m−1

Pki+1ki
Pk1k

is reversible (this is known as the “Kolmogorov cycle condition”).

3. Show that P satisfies (i) and (ii).

4. Show that the second procedure is preferable, in the sense that JP < JQ.


