
Chapter 6

The Poisson process

Introduction

In this chapter and the two following, we will study Markov processes which
are indexed by IR+, with values in a finite or countable set E, and which are
constant between their jumps, which happen at random times. These are
called “jump Markov processes”.

In this chapter, we shall introduce the “prototype” of jump Markov pro-
cesses, namely the Poisson process.

This process models random distributions of points on IR+, which could
be times of collisions of particles, times of arrivals of customers in a queue,
times of arrivals of telephone calls, etc...

6.1 Point Processes and counting processes

A point process on IR+ can be described as an increasing sequence of
random points

0 < T1 < T2 < · · · < Tn < · · ·

which are r. v.’s defined on a probability space (Ω,F , IP). In addition to the
above inequalities, we assume that Tn ↑ ∞, n→ ∞.
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Let

S1 = T1

S2 = T2 − T1

. . . . . . . . .

Sn = Tn − Tn−1

. . . . . . . . .

The Tn’s are the times where some events happen, the Sn’s are waiting times
between successive events.

We define the random counting function {Nt, t ≥ 0} of the point
process {Tn, n ∈ IN} as follows :

Nt = sup{n;Tn ≤ t}
=
∑

j≥1

1{Tj≤t}

Nt is the number of events which have happened before time t.
Note that N0 = 0, since T1 > 0 and for all t > 0, Nt < ∞ since Tn ↑ ∞,

n→ ∞.
For 0 ≤ s < t, Nt − Ns is the number of events which have happened

during the time interval ]s, t].
A typical trajectory of the process {Nt, t ≥ 0} is drawn on figure 6.1
Note that the trajectories of {Nt} are right continuous.
The knowledge of {Nt, t ≥ 0} is equivalent to that of the sequence

{Tn, n ∈ IN}, and we have the identities :

{Nt ≥ n} = {Tn ≤ t}

{Nt = n} = {Tn ≤ t < Tn+1}
{Ns < n ≤ Nt} = {s < Tn ≤ t}

6.2 The Poisson process

Definition 6.2.1. We will say that the point process {Tn, n ∈ IN} or its
counting function {Nt, t ≥ 0} is a Poisson process if {Nt, t ≥ 0} is a
process with stationary independent increments, i.e. whenever
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Figure 6.1: Trajectory of a Poisson process

a) for all n ≥ 2, 0 ≤ t0 < t1 < · · · < tn, the increments {Ntj −Ntj−1
; 1 ≤

j ≤ n} are mutually independent;

b) for all 0 ≤ s < t, the law of Nt − Ns depends upon the pair (s, t) only
through the difference t− s.

Property b) is called the “stationarity of the increments ” of {Nt}.
The terminology ‘Poisson process” is justified by :

Proposition 6.2.2. Let {Nt, t ≥ 0} be the counting function of a Poisson
process. There exists λ > 0 such that for all 0 ≤ s < t, the law of Nt −Ns

is the Poisson distribution with parameter λ(t− s), i.e.

IP(Nt −Ns = k) = e−λ(t−s)[λ(t− s)]k/k !, k ∈ IN.

Remark 6.2.3. The parameter λ is called the intensity of the Poisson
process {Nt, t ≥ 0}. It is equal to the mean number of events which happen
during an time interval of unit length, i.e.

IE[Nt+1 −Nt] = λ.
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Proof of Proposition 6.2.2 For all 0 ≤ s < t, consider the generating
function of the r. v. Nt − Ns, which is the mapping u → ft−s(u) from [0, 1]
into itself and is defined by :

ft−s(u) = IE[uNt−Ns]

=
∑

k≥0

IP(Nt −Ns = k)uk.

From property a) of the definition,

ft(u) = fs(u)ft−s(u), 0 ≤ s < t, u ∈ [0, 1].

It follows from this identity that

ft(u) = [f1(u)]
t

first for t rational, then for all t in IR+ since t→ ft(u) is decreasing.
Since moreover

ft(u) ≥ P (Nt = 0)

= P (T1 > t)

ր 1, as t ↓ 0,

f1(u) 6= 0, hence there exists λ(u) ∈ IR+ such that

ft(u) = e−tλ(u).

Since u→ exp(−θ(1− u)) is the generating function of the Poisson distribu-
tion with parameter θ, it just remains to show that

λ(u) = λ(0)(1 − u).

But clearly

λ(u) = lim
t↓0

1

t
(1 − ft(u))

= lim
t↓0

∑

k≥1

1

t
IP(Nt = k)(1 − uk)
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Since 0 ≤ u ≤ 1,

0 ≤
∑

k≥2

1

t
IP(Nt = k)(1 − uk) ≤ 1

t
IP(Nt ≥ 2)

and the result follows from the identity

λ(u) = lim
t↓0

[
1

t
IP(Nt = 1)

]
(1 − u),

provided we have
1

t
IP(Nt ≥ 2) → 0, as t ↓ 0. (6.1)

But ⋃

n∈IN

{Nnt = 0, N(n+1)t ≥ 2} ⊂ {T2 < T1 + t}

Since IP(Nt = 0) = ft(0) = exp(−λ(0)t), we deduce from this inclusion and
property a) from the definition that :

∑

n∈IN

exp(−λ(0)nt)IP(Nt ≥ 2) = [1 − exp(−λ(0)t)]−1IP(Nt ≥ 2)

≤ IP(T2 < T1 + t)

As t ↓ 0,
P (T2 < T1 + t) → P (T2 ≤ T1) = 0

and for all t sufficiently small,

(λ(0)t)−1 < (1 − exp(−λ(0)t))−1,

hence (6.1) is established.

Remark 6.2.4. We can give an intuitive interpretation of the preceding re-
sult. From the last part of the above proof,

IP(Nt+h −Nt = 0) = 1 − λh+ ◦(h)
IP(Nt+h −Nt = 1) = λh+ ◦(h)
IP(Nt+h −Nt ≥ 2) = ◦(h)

Then up to probabilities which are small compared with h, N(t + h) − N(t)
is a Bernoulli r. v. taking the value 0 with probability 1−λh and the value 1
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with probability λh. This, together with the independence of the increments
and the formula

Nt+s −Nt =
n∑

j=1

[Nt+jh −Nt+(j−1)h], with h =
s

n
,

implies that Nt+s − Nt is approximatively a binomial r. v. with parameters
(n, λs/n). But as n→ ∞, that law converges towards Poisson with parameter
λs.

Note that for all n ≥ 2, 0 < t1 < t2 < · · · < tn, the law of the random
vector (Nt1 , Nt2 . . . , Ntn) is determined by Proposition 6.2.2 and condition
a) from Definition 6.2.1.

Corollary 6.2.5. The law of the time T1 of the first event is exponential
with parameter λ (i.e. the law on IR+ with density λe−λt). The same is true
for the law of TNs+1 − s, which is the waiting time after s of the next event,
for all s > 0.

Proof It suffices to note that for t > 0,

IP(T1 > t) = IP(Nt = 0)

= e−λt

and similarly

IP(TNs+1 − s > t) = IP(Ns+t −Ns = 0)

= P (Nt = 0).

�

6.3 The Markov property

Let {Nt, t ≥ 0} be a Poisson process with intensity λ. For all s, t > 0, let

N s
t = Ns+t −Ns.

It follows from Definition 6.2.1 that {N s
t , t ≥ 0} is a Poisson process with

intensity λ, independent of {Nr, 0 ≤ r ≤ s}. Note that the knowledge
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of {Nt, 0 ≤ t ≤ s} is equivalent to that of (Ns, T1, T2, . . . , TNs
). The above

independence is equivalent to that of the random vectors (Ns, T1, T2, . . . , TNs
)

and (TNs+1, TNs+2, . . . , TNs+p), for all p.
Since the increments {Ns+t −Ns, t ≥ 0} after s are independent from the

past {Nt, 0 ≤ t ≤ s}, clearly the future {Ns+t, t ≥ 0} after s depends upon
the past {Nt, 0 ≤ t ≤ s} only through the present value Ns; in other words
the past and the future are conditionally independent, given the present.
This is the Markov property.

We shall discuss this property again in the next chapter.
We shall now generalize the above property to the case where s is a certain

type of random time. Let us first recall some notation, and state a definition.
A σ–algebra of subsets of a set E is a class of subsets of E which is closed

under complement, countable unions and intersections. One can always speak
of the “smallest σ–algebra containing the class C ⊂ P(E)”, since it is the
intersection of all σ–algebras containing C (there exists at least one such
σ algebra, namely P(E), and an arbitrary intersection of σ–algebras is a
σ–algebra, as can be easily checked). For example, the Borel σ–algebra
of subsets of IRd, denoted Bd, is the smallest σ–algebra of subsets of IRd

containing all the open sets.
In the case of a random variable with values in a countable state space E,

σ(X) = {X−1(F ); F ⊂ E}. Given a d–dimensional random vector X (i.e.
an IRd–valued random variable), we denote by σ(X) = {X−1(B);B ∈ Bd}
the smallest σ–algebra of subsets of Ω which makes X measurable. This
is the set of events for which we know whether or not they are realized as
soon as we know the value of X. Given an arbitrary collection {Xi, i ∈ I}
(of arbitrary dimensions), we denote by σ{Xi; i ∈ I} the smallest σ–algebra
containing σ(Xi), for all i ∈ I.

It will be convenient to use below the following notation : for any t ≥ 0,

FN
t = σ{Ns; 0 ≤ s ≤ t}

= σ{Nt, T1, T2, . . . , TNt
}.

Definition 6.3.1. Given a Poisson process {Nt, t ≥ 0}, a stopping time
(associated to {Nt}) is an IR+ ∪ {+∞}–valued r. v. S such that for all t in
IR+,

{S ≤ t} ∈ FN
t .

For all s in IR+, S ≡ s is a stopping time. For all n, Tn is a stopping
time. TNs+1 is also a stopping time. But TNs

is not a stopping time, since
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whenever t < s,

{TNs
≤ t} = {Ns −Nt = 0} /∈ FN

t , 0 ≤ t < s.

To any stopping time S associated to {Nt}, we associate the σ–algebra of
those events which are “determined by the trajectory {Nt∧S, t ≥ 0} stopped
at time S” :

FN
S

def
={A ∈ FN

∞; A ∩ {S ≤ t} ∈ FN
t , ∀t ≥ 0}.

We have :

Proposition 6.3.2. Let {Nt, t ≥ 0} be a Poisson process with intensity λ,
and S a stopping time associated to {Nt}. On the event {S <∞} we define
for t ≥ 0

NS
t = NS+t −NS.

Conditionally upon {S <∞}, {NS
t , t ≥ 0} is a Poisson process with intensity

λ, independent of FN
S .

Proof We already know that the result holds if S is constant. Suppose next
that S takes its values in an increasing sequence (sj, j ≥ 1) of positive real
numbers. Note that since S is a stopping time,

{S = sj} = {S ≤ sj}\{S ≤ sj−1} ∈ FN
sj

Let A ∈ FN
S , 0 < t1 < t2 < . . . < tℓ and n1, . . . , nℓ belong to IN.

IP

(
A ∩ (

ℓ⋂

k=1

{NS
tk

= nk})
)

=
∑

j

IP

(
{S = sj} ∩ A ∩

(
ℓ⋂

k=1

{Nsj+tk −Nsj
= nk}

))

=
∑

j

IP({S = sj} ∩A)IP

(
ℓ⋂

k=1

{Nsj+tk −Nsj
= nk}

)

= IP(A)IP

(
ℓ⋂

k=1

{Ntk = nk}
)
,
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where we have used the property {S = sj}∩A ∈ FN
sj for the second equality,

and the fact that the second factor of the for–to–last expression does not
depend upon sj , by the stationarity of the increments of {Nt}.

The result is thus established in the case of a stopping time which takes
its values in an increasing sequence. But any stopping time S can be ap-
proximated by a decreasing sequence of stopping times of this form. Indeed
for all n, define

Sn =
∑

k∈IN

k2−n1{(k−1)2−n<S≤k2−n}.

The above identity is true with S replaced by Sn, since

S ≤ Sn ⇒ FN
S ⊂ FN

Sn
.

We can now easily take the limit in the above identity, with S replaced by
Sn since from the right continuity of the trajectories of {Nt, t ≥ 0},

IP

(
A ∩ (

ℓ⋂

k=1

{NSn

tk
= nk})

)
→ IP

(
A ∩ (

ℓ⋂

k=1

{NS
tk

= nk})
)
.

�

Corollary 6.3.3. Let {Nt; t ≥ 0} be a Poisson process with intensity λ, and
(Tn)n≥1 its jump times. We let S1 = T1, S2 = T2−T1, . . . , Sn = Tn−Tn−1, . . ..
The random variables S1, S2, . . . , Sn, . . . are i. i. d., their common law being
exponential with the parameter λ.

Proof We already know that the law of T1, the first jump time of a Poisson
process with intensity λ, is exponential with parameter λ. It follows from
Proposition 6.3.2 with S = Tn that Sn+1 = Tn+1 − Tn is the first jump
time of a Poisson process with intensity λ, hence its law is exponential with
parameter λ, and is independent of T1, T2, . . . , Tn, hence also of S1, S2, . . . , Sn.
The result follows from the fact that this statement is true for all n ≥ 1. �

In the other direction, we have the following result :

Proposition 6.3.4. Let {Sn;n ≥ 1} be a sequence of i. i. d. r. v.’s, their
common law being the exponential law with parameter λ > 0. We define

Tn = S1 + · · · + Sn, n ≥ 1,
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Nt = sup{n;Tn ≤ t}, t ≥ 0.

Then {Nt, t ≥ 0} is a Poisson process with intensity λ.

We then have a way to “construct” a Poisson process, which in particular
shows that there does exist a process satisfying the requirements of Definition
6.2.1 ! We also have here a way to simulate a Poisson process.

6.4 Large time behaviour

Again, let {Nt; t ≥ 0} be a Poisson process with intensity λ. Then

IE[Nt] = λt, V ar[Nt] = λt.

In particular IE[Nt/t] = λ, Var[Nt/t] = λ
t
, hence N(t)/t→ λ in mean square,

as t→ ∞. In fact we have the “strong law of large numbers” :

Proposition 6.4.1. Let {Nt; t ≥ 0} be a Poisson process with intensity

λ > 0. Then
Nt

t
→ λ a. s. as t→ ∞.

Proof First note that

Nn =
∑

1≤i≤n

[Ni −Ni−1]

is the sum of n i. i. d. r. v.’s, their common law being Poisson with
parameter λ (hence they are integrable). It then follows from the strong law
of large numbers that

Nn

n
→ λ, a. s., as n→ ∞.

But with the notation [t] = integer part of t,

Nt

t
=
N[t]

[t]
× [t]

t
+
Nt −N[t]

t
.

It then suffices to show that

sup
n<t<n+1

Nt −Nn

n
→ 0, as n→ ∞.
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Let

ξn
def
= sup

n<t≤n+1
Nt −Nn,

= Nn+1 −Nn.

The {ξn}’s are i. i. d. and integrable. Then
ξ1 + · · ·+ ξn

n
→ λ a. s.,

consequently
ξn
n

→ 0 a. s.

�

We have the following “central limit theorem” :

Proposition 6.4.2. Let {Nt; t ≥ 0} be a Poisson process with intensity λ.
Then

Nt − λt√
λt

→ Z in law, as t→ ∞,

where Z is a centered Gaussian r. v. with unit variance.

Proof We essentially argue as in the preceding proof.

Nn − λn√
λn

→ Z in law, as n→ ∞,

from the “classical” central limit theorem. And

Nt −N[t]√
λ[t]

≤ ξ[t]/
√
λ[t],

converges to 0 in probability as t→ ∞ since

P
(
ξn/

√
λn > ε

)
= P

(
ξn > ε

√
λn
)

= P
(
ξ1 > ε

√
λn
)

→ 0, as n→ ∞.
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Then also
Nt −N[t]√

λ[t]
→ 0 in probability as t→ ∞. Finally :

Nt − λt√
λt

=
N[t] − λ[t]√

λ[t]
×
√

[t]

t

+
Nt −N[t]√

λt
×
√

[t]

t
+
√
λ

[t] − t√
t
,

and we know that whenever Xn → X in law, Yn → 0 in probability, then

Xn + Yn → X in law.

�

One could in fact establish a “functional central limit theorem” which we
now briefly describe. A proof very similar to that of Proposition 6.4.2 shows
that for all t > 0,

Ntu − λtu√
λu

→ Bt in law as u→ ∞,

where Bt is a centered Gaussian r. v. with variance t. Note that for each
u > 0, {[Ntu − λtu]/

√
λu, t ≥ 0} is a process with independent increments,

whose jumps are of size (λu)−1/2. It follows that one can take the above limit
as u→ ∞ jointly for the various t’s, in such a way that the limit {Bt, t ≥ 0}
is a centered Gaussian process with independent increments and continuous
trajectories, satisfying E[B2

t ] = t. {Bt; t ≥ 0} is called a Brownian motion,
which will be discussed in chapter 9 below.

6.5 Exercises

Exercise 6.5.1. Let X be an IR+–valued r. v. such that IP(X > t) > 0, ∀t >
0. We assume moreover that ∀s, t > 0,

IP(X > s + t|X > t) = IP(X > s).

Conclude that the law of X is exponential with some parameter λ > 0.
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Exercise 6.5.2. Three persons A, B and C get to a post office at the same
time. They want to make a telephone call. There are two telephone booths,
which are immediately occupied by A and B. C replaces the one who finishes
first. A, B and C leave the Post Office as soon as they have completed their
calls.

We denote by X, Y and Z the length of the telephone calls made by A,
B and C respectively. These three r. v.’s are assumed to be i. i. d., their
common law being exponential with parameter λ > 0.

1. Compute the probability that C leaves last.

2. Give the probability distribution of the total time T spent by C in the
Post Office.

3. With 0 being the time of arrival of the three persons at the Post Office,
give the probability distribution of the time of the last departure.

Hint : first give the probability distribution of the random vector (X ∧Y,X ∨
Y −X ∧ Y ), (∧ = inf, ∨ = sup).

Exercise 6.5.3. A machine has a lifespan τ1 whose law is exponential with
parameter θ. As soon as it breaks down, it is instantly replaced by an identical
machine with lifespan τ2, and so on. We assume that the r. v.’s (τn; n ∈ IN)
are i. i. d. The first machine starts running at time 0; the times Tn (n ≥ 1)
of successive failure of the machines (in other words T1 = τ1, T2 = τ1+τ2, . . .)
constitute a Poisson point process.

1. Given t > 0, let Dt denote the elapsed time since the machine running
at time t started to run. In which set does the r. v. Dt take its values ?
What is the law of Dt ? Show that as t→ ∞, this law has a limit.

2. Let St be such that t + St is the time of failure of the machine which
functions at time t. What is the law of St ? What is the law of the
pair (Dt, St) and what is the limit of that law as t → ∞ ? Why aren’t
Dt and St identically distributed, and why do they tend to be identically
distributed as t→ ∞ ?

3. What is the law of Dt+St, the lifespan of the machine which is running
at time t ? Compare the limit of that law as t→ ∞ with the joint law
of the τn’s. Explain the apparent contradiction.
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Exercise 6.5.4. 1. Let X1, X2, . . . , Xn be i. i. d. r. v.’s, whose com-
mon law is the uniform law on [0, t], and Y1, Y2, . . . , Yn be the same
sequence, but in increasing order. In other words, the Yk’s are defined
by

Y1 = inf
1≤i≤n

Xi = Xi1

Y2 = inf
1≤i≤n,i6=i1

Xi

and so on. Give the probability distribution of the random vector (Y1, Y2,
. . . , Yn).

2. Let {Nt, t ≥ 0} be a Poisson process with intensity λ. Show that the
conditional law of the random vector (T1, T2, . . . , Tn), given that Nt = n,
is the distribution which was identified in the previous question.

Exercise 6.5.5. Let {N1
t ; t ≥ 0} and {N2

t ; t ≥ 0} be two independent Poisson
processes, of intensity λ1 and λ2 respectively. Show that {N1

t +N2
t ; t ≥ 0} is

a Poisson process with intensity λ1 + λ2.

Exercise 6.5.6. Suppose that the number of individuals infected by HIV
follows a Poisson process of a given intensity λ. We denote by Nt the number
of individuals infected at time t. We do not take deaths into account.

Each infected individual has an incubation period between the time of
infection and the time when the symptoms of AIDS appear. The length of this
incubation period is random. The incubation periods for various individuals
are i. i. d., their common law on IR+ having a given distribution function
G. We denote by Ḡ the function Ḡ(t) = 1 −G(t).

Let N1
t denote the number of individuals who have AIDS symptoms at time

t, and let N2
t denote the number of individuals who at time t are infected by

HIV, but do not yet have AIDS symptoms. Of course

Nt = N1
t +N2

t .

Show that for each t > 0, N1
t and N2

t are independent, the probability distri-
bution of N1

t is Poisson with parameter λ
∫ t

0
G(s)ds, and that of N2

t Poisson

with parameter λ
∫ t

0
Ḡ(s)ds. You can make use of the result from the exer-

cise 6.5.4, which says that conditionally upon Nt = n, the times of infection
between 0 and t which are counted by a Poisson process have the same law
as an i. i. d. sequence of n uniform [0, t] random variables.
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Exercise 6.5.7 (Programming). Define the failure rate of an IR+–valued r.
v. X with the density f and the distribution function F to be the function
λ : IR+ → IR+ defined by

λ(t) =
f(t)

1 − F (t)
.

Exercise 6.5.1 proves that the only probability distribution with a constant
failure rate is the exponential.

The Weibull distribution with parameters λ, α > 0 is the distribution on
IR+ with survival function

F̄ (t) = 1 − F (t) = e−(λt)α

,

and failure rate
λ(t) = αλ(λt)α−1.

The Weibull distribution has an increasing failure rate if α > 1 and a decreas-
ing rate if α < 1. It reduces to the exponential distribution with parameter λ
when α = 1.

The Γ(α, λ) distribution is the distribution on IR+ with density

f(t) =
λ

Γ(α)
e−λt(λt)α−1,

where Γ(α) =
∫∞
0
e−ttα−1dt.

Again the Gamma distribution has an increasing failure rate if α > 1 and
a decreasing rate if α < 1. Note that the sum of n i. i. d. exponential (λ) r.
v.’s, follows the Γ(n, λ) distribution, with an increasing failure rate.

Suppose that two machines function in parallel, and need a fragile part
M . Suppose that we have only one spare part, which immediately replaces
the one which breaks down first. The three parts M (the two in place at the
beginning, plus the spare) have i. i. d. life times. The second failure is
fatal for the machine which experiences it. If the life times are exponential,
then exercise 6.5.2 shows that the two machines have the same probability of
experiencing the fatal failure.

Suppose that we replace the exponential law by a law with an increasing
failure rate, then the machine whose part has been already replaced has a
better chance of functioning longuer than the other one, and the reverse is
true in the case of a decreasing failure rate.

Illustrate by a Monte Carlo computation the result from exercise 6.5.2,
and the two conjectures which we have just formulated.
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More precisely, successively with IP = exponential with parameter 1, the
Γ(3, 1) distribution, the Weibull (1,0.5) distribution (easy to simulate by in-
version of its distribution function), simulate a matrix 3 × N of i. i. d. r.
v.’s with the law IP, denoted by X. Graph, for n from 1 to N , the three
quantities

n−1
n∑

k=1

{min[X(1, k), X(2, k)] +X(3, k) −max[X(1, k), X(2, k)]}.

You can choose N = 103 or N = 104.



Chapter 7

Jump Markov processes

Introduction

In this chapter, we will present the theory of continuous time jump Markov
processes, with values in a finite or countable state space E. As we will see in
section 7.4, these processes are in a sense combinations of a Poisson process
and a discrete time Markov chain (the “embedded chain”). In a second
part of this chapter, we will present applications to phylogeny, to discretized
partial differential equations, and to the annealing algorithm. The proof of
convergence of the annealed algorithm which we present here is due to Francis
Comets (private communication). Applications to queues will be developed
in the next chapter.

7.1 General facts

We want to study continuous time Markov processes with values in a finite or
countable state space E. We will assume that their trajectories are constant
between their jumps, and that the latter are isolated. Moreover we will
assume that the trajectories are right continuous. They will have left limits at
each point. The jumps of such a process {Xt, t ≥ 0} happen at random times
T1(ω), T2(ω), . . . , Tn(ω), . . .. The main difference with the Poisson process of
the preceding chapter is that, given the time of the jump and the position
before the jump, the position after the jump is random. If we denote by
Zn(ω) the value of {Xt} just after the n–th jump Tn(ω), n ≥ 1, a typical
trajectory of the process {Xt; t ≥ 0} is graphed on the figure 7.1.

177
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Figure 7.1: Trajectory of a continuous time jump Markov process

The knowledge of {Xt; t ≥ 0} is equivalent to that of the double sequence
{Tn, Zn; n ≥ 0}.

For certain applications, it is convenient to make certain states absorbing
(for instance, in a model describing the evolution of the size of a popula-
tion without immigration, 0 is an absorbing state). x ∈ E is absorbing if
XTn

(ω) = x⇒ Tn+1(ω) = +∞.
We will then assume that the jump times constitute an increasing se-

quence
0 = T0 < T1 ≤ T2 ≤ · · · ≤ Tn ≤ · · · (7.1)

with Tn ∈ IR+ ∪ {+∞}, and

Tn(ω) < Tn+1(ω) whenever Tn(ω) <∞. (7.2)

We assume moreover that there is no explosion, i. e. jump times do not
accumulate at finite distance, in other words

Tn(ω) → +∞ p. s., as n→ ∞. (7.3)

In the sequel, (7.1), (7.2) and (7.3) will be assumed to be in force, without
any further notice.
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An E–valued random function {Xt; t ≥ 0} is called a random jump
function if it is of the form :

Xt(ω) =
∑

{n≥0; Tn(ω)<∞}
Zn(ω)1[Tn(ω),Tn+1(ω)[(t)

where the r. v. Zn’s take their values in E. We state

Definition 7.1.1. An E–valued random jump function {Xt, t ≥ 0} is called
a jump Markov proces (or a continuous time Markov chain) if for all
0 < s < t, the conditional law of the r. v. Xt given {Xu; 0 ≤ u ≤ s}
depends upon Xs only , i. e. for all n ∈ IN, 0 ≤ t0 < t1 < · · · < tn < s,
x0, x1, . . . , xn, x, y ∈ E,
IP(Xt = y|Xt0 = x0, Xt1 = x1, . . . , Xtn = xn, Xs = x) = IP(Xt = y|Xs = x)1.

We shall say that the jump Markov process {Xt, t ≥ 0} is homogeneous
if the quantity P (Xt = y|Xs = x) depends upon s and t only through the
difference t− s.

We shall limit ourselves to the study of homogeneous Markov processes.
We will make use of the notation (in the case s < t) :

IP(Xt = y|Xs = x) = Pxy(t− s)

where for all t > 0, P (t) is a “Markovian matrix” on E × E, which is called
the transition matrix during the time t. We shall denote below by µ(t) the
probability distribution of Xt on E, t ≥ 0. µ(0) is called the “initial law” of
the process {Xt; t ≥ 0}.

Proposition 7.1.2. Let {Xt, t ≥ 0} be a jump Markov process, with the
initial law µ and the transition matrices {P (t), t > 0}. For all n in IN,
0 < t1 < · · · < tn, the law of the random vector (X0, Xt1 , . . . , Xtn) is given
by : for all x0, x1, . . . , xn in E,

IP(X0 = x0, Xt1 = x1, Xt2 = x2, . . . , Xtn = xn)

= µx0Px0x1(t1)Px1x2(t2 − t1) × · · · × Pxn−1xn
(tn − tn−1).

1This condition makes sense only when

IP(X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn, X(s) = x) > 0.

In this condition we shall disregard the values n, x0, x1, . . . , xn, x for which that inequality
does not hold
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Consequently, for all t > 0,

µ(t) = µ(0)P (t)

in the sense that µy(t) =
∑

x∈E

µx(0)Pxy(t), and for any positive or bounded

function g : E → IR,

IE[g(Xt)|X0 = x] = (P (t)g)x

=
∑

y∈E

Pxy(t)gy.

Moreover, the transition matrices {P (t), t > 0} satisfy the semigroup property
(also called the Chapmann–Kolmogorov equation) :

P (s+ t) = P (s)P (t),

in the sense that for all x, y in E

Pxy(t+ s) =
∑

z∈E

Pxz(t)Pzy(s)

Proof It follows from the definition of conditional probability and the
Markov property that

IP(X0 = x0, Xt1 = x1, . . . , Xtn = xn)

= IP(X0 = x0)P (Xt1 = x1|X0 = x0)IP(Xt2 = x2|X0 = x0, Xt1 = x1)

× · · · × IP(Xtn = xn|X0 = x0, Xt1 = x1, . . . , Xtn−1 = xn−1)

= µx0Px0x1(t1)Px1x2(t2 − t1) × · · · × Pxn−1xn
(tn − tn−1).

In the case n = 1, this formula reduces to :

IP(X0 = x, Xt = y) = µxPxy(t)

and the second result follows by summing over x ∈ E. From the definition
of P (t),

IP(Xt = y|X0 = x) = Pxy(t),

the third result follows by multiplying by gy and summing over y ∈ E.
Finally the above formula in the case n = 2 gives, after division by µx0

IP(Xs = z, Xs+t = y|X0 = x) = Pxz(s)Pzy(t).

The last result follows by summing over z ∈ E. �

We now present some examples of jump Markov processes.
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Example 7.1.3. A Poisson processes {Nt; t ≥ 0} of intensity λ is an IN–
valued Markov process, with the transition matrix :

Pxy(t) =

{
e−λt(λt)y−x/(y − x)!, if y ≥ x;

0, otherwise.

Example 7.1.4. The telegraph process Given a Poisson process {Nt} of
intensity λ, and an E = {−1,+1}–valued r. v. X0, independent of {Nt; t ≥
0}, we define :

Xt = X0(−1)Nt , t ≥ 0.

{Xt, t ≥ 0} is a Markov process, with the transition matrix :

P+1+1(t) = P−1−1(t) = e−λt
∑

n≥0

(λt)2n

(2n)!

P−1+1(t) = P+1−1(t) = e−λt
∑

n≥0

(λt)2n+1

(2n+ 1)!

Example 7.1.5. Let {Nt; t ≥ 0} be a Poisson process with the intensity λ,
and jump times 0 < T1 < T2 < T3 < · · · < Tn < · · · . Let also {Zn; n ∈ IN} be
an E–valued discrete time Markov chain, with transition matrix {Pxy; x, y ∈
E}, independent of {Nt, t ≥ 0}. One can show (see exercise 7.11.1 below)
that

Xt =

∞∑

n=0

Zn1[Tn,Tn+1[(t), t ≥ 0

is a jump Markov process.

7.2 Infinitesimal generator

From the semigroup property it follows that P (t) is known for all t > 0
as soon as it is known for all small enough t. In fact, we will see that it
is completely determined by its right derivative at t = 0 (we know that
P (0) = I).

Theorem 7.2.1. Let {P (t), t > 0} be the semigroup of transition matrices
of a jump Markov process {Xt, t ≥ 0}.
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There exists a matrix {Qxy; x, y ∈ E} (called the infinitesimal genera-
tor of the semigroup {P (t); t ≥ 0}, or of the Markov process {Xt, t ≥ 0})
which satisfies

(i) Qxy ≥ 0 if x 6= y

(ii) Qxx = −
∑

y∈E\{x}
Qxy ≤ 0,

(this last inequality being strict, unless the state x is absorbing) and such
that, as h ↓ 0,

Pxy(h) = hQxy + ◦(h) if x 6= y

Pxx(h) = 1 + hQxx + ◦(h).

Moreover, conditioned upon X0 = x, the time T1 of the first jump and the
position Z1 = XT1 after that jump are independent, the law of T1 being ex-
ponential with parameter qx = −Qxx, and the law of Z1 on E being given by
{Qxy/qx; y 6= x}.

Proof First note that

{T1 > nh} ⊂ {X0 = Xh = · · · = Xnh} ⊂ {T1 > nh} ∪ {T2 − T1 ≤ h}.

Since P (T2 − T1 ≤ h) → 0 as h → 0, we have that as h → 0, nh → t (with
nh ≥ t),

IP(T1 > t|X0 = x) = lim IP(X0 = Xh = · · · = Xnh|X0 = x)

= lim[Pxx(h)]
n

Existence of this limit implies that

1

h
[1 − Pxx(h)] → qx ∈ [0,+∞],

as h→ 0, and consequently

IP(T1 > t|X0 = x) = e−qxt.

Hence necessarily qx < ∞ and qx = 0 if and only if x is absorbing. Define
Qxx = −qx.
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The proof of existence of the limits of
1

h
Pxy(h) for x 6= y is done similarly :

{T1 ≤ t, Z0 = x, Z1 = y}
= lim

h→0,nh→t
∪1≤m≤n{X0 = Xh = · · · = X(m−1)h = x,Xmh = y}

IP(T1 ≤ t, Z1 = y|X0 = x) = lim
1 − Pxx(h)

n

1 − Pxx(h)
Pxy(h)

=
1 − e−qxt

qx
lim

1

h
Pxy(h)

Hence Qxy = lim
1

h
Pxy(h) exists for x 6= y and

IP(T1 ≤ t, Z1 = y|X0 = x) = (1 − e−qxt)
Qxy

qx

whence

IP(T1 ≤ t, Z1 = y|X0 = x) = IP(T1 ≤ t|X0 = x)IP(Z1 = y|X0 = x)

and

IP(Z1 = y|X0 = x) =
Qxy

qx
.

�

In the case where E is a finite set, we immediately deduce from the
Theorem :

Corollary 7.2.2. (i) {P (t), t ≥ 0} is the unique solution of Kol-
mogorov’s backward equation

dP

dt
(t) = QP (t) t > 0; P (0) = I.

Moreover u(t, x) := E[g(Xt)|X0 = x] also solves a Kolmogorov back-
ward equation





∂u

∂t
(t, x) =

∑

y∈E

Qxyu(t, y), t > 0, x ∈ E;

u(0, x) = g(x), x ∈ E.
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(ii) {P (t), t ≥ 0} is also the unique solution of the forward Kolmogorov
equation :

dP (t)

dt
= P (t)Q, t > 0; P (0) = I.

Moreover the family of the marginal probability distributions {µ(t), t ≥
0} of the r. v. {Xt; t ≥ 0}’s satisfies the Fokker–Planck equation :

∂µx(t)

∂t
=
∑

y∈E

µy(t)Qyx, t > 0, x ∈ E.

Proof The Kolmogorov backward equation follows by differentiating Pxy(t),
exploiting the semigroup property in the form

P (t+ h) = P (h)P (t).

The equation for u then follows from the equation just obtained by multi-
plying it on the right by the column vector {gx}.

The forward equation is obtained by differentiating, starting with the
identity :

P (t+ h) = P (t)P (h).

The Fokker–Planck equation then follows by multiplying on the left by the
row vector {µ(0)}. �

Remark 7.2.3. Let us explain the terminology “forward equation, backward
equation”.The backward equation is an equation for the function (t, x) →
Pxy(t), where y ∈ E is fixed. The variables are t and the “backward” variable
x. x is the position at the initial time, it is the position in the past. In
contrast, the forward equation is an equation for the function (t, y) → Pxy(t),
with x ∈ E fixed. The variable y denotes the position of the process at time
t, it is the position at the present time.

Consider now the backward equation for the quantity u(t, x) =
IE[g(Xt)|X0 = x]. Fix T > 0, and define for 0 ≤ t ≤ T , v(t, x) =
u(T − t, x) = IE[g(XT )|Xt = x]. v satisfies the equation





∂v

∂t
(t, x) +

∑

y∈E

Qxyu(t, y) = 0, t > 0, x ∈ E;

v(T, x) = g(x), x ∈ E.
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The equation for v is a backward equation in the sense that it is solved in
the backward direction of time, from t = T to t = 0. Note that in the non–
homogeneous case, where the infinitesimal generator Q depends upon t, the
quantity v(t, x) = IE[g(XT )|Xt = x] solves that same equation, while we no
longer have an equation for u.

The proof of the Corollary is not rigorous in the case where E is count-
able, since it implies interchanging a derivation and an infinite sum. The
backward Kolmogorov equation will be established in the general case in the
next section.

7.3 The strong Markov property

The notion of a stopping time S and the associated σ–field FX
S are defined

as in section 6.3, replacing {Nt; t ≥ 0} by {Xt; t ≥ 0}.

Theorem 7.3.1. Let S be a stopping time of the jump Markov process
{Xt; t ≥ 0}. Conditionally upon {S <∞} and {XS = x}, {XS+t, t ≥ 0} is
independent of FX

S , and its law is that of {Xt; t ≥ 0} given that X0 = x.

Proof It suffices to prove the theorem in the case of a constant stopping time
S ≡ s. The general case then follows as for the Poisson process (see the proof
of Proposition 6.3.2). Let 0 ≤ s1 < s2 < · · · < sk < s; 0 < t1 < t2 < · · · < tℓ;
x, x1, . . . , xz, y1, . . . , yℓ ∈ S,

IP(Xs+t1 = y1, . . . , Xs+tℓ = yℓ|Xs1 = x1, . . . , Xsk
= xk, Xs = x)

=
IP(Xs1 = x1, . . . , Xsk

= xk, Xs = x,Xs+t1 = y1, . . . , Xs+tℓ = yℓ)

IP(Xs1 = x1, . . . , Xsk
= xk, Xs = x)

= Pxy1(t1)Py1y2(t2 − t1) × · · · × Pyℓ−1yℓ
(tℓ − tℓ−1)

= IP(Xt1 = y1, . . . , Xtℓ = yℓ|X0 = x)

�

We now establish the backward Kolmogorov equation in the general case.

Theorem 7.3.2. For all x, y ∈ E, the function t → Pxy(t) is differentiable,
and

d

dt
Pxy(t) = (QP )xy(t).
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Proof Define for all n ∈ IN the conditional law of (Zn, Tn), given that
X0 = Z0 = x :

Rn(x; y, B) = IP(Zn = y, Tn ∈ B|Z0 = x), B Borel subset of IR+.

Note that

R0(x; y, B) =

{
1, if x = y, 0 ∈ B;

0, otherwise.

and it follows from Theorem 7.2.1 that

R1(x; y, B) =




Qxy

∫

B

e−qxtdt, if x 6= y;

0, if x = y.

The strong Markov property at time Tm implies that

IP(Zm+n = z, Tm+n ∈ B|FX
Tm

) = Rn(XTm
; z, B − Tm),

where we have used the notation

B − t = {s ∈ IR+; s+ t ∈ B}

Hence

IP(Zm+n = z, Tm+n ∈ B|X0 = x) = IE[Rn(Zm; z, B − Tm)|X0 = x]

=
∑

y∈E

∫

IR+

Rm(x; y; dt)Rn(y; z, B − t),

In other words,

Rm+n(x; z, B) =
∑

y∈E

∫

B

∫

R+

Rm(x; y, dt)Rn(y; z, du− t),

hence also

Rm+n(x; z, du) =
∑

y

∫ u

0

Rm(x; y, dt)Rn(y; z, du− t),

where the measure Rn(y; z, du− t) is defined by
∫

IR+

Rn(y; z, du− t)f(u) =

∫

IR+

Rn(y; z, du)f(t+ u).
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Clearly the {Rn, n ≥ 1}’s are completely determined by R1 and this equation.
Note that

Pxy(s) =
∑

m≥0

IP(Zm = y, Tm ≤ s < Tm+1|Z0 = x)

=
∑

m≥0

P (Zm = y, Tm ≤ s, Tm+1 − Tm > s− Tm|Z0 = x)

=
∑

m≥0

IE[IP(Tm+1 − Tm > s− Tm|Zm, Tm)1{Zm=y,Tm≤s}|Z0 = x]

=
∑

m≥0

IE[e−qZm(s−Tm)1{Zm=y,Tm≤s}|Z0 = x]

=
∑

m≥0

∫ s

0

e−qy(s−t)Rm(x; y, dt),

where we have used the strong Markov property at time Tm for the third
equality.

Hence from the above equation

Pxy(s) = δxye
−qxs +

∑

m≥1

∫ s

0

e−qy(s−t)Rm(x; y, dt)

Pxy(s) = δxye
−qxs +

∑

m≥0,z∈E

∫ s

0

e−qy(s−t)

∫ t

0

R1(x; z, du)Rm(z; y, dt− u),

or equivalently

Pxy(t) = δxye
−qxt +

∑

z∈E

∫ t

0

R1(x; z, ds)Pzy(t− s)

eqxtPxy(t) = δxy +

∫ t

0

eqxs
∑

z 6=x

QxzPzy(s)ds.

Hence the function t→ Pxy(t) is differentiable, and

d

dt
Pxy(t) =

∑

z 6=x

QxzPzy(t) − qxPxy(t)

=
∑

z

QxzPzy(t).
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�

The above argument shows that

IP(Z1 = y, T1 ∈ B,Z2 = z, T2 − T1 ∈ C|Z0 = x)

=

∫

B

∫

C

R1(x, y, dt)R1(y, z, du)

This formula generalizes to the law of ((Z1, T1), . . . , (Zn, Tn)). One could
deduce the Markov property of the corresponding process {Xt, t ≥ 0} from
that joint law.

Remark 7.3.3. If we allow an arbitrary generator Q, one can always define
R1, and hence the law of the (Zn, Tn)’s. But that sequence {Tn} does not
necessarily satisfy the non–explosion condition (7.3), i. e. the corresponding
process {Xt} need not be defined for all t ≥ 0. In the next section we shall
give sufficient conditions on Q for the no explosion to hold.

7.4 Embedded Markov chain

Let {Xt; t ≥ 0} be a jump Markov process, whose jump times T1, T2, . . . ,
Tn, . . . satisfy the non–explosion condition (7.3). The sequence {Zn;n ∈ IN}
defined by

Zn = XTn
(with T0 = 0)

is a discrete time Markov chain (this is a consequence of the strong Markov
property of {Xt}), called the “embedded chain”, which has the property that
Zn+1 6= Zn a. s., ∀n ≥ 0. Its transition matrix P is easily computed in terms
of the infinitesimal generator Q of {Xt} :

Pxy =

{
(−Qxx)

−1Qxy, if y 6= x;

0, if y = x.

Define, for n ≥ 1,

Sn = qZn−1(Tn − Tn−1) (where qx = −Qxx),

and for t ≥ 0,

Nt = sup{n;

n∑

k=1

Sk ≤ t}.
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Then {Nt; t ≥ 0} is a Poisson process with intensity 1 (this follows from the
strong Markov property of {Xt}, and the fact that if U ≃ exponential (λ),
then λU ≃ exponential (1)).

Now let Q be an infinitesimal generator, i. e. a matrix indexed by E×E,
such that for all x ∈ E,

Qxy ≥ 0, y 6= x; Qxx = −
∑

y 6=x

Qxy < 0.

We let qx = −Qxx, and we define the transition matrix P by

Pxy =

{
Qxy

qx
, if y 6= x;

0, if y = x,
(7.4)

with the convention that Pxy = 0 ∀y 6= x and Pxx = 1, if Qxx = 0. To any
initial condition x ∈ E, we associate the Markov chain {Zn, n ≥ 0} with the
transition matrix P . Now let {Nt; t ≥ 0} be a Poisson process with intensity
1, independent of the chain {Zn; n ∈ IN}. Denote by 0 = T0 < T1 < T2 < · · ·
the times of the jumps of the Poisson process, and define for n ≥ 1,

Sn =
Tn − Tn−1

q(Zn−1)
,

T ′
n = S1 + . . .+ Sn.

If the non–explosion condition (7.3) is satisfied by the sequence {T ′
n}, then

Xt
def
=
∑

n≥0

Zn1[T ′
n,T ′

n+1[(t), t ≥ 0 (7.5)

is a jump Markov process with the infinitesimal generator Q.
It remains to answer the question : given an infinitesimal generator Q,

when does the associated sequence of stopping times {T ′
n, n ≥ 0} satisfy the

non–explosion condition, i. e. when does (7.5) define Xt for all t ≥ 0 ? Let
us establish

Proposition 7.4.1. The non–explosion condition (7.3) is satisfied if and
only if ∑

n≥0

q−1
Zn

= +∞ a. s. (7.6)
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Let us first state

Corollary 7.4.2. A sufficient condition for the infinitesimal generator Q to
be the infinitesimal generator of a Markov process which satisfies condition
(7.3) is that one of the two following conditions holds :

1. supx∈E qx <∞.

2. The Markov chain {Zn} with the transition matrix P defined by (7.4)
is recurrent.

It is clear that each of the two conditions in Corollary implies (7.6). The
Proposition follows from the following Lemma, if we let

An = Tn+1 − Tn, Bn =
1

qZn

; n ≥ 0.

Lemma 7.4.3. Let {An, n ≥ 1} and {Bn, n ≥ 1} be two mutually indepen-
dent sequences of IR∗

+–valued r. v.’s, the sequence {An} being i. i. d., the
common law being the exponential distribution with parameter 1. Then the
following two statements are equivalent

1.
∑∞

n=1AnBn = +∞ a. s.

2.
∑∞

n=1Bn = +∞ a. s.

Proof Since the two sequences are mutually independent, the Lemma will
follow from the fact that for any sequence {bn, n ≥ 1} of strictly positive
real numbers,

∞∑

n=1

Anbn = +∞ a. s. ⇐⇒
∞∑

n=1

bn = +∞. (7.7)

If
∑

n bn <∞, then IE
∑

nAnbn =
∑

n bn <∞, and a fortiori
∑

nAnbn <∞
a. s. It remains to prove that if

∑
n bn = +∞, then

Λn :=
n∑

k=1

Akbk → +∞ a. s., as n→ ∞.

In the case where there is a subsequence nj such that bnj
→ +∞, clearly∑

nAnbn ≥ ∑
j Anj

bnj
= +∞, since the Anj

’s being i. i. d. exponential r.
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v.’s, infinitely many of them is greater than 1. It thus remains to consider
the case where 0 ≤ bn ≤ C and

∑
n bn = +∞. In this case for all M > 0, if

n is big enough such that IEΛn > 2M , then

IP(Λn ≤M) ≤ IP

(
|Λn − IEΛn| ≥

IEΛn

2

)

≤ 4
V ar(Λn)

(IEΛn)2
= 4

∑n
1 b

2
k

(
∑n

1 bk)
2

≤ 4C∑n
1 bk

→ 0,

hence Λn → +∞ in probability, and also a. s. since the sequence is monotone.
�

Remark 7.4.4. In the next chapter, we shall specify jump Markov processes
by describing their infinitesimal generator Q. The reader can check that in
each of the examples considered, one (usually the first) of the two sufficient
conditions of the Corollary 7.4.2 is satisfied.

7.5 Recurrent and transient states

In the sequel as in the discrete time case we shall denote by IPx the conditional
law of {Xt, t ≥ 0}, given that X0 = x. The equivalence classes of the jump
Markov process {Xt; t ≥ 0} are those of the embedded chain. Note that as
soon as {Xt; t ≥ 0} is irreducible,

Pxy(t) > 0, ∀x, y ∈ E, t > 0. (7.8)

Indeed, for all x, y ∈ E, there exists n ≥ 1 and x0 = x, x1, . . . , xn−1, xn = y
such that Qxk−1xk

> 0, 1 ≤ k ≤ n, and it follows from the property of the
exponential law that Pxy(t) ≥ Pxx1(t/n) × · · · × Pxn−1y(t/n) > 0.

A state x ∈ E is called recurrent (resp. transient) for {Xt; t ≥ 0} if it
is recurrent (resp. transient) for the embedded chain. Then in particular in
the irreducible case, either all states are recurrent, or all are transient.

As in the case of discrete time Markov chains, we have

Theorem 7.5.1. Let {Xt; t ≥ 0} be an irreducible and recurrent jump
Markov process. Then there exists a strictly positive invariant measure π
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on E which solves the equation πQ = 0, and is unique up to a multiplicative
constant. Moreover such a measure is invariant for the semigroup {P (t)},
in the sense that πP (t) = π, ∀t ≥ 0.

Proof We note that if Q is the infinitesimal generator of the jump Markov
process {Xt} and P is the transition matrix of its embedded chain, then

Q = q(P − I),

where q is the diagonal matrix defined by

qxy = δxyqx, x, y ∈ E.

Note that the assumption that the process is irreducible implies that qx >
0, ∀x ∈ E. Hence we can multiply by q−1. Our assumption is that the
embedded chain is irreducible and recurrent. Hence the measure γx defined
in the proof of Theorem 2.5.3 is strictly positive, and it is the unique (up
to a multiplicative constant) solution of the equation γxP = γx. Hence
the strictly positive measure µx = q−1γx satisfies µxQ = 0, and any other
solution µ′ of the same equation is such that qµ′ is P–invariant, hence there
exists a constant c such that µ′ = cµx. It remains to check that µx is invariant
by P (t), ∀t ≥ 0.

Since γx
y is the expectation of the number of visits to state y by the

embedded chain during an excursion starting from x, q−1
y is the expectation

of the time spent at state y by the process {Xt} at each of the visits to y of
the embedded chain, and the embedded chain is independent from the times
spent at each state by the jump Markov process,

µx
y =

γx
y

qy
= IEx

∫ Rx

0

1{Xs=y}ds

= IEx

∫ ∞

0

1{Xs=y,s<Rx}ds,

where Rx = inf{t > T1; Xt = x} denotes the time of the first return at x.
But if t > 0, by the strong Markov property,

IEx

∫ t

0

1{Xs=y}ds = IEx

∫ Rx+t

Rx

1{Xs=y}ds.
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Hence

µx
y = IEx

∫ Rx+t

t

1{Xs=y}ds

= IEx

∫ Rx

0

1{Xt+s=y}ds

=

∫ ∞

0

IPx(Xt+s = y, s < Rx)ds

=

∫ ∞

0

∑

z

IPx(Xs = z, s < Rx)Pzy(t)ds

=
∑

z

µx
zPzy(t).

�

7.6 The irreducible recurrent case

In order to distinguish between the positive and null recurrent cases (this
is an open question only if |E| = +∞), it is not sufficient to consider the
property of the embedded chain, as we shall now see. Define again the time
of the first return at state x as :

Rx = inf{t ≥ T1;Xt = x}
Definition 7.6.1. The state x is said to be positive recurrent if it is recurrent
and IEx(Rx) <∞, null recurrent if it is recurrent and IEx(Rx) = +∞.

Again in the irreducible recurrent case, either all states are null recurrent,
or they are all positive recurrent, and one says accordingly that the process
{Xt} is null recurrent or positive recurrent. We now prove that the positive
recurrent case is equivalent to the existence of a unique invariant probability
distribution.

Theorem 7.6.2. Let {Xt, t ≥ 0} be an irreducible jump Markov process. A
state x ∈ E is positive recurrent if and only if all states are positive recurrent,
if and only if there exists a unique invariant probability distribution π, and
in that case

IExRx =
1

πxqx
, ∀x ∈ E.
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Proof If state x is positive recurrent for {Xt}, then x is recurrent for the
embedded chain {Zn, n ≥ 0}. Denote by γx

y the mean number of visits to
state y during an excursion of {Zn} starting from x. Since the time spent at
y by {Xt} at each visit of {Zn} is independent of the embedded chain, and
has expectation q−1

y ,

IExRx =
∑

y∈E

γx
y

qy
.

But we saw in the proof of Theorem 7.5.1 that the measure µx defined by

µx
y =

γx
y

qy

satisfies µxQ = 0. The condition that x is positive recurrent therefore implies
the existence of an invariant measure with finite mass, hence of an invariant
probability distribution, whose uniqueness follows from Theorem 7.5.1. Sup-
pose now that there exists a probability distribution π solution of πQ = 0.
Then the measure qπ is P–invariant, and for all x, y ∈ E,

qyπy

qxπx

is the mean number of visits to state y during an excursion of {Zn} starting
from x. Hence

IExRx =
∑

y∈E

πy

qxπx

<∞, ∀x ∈ E,

and any state x ∈ E is positive recurrent. �

Remark 7.6.3. An invariant measure π of the jump Marov process {Xt}
is a solution of equation πQ = 0. An invariant mesure µ of the embedded
chain is a solution of equation µ(P − I) = 0. Hence π is invariant for {Xt}
if and only if µ = πq is invariant for the embedded chain. It is then easy to
choose q (which specifies the expectations of the lengths of the visits of {Xt}
to the various states) in such a way that π has a finite mass, while µ has
an infinite mass (hence {Xt} is positive recurrent while the embedded chain
is null recurrent), or vice–versa. See the last question of exercise 7.11.8 and
the explanations at the end of the correction.

We now restrict ourselves to the positive recurrent case, and establish
an ergodic theorem, and the convergence transition probabilities towards the
invariant probability.
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Theorem 7.6.4. Let {Xt, t ≥ 0} be an E–valued irreducible, positive recur-
rent jump Markov process. Let Q be its infinitesimal generator, and π the
unique invariant probability distribution. Then if f : E → IR is bounded,

1

t

∫ t

0

f(Xs)ds→
∑

x∈E

f(x)πx

a. s. as t→ ∞.

Proof It suffices to consider the case f(y) = 1{y=x} and to work under IPx

(see the proof of Theorem 2.5.7). As in the discrete time case, the successive
excursions starting from x are i. i. d.. Let Nx(t) denote the number of visits
to state x between time 0 and time t, and let T x

k denote the time spent at
state x by the process {Xt} during its k–th visit. Since the Nx(t)–th visit to
state x need not be terminated at time t, we have

1

t

Nx(t)−1∑

k=1

T x
k <

1

t

∫ t

0

1{Xs=x}ds ≤
1

t

Nx(t)∑

k=1

T x
k .

But clearly T x
Nx(t)/t→ 0 a. s. as t→ ∞, and

1

t

Nx(t)∑

k=1

T x
k =

Nx(t)

t
× 1

Nx(t)

Nx(t)∑

k=1

T x
k

→ 1

IExRx
× 1

qx
= πx.

Indeed, since the sequence {T x
k , k ≥ 1} is i. i. d., and since from recurrence

Nx(t) → ∞ a. s. as t→ ∞,

1

Nx(t)

Nx(t)∑

k=1

T x
k → IEx(T

x
1 ) =

1

qx
,

and the proof of the fact that

t

Nx(t)
→ IEx(Rx)

follows the same argument as in the proof of Theorem 2.5.7. �
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In the continuous time case, the convergence of the probability distribu-
tion ofXt towards the invariant distribution as t→ ∞ holds in the irreducible
and positive recurrent case, without any further restriction.

Theorem 7.6.5. Let {Xt, t ≥ 0} be an E–valued irreducible, positive recur-
rent jump Markov process, and π its unique invariant probability distribution,
solving the stationary Fokker–Planck equation πQ = 0. Then for any proba-
bility distribution µ on E and x ∈ E, (µP )x(t) → πx as t→ ∞.

Proof One could imitate the proof of Theorem 2.6.4, but instead we shall
use that result.

If we sample the process {Xt} by letting Yn = Xnh, n = 0, 1, . . ., where
h > 0 is arbitrary, then clearly {Yn, n ∈ IN} is an irreducible and aperiodic
(see (7.8)) Markov chain, whose unique invariant probability distribution,
which does not depend upon h, is π. Let us assume for a moment

Lemma 7.6.6. For all t, h > 0, x, y ∈ E,

|Pxy(t+ h) − Pxy(t)| ≤ 1 − e−qxh.

Fix ε > 0 and x, y ∈ E. We first choose h > 0 sufficiently small, in such
a way that

1 − e−qxs ≤ ε/2, if 0 ≤ s ≤ h,

then we choose N large enough such that

|Pxy(nh) − πy| ≤ ε/2, if n ≥ N.

We conclude that if t ≥ Nh, denoting by n the integer such that nh ≤ t <
(n+ 1)h,

|Pxy(t) − πy| ≤ |Pxy(t) − Pxy(nh)| + |Pxy(nh) − πh| ≤ ε.

The Theorem follows easily from this result, if we decompose the set of
starting points into a finite set which supports the mass of µ except for δ,
and its complementary. �

It remains to proceed to
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Proof of Lemma 7.6.6 It suffices to note that

|Pxy(t+ h) − Pxy(t)| = |
∑

z

Pxz(h)Pzy(t) − Pxy(t)|

=

∣∣∣∣∣
∑

z 6=x

Pxz(h)Pzy(t) − (1 − Pxx(h))Pxy(t)

∣∣∣∣∣

=

∣∣∣∣∣
∑

z 6=x

Pxz(h)(Pzy(t) − Pxy(t))

∣∣∣∣∣

≤
∑

z 6=x

Pxz(h)

= 1 − Pxx(h).

Remark 7.6.7. The convergence in Theorem 7.6.5 is in the sense of weak
convergence of probability distributions on E. This follows from the fact
that as t → ∞, (µP )x(t) → πx for all x ∈ E, hence also for any finite
subset F ⊂ E,

∑
x∈F (µP )x(t) →

∑
x∈F πx. Since moreover µP (t) and π are

probability distributions on E, it is not hard to show that for any bounded
f : E → IR,

∑

x

(µP )x(t)f(x) →
∑

x

πxf(x), as t→ ∞.

Note that if we choose the invariant probability distribution π as the
law of X0, then the process {Xt; t ≥ 0} is stationary in the sense that
for all n ∈ IN, 0 ≤ t1 < t2 < · · · < tn, the law of the random vector
(Xt1+s, Xt2+s, . . . , Xtn+s) does not depend upon s ≥ 0.

Remark 7.6.8. The equation πQ = 0 reads ∀x ∈ E,

∑

y 6=x

πyQyx = πx

∑

y 6=x

Qxy.

The left hand side of this equality is the mean flux entering state x at equi-
librium, coming from the various other states, and the right hand side is the
mean flux leaving x at equilibrium, towards the other states. The equation
πQ = 0 says that at equilibrium, the mean numbers of departures and arrivals
per unit of time are equal.
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We also have a generalization of the central limit theorem. The next
result is a special case of Theorem 2.1 in [4].

Theorem 7.6.9. Suppose that the jump Markov process {Xt; t ≥ 0} is
irreducible, and that it has an invariant probability distribution π. Let
f ∈ L2(E, π) be of the type f = Qg, where g ∈ L2(E, π) [this implies that

< π, f >=
∑

x∈E

πxfx =
∑

x,y∈E

πxQxygy = 0].

Let
C(f) := −2

∑

x∈E

fxgxπx,

which we suppose not to be equal to zero (consequently C(f) > 0). Then

1√
tC(f)

∫ t

0

f(Xs)ds→ Z,

in law, as t→ ∞, where Z is a centered Gaussian r. v. with unit variance.

We also have the convergence of

{
1√
uC(f)

∫ tu

0

f(Xs)ds, t ≥ 0

}
towards

a Brownian motion {Bt, t ≥ 0}, as u → ∞.

7.7 Reversibility

Given a jump Markov process {Xt; t ≥ 0}, and T > 0, {X̂T
t = XT−t, 0 ≤

t ≤ T} is also a Markov process. If the law of X0 is an invariant probability
distribution π, then X̂T is time–homogeneous. Denote by Q̂ its infinitesimal
generator. We have

Theorem 7.7.1. Q̂ = Q if and only if the detailed balance equation

πxQxy = πyQyx, ∀x, y ∈ E,

is satisfied. In this case, we say that the process {Xt} is reversible (with
respect to the probability distribution π, which then is invariant).

Proof The same argument as in the discrete time case implies that for all
t > 0, x, y ∈ E,

P̂xy(t) =
πy

πx
Pyx(t),
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from which follows, by taking the t–derivative at t = 0

Q̂xy =
πy

πx
Qyx.

The result is now obvious. �

Remark 7.7.2. As in the case of discrete time Markov chains, a jump
Markov process which is irreducible and positive recurrent need not be re-
versible. Again, a counter–example is provided by a Q–matrix such that for
a given pair x 6= y, Qxy = 0 6= Qyx, which does not contradict irreductibility
as long as |E| ≥ 3.

Remark 7.7.3. As in the case of discrete time Markov chains, to find a
generator Q such that a given distribution π is Q–invariant is not difficult.
The easiest approach is to look for Q such that the associated process is
reversible with respect to π, hence to look for an infinitesimal generator Q
such that the quantity πxQxy be symmetric in x, y.

To find the invariant probability distribution, given an irreducible gener-
ator, is in general more difficult. One can try to solve the equation

πxQxy = πyQyx, ∀x, y ∈ E,

but this equation has a solution only in the reversible case. In the non–
reversible case, one should solve the stationary Fokker–Planck equation πQ =
0. If one can guess π up to a multiplicative constant, then one can take
advantage of the following result

Theorem 7.7.4. Given a probability distribution π on E, define for x, y ∈ E

Q̂xy =
πy

πx
Qyx.

If ∑

y 6=x

Q̂xy =
∑

y 6=x

Qxy,

then π is an invariant probability distribution, and Q̂ is the generator of the
time–reversed process.
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Proof Using the first and then the second identity from the statement, we
deduce

∑

y 6=x

πyQyx = πx

∑

y 6=x

Q̂xy

= πx

∑

y 6=x

Qxy

= −πxQxx,

which implies that πQ = 0. The second part of the statement is then a
consequence of the formula which appears in the proof of Theorem 7.7.1. �

Note that if we can guess the generator of the time reversed process, we
can deduce the invariant probability distribution up to the normalization
constant.

7.8 Markov models of evolution and Phy-

logeny

We shall define Markov processes on trees, which is a model frequently used in
phylogeny. We shall consider rooted and unrooted binary trees. We present
in figure 7.2 a rooted binary tree (the root is at the top and the leaves are at
the bottom !), and in figure 7.3 an unrooted binary tree.

Markov process on a rooted binary tree The process starts from the
root (which plays the role of the initial time 0) in a certain state, say x. It
evolves up to the first node which is located at distance r from the root, as
a continuous time jump Markov process during a time interval of length r.
Denote by y the state of the process at that node. On each branch which
starts from that node a jump Markov process runs, starting from y, in such
a way that the processes on the two branches are independent, up to the
next node, and so on down to the leaves of the tree. Note that we shall only
consider irreducible processes with values in a finite state space, hence the
process will be positive recurrent, and we shall choose the invariant proba-
bility distribution as the law at the root. We can then, without changing the
law of the process, suppress the branch between the root and the first node.
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Figure 7.2: Rooted binary tree

Markov process on an unrooted tree Let us suppress the branch be-
tween the root and the first node. This means that the process starts from
the root (located at the first node) under the invariant probability distribu-
tion, and evolves independently on the two branches, until it encouters the
next node, etc... Consider figure 7.3. The root is no longer indicated on the
central branch. One can still imagine that it is there, and consider that two
processes start from that point, one in each direction, towards the two nodes
located at the two ends of the central branch. Suppose now that we move
the root on the central branch, either to the right or to the left. It is easy to
convince oneself that the law of the resulting process on the tree is not mod-
ified, provided the process is reversible. Indeed the difference between the
two constructions with the root at two different points on the central branch
is that a portion of that branch is run in the two different directions by the
two versions of the process. In the reversible case, the root can equivalently
be located at either end of the central branch, or even at any node of the
tree, or at any point of any branch of the tree. This means that one can
define a jump Markov process on an unrooted tree, provided the dynamics
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Figure 7.3: The unrooted version of the same tree

is time reversible, by locating the starting point anywhere on the tree.

7.8.1 Models of evolution

In order to compute the likelihood of a given tree as a function of the data,
we need to choose a model of evolution, which tells us how the data have
been “manufactured” by evolution along the branches of the tree, for each
site of the DNA. We shall describe several Markovian models of evolution of
the DNA, by describing the transition rate from each nucleotide to any other
one. This means that we shall prescribe the matrix Q in the form

Q =

a c g t

a · · · ·
c · · · ·
g · · · ·
t · · · ·
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The Jukes–Cantor model (1969) This is the simplest one, which as-
sumes that all mutations happen at the same rate, i. e. with a given α > 0,

Q =




−3α α α α
α −3α α α
α α −3α α
α α α −3α


 .

The associated invariant probability distribution is uniform over the 4 nu-
cleotides. The transition probabilities are easy to compute. P (t) =




0, 25 + 0, 75e−4αt 0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt

0, 25 − 0, 25e−4αt 0, 25 + 0, 75e−4αt 0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt

0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt 0, 25 + 0, 75e−4αt 0, 25 − 0, 25e−4αt

0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt 0, 25 − 0, 25e−4αt 0, 25 + 0, 75e−4αt


 .

The Kimura models (1980 et 1981) Among the four nucleotides, cy-
tosine and thymine are pyrimidines, while adenine and guanine are purines.
It is reasonable to assume that transitions (replacement of a purine by the
other, or of a pyrimidine by the other) are more frequent than transversions
(replacement of a purine by a pyrimidine or vice versa). One then is led to
assume that the sustitution rates between a and g or between c and t are
greater than all others, hence the model (with β > α)

Q =




−2α− β α β α
α −2α− β α β
β α −2α− β α
α β α −2α− β


 .

The invariant probability distribution is again uniform. The transition prob-
abilities are given by

Pxx(t) = 0, 25 + 0, 25e−4βt + 0, 5e−2(α+β)t,

Pxy(t) = 0, 25 + 0, 25e−4βt − 0, 5e−2(α+β)t,

if x 6= y are either both purines or both pyrimidines,

Pxy(t) = 0, 5 − 0, 5e−4βt

in the other case.
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Kimura proposed a second model, of the form

Q =




−α− β − γ α β γ
α −α − β − γ γ β
β γ −α− β − γ α
γ β α −α− β − γ


 ,

for which the invariant probability distribution is still uniform.

The Felsenstein model Given a probability distribution π on E =
{a, c, g, t}, and a positive number u, Felsenstein has proposed the model

Q =




u(πa − 1) uπc uπg uπt
uπa u(πc − 1) uπg uπt
uπa uπc u(πg − 1) uπt
uπa uπc uπg u(πt − 1)


 .

Note that clearly for x 6= y,

πxQxy = πyQyx,

hence π is the invariant probability distribution, and the chain is reversible.
The matrix Q has two eigenvalues : −u, whose associated eigenspace is
composed of those vectors which are orthogonal to π in IR4, and 0, whose
associated eigenspace is composed of those vectors which are colinear to
(1, 1, 1, 1). One can then show that

Pxy(t) =
(
etQ
)

xy
= e−utδxy + (1 − e−ut)πy.

In the particular case where π = (1/4, 1/4, 1/4, 1/4), this model reduces to
the Jukes–Cantor model.

The Hasegawa, Kishino, Yano model (1985) This is a generalisation
of both the first Kimura model and Felsenstein’s. Given again π an arbitrary
probability distribution on E, and u, v two positive numbers, let

Q =




−uπg − vπ2 vπc uπg vπt
vπa −uπt − vπ1 vπg uπt
uπa vπc −uπa − vπ2 vπt
vπa uπc vπg −uπc − vπ1


 ,
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where π1 = πa + πg, π2 = πc + πt. Again π is the invariant probability
distribution. Again it is possible to deduce an explicit expression for P (t).

There are good reasons to assume that πc = πg and πa = πt, since
DNA is a molecule with two strands, made of pairs c : g et a : t. The above
identities are a consequence of the effect of this constraint on evolution. With
this restriction, the HKY model becomes a three–parameter model, namely
u, v and θ = πc + πg, which has been proposed by Tamura in 1992. It takes
the form

Q =
1

2




−uθ − v vθ uθ v(1 − θ)
v(1 − θ) −u(1 − θ) − v vθ u(1 − θ)
u(1 − θ) vθ −u(1 − θ) − v v(1 − θ)
v(1 − θ) uθ vθ −uθ − v


 .

The general reversible model Since |E| is very small, one can try to use
the most general model. Tavare has proposed a parametrization of the most
general model, of the form

Q =




−uW uAπc uBπg uCπt
uDπa −uX uEπg uFπt
uGπa uHπc −uY uIπt
uJπa uKπc uLπg −uZ


 ,

where u is a positive number, π the invariant probability distribution,

W = Aπc +Bπg + Cπt

X = Dπa + Eπg + Fπt

Y = Gπa +Hπg + Iπt

Z = Jπa +Kπc + Lπg,

and the parameters A,B, . . . , L are to be chosen. As we shall see below, it
is useful for the computation of the likelihood that the model be reversible.
The constraint of reversibility imposes six relations, namely

A = D, B = G, C = J, E = H, F = K, I = L.

There remain six parameters to choose, for example A, B, C, E, F and I.
There are moreover 3 free parameters describing the invariant probability
distribution. Thus 9 parameters need to be chosen.
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Codon models A codon is a triplet of nucleotides, which codes for an
amino acid. Among the 43 = 64 possible codons, 3 are possible STOP codons,
the 61 others code for the 20 amino acids. Note that the genetic code (the
translation rule from codons to amino–acids) is degenerate, in the sense that
several distinct codons code for the same amino–acid. Hence among the
possible codon mutations, one must distinguish the synonymous mutations
(which transform a codon into another one which codes for the same amino
acid) from the non–synonymous mutations. The latter are either slowed
down or favoured by selection, while the former accumulate at the rate of the
mutations. In general, the ratio synonymous mutations / non–synonymous
mutations is greater than 1.

Goldman and Yang proposed in 1994 a model with 63 parameters, namely
60 parameters for the frequencies πxyz, the 3 remaining for the transition rate
α, the transversion rate β, and the ratio

ω = non–synonymous mutation rate / synonymous mutation rate.

The GY model can be written

Q(x1y1z1)(x2y2z2) =





0 if 1 and 2 differ by more than one base,

απx2y2z2 for a synonymous transition,

βπx2y2z2 for a synonymous transversion,

ωαπx2y2z2 for a non–synonymous transition,

ωβπx2y2z2 for a non–synonymous transversion.

Note that among the 63 parameters to be estimated, the 60 parameters which
determine the invariant probability distribution π are usually estimated not
by a maximum likelihood procedure, but from the empirical frequencies of
the various codons present in our data. Another possibility is to estimate
πxyz by the product π1

xπ
2
yπ

3
z of the frequencies of the various nucleotides at

positions 1, 2 and 3 of the codons.

Nonhomogeneous models An implicit assumption in all the Markovian
models which we have considered so far is their stationarity. The infinitesimal
generator is the same on all the branches of the phylogenetic tree. Hence the
invariant probability distribution is the same on the various branches, which
implies that the various sequences must have roughly the same composition
in bases. Some data contradict this assumption. One can then relax the
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homogeneity assumption of the Markov process on the whole tree. For ex-
ample, Galtier and Gouy adopt the Tamura model, with parameters α and
β which are constant on the tree, and a parameter θ (which regulates the
proportion of g + c) which is allowed to vary from one branch to another.

Dependence or independence between sites Almost all Markovian
models assume that the mutations happen at each site independently from
the others. This assumption is of course not reasonable, but it makes the
computations (in particular of the likelihood, see below) feasible.

There is so far very few work on Markovian models where the evolutions
at the various sites are correlated.

Consider a model of the type

Qxy = sxyπy,

which is a reversible model, provided sxy = syx. Pollock, Taylor and Gold-
man model the evolution of a pair of proteins by choosing an infinitesimal
generator of the form

Qxx′,yx′ = sxyπyx′ ,

Qxx′,xy′ = sx′y′πxy′,

Qxx′,yy′ = 0, if x 6= y and x′ 6= y′,

where π is an invariant probability distribution on the set of pairs of proteins.

Variation of the evolution rate between the branches Given an in-
finitesimal generator Q, for all u > 0, uQ is also an infinitesimal generator.
Suppose that Q is constant on the tree. If u is constant as well, since the
leaves (the species living today) all are at the same distance from the common
ancestor, located at the root of the tree (distances are measured in elapsed
time), this means that we are making the assumption of a “molecular clock”.
Certain sets of data are incompatible with such an assumption. One should
then, in order to use a model which is coherent with such data, allow the
parameter u to take a different value on each branch of the tree. We then
have a new parameter on each branch of the tree, which all together means
a lot of parameters.

Another point of view consists in assuming that the u’s are the values
taken by a stochastic process, which evolves on the tree as a Markov process,
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either in continuous time, or else in discrete time (in which case the pro-
cess is constant on each branch, the transitions taking place at the nodes).
Conditionally upon the values taken by that process, the various nucleotides
evolve as a nonhomogeneous Markov process along the tree. We then are in
a Bayesian framework, for which the “MCMC” algorithm (see sections 3.1
and 7.8.3) makes the requested simulations feasible.

Variation of the evolution rate between sites The most popular model
for the variation of rate between sites is to assume that the rates associated
to the various sites are i.i.d., the common distribution being a gamma dis-
tribution (or a discretized version of the same).

Another approach, due to Felsenstein and Churchill, consists in assuming
that they form a Markov chain along the DNA sequence (which is “hidden”),
taking its values in a set which, for practical reasons, is taken to be of very
small cardinality.

“Covarion” models This is a name for model where the rate of evolution
not only differs from one site to another, but also, at a given site, from one
branch to another branch of the tree. Covarion stands for “COncomitantly
VARIable codON”.

Denote E = {a, c, g, t}, G= the set of all possible values of the rate u.
Galtier considers an independent E×G–valued Markov process at each site.

7.8.2 Likelihood methods in phylogeny

Comparison of the genomes of the various species is at present the main tool
for the reconstruction of phylogenetic trees. Several algorithms exist for the
construction of such trees. We shall now give some comments concerning the
maximum likelihood method.

Note that we can compare either genes (i. e. amino acid sequences) or
DNA sequences. In order to fix ideas, we shall consider DNA sequences,
which we assume to be already aligned.

Computation of the likelihood of a tree Suppose we use the Felsenstein
model. Time t corresponds here to a distance along the tree. Note that the
only parameter of interest is the product u× t. If we modify the lengths of
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the branches of the tree accordingly, we can and shall from now on assume
that u = 1.

We shall consider below only binary trees.
For the remainder of this section, we shall assume that each of the various

sites evolves independently from the others, and that all evolve at the same
rate, this rate being constant along the tree. This assumption is not very
realistic, and several recent works concentrate on the detection of those sites
which evolve faster than the others, possibly only on a portion of the tree.
However, this simplifying assumption is natural for starting the analysis and
constructing a first tree. Another popular assumption would be that the
evolution rates of the various sites are i. i. d. r. v.’s, with a common law
gamma.

The information at our disposal, the data, consists in a set of k aligned
sequences of length m, i. e. for each site s, 1 ≤ s ≤ m, we have k letters
from the alphabet a, c, g, t, one for each leaf of the tree. To each rooted
binary tree T with k leaves, we shall associate its likelihood L(T ), which is
a function of the data. The likelihood L(T ) is a product from s = 1 to m of
the likelihoods associated to each site s :

L(T ) =

m∏

s=1

Ls(T ).

The computation of each factor Ls(T ) takes advantage of the Markov prop-
erty, as we shall now see. Let T denote a rooted tree. We can for example
code as follows the nodes of such a tree, starting from the root, towards the
leaves (see figure 7.4) :

• 0 denotes the root;

• 1, 2 are the “sons” of the root, i. e. the nodes which are directly
connected with the root by one branch;

• 1.1, 1.2 denote the sons of 1; 2.1, 2.2 those of 2;

• and so on up to the leaves.

For each node α ∈ T\{0}, denote by ℓα the length of the branch joining the
“father” of α and α. We associate to α the set Λα of the leaves of the subtree
whose root is α. In particular, Λ0 denotes the set of the leaves of the tree.
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0

1

1.1

1.1.1

1.1.1.1 1.1.1.2

1.1.2

1.1.2.1 1.1.2.2 1.2

2

2.1

2.1.12.1.2

2.2

2.2.1

2.2.1.1 2.2.1.2 2.2.2

Figure 7.4: Rooted binary tree with coded nodes

If α ∈ Λ0, Λα = {α}. For α ∈ T\Λ0, we denote by Γα = {α.1, α.2} the two
“sons” of α.

Let {Xα, α ∈ T} denote the nucleotides at the nodes of the tree. We
assume that they are the values at those nodes of a Markov process on the
tree whose infinitesimal generator is Q. Only the values of {Xα, α ∈ Λ0}
are observed. We denote by xα the observed value of Xα, for α ∈ Λ0. The
likelihood of the tree, based upon the nucleotides at site s, is

Ls(T ) = IPT (∩α∈Λ0{Xα = xα}) .

We shall explain how to compute this quantity, and we shall exhibit how it
depends upon the tree T .

For each α ∈ T , x ∈ E, we define L
(α)
s,x , the conditional likelihood of the

subtree whose α is the root, conditioned upon Xα = x, which we compute
by the following upwards recurrence.
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• For α ∈ Λ0,

L(α)
s,x =

{
1, if x = xα;

0, otherwise.

• In all other cases,

L(α)
s,x =

∑

xα.1,xα.2∈E

Pxxα.1(ℓα.1)L
(α.1)
s,xα.1

× Pxxα.2(ℓα.2)L
(α.2)
s,xα.2

.

This computation eventually specifies the quantities L
(0)
s,x, x ∈ E. Finally

Ls(T ) =
∑

x∈E

πxL
(0)
s,x,

and

L(T ) =

m∏

s=1

Ls(T ).

We could as well have described each Ls(T ) as a sum of 4|T\Λ0| terms. But the
above formulas describe the so–called pruning algorithm, due to Felsenstein,
which should be used in practice.

Maximum likelihood The computation of a global maximum of the like-
lihood over all possible trees is complex. The easiest part is the maximization
over branch lengths. However, it is not clear that the algorithm which is com-
monly used for that sub–problem leads to a global maximum. The idea is to
maximize successively over each branch length, and to iterate as long as the
likelihood increases. We shall now see explicitly how the likelihood depends
upon a particular branch length. It is then easily seen how to maximize the
likelihood with respect to that particular branch length.

We shall assume that the values {Xα, α ∈ T} are the values at the nodes
of the tree of a reversible Markov process. Hence the law of the {Xα}’s does
not depend upon the choice of of a root at any node of the tree (or more
generally anywhere on the tree).

Consider two neighbouring nodes α and β in the tree. Denote by ℓαβ the
length of the branch which connects them. If we put the root anywhere on
that branch,we define as above the quantities L

(α)
s,x and L

(β)
s,y , x, y ∈ E. Note

that the first term is the likelihood of a sub–tree whose root is α, taken as
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a subtree whose root has been displaced. For example in the tree of figure
7.4, if α = 2, β = 2.2, and we locate the root between α and β, the sub–
tree whose root is α contains the nodes 2, 0, 1, 1.1, 1.1.1, 1.1.1.1, 1.1.1.2,
1.1.2, 1.1.2.1, 1.1.2.2, 1.2, 2.1, 2.1.1, 2.1.2, and the sub–tree whose root is β
contains the nodes 2.2.1, 2.2.1.1, 2.2.1.2, 2.2.2.

Then

Ls(T ) =
∑

x,y∈E

πxPxy(ℓαβ)L(α)
s,xL

(β)
s,y

=
∑

x,y∈E

πyPyx(ℓαβ)L(α)
s,xL

(β)
s,y .

This formula makes explicit the dependence of Ls(T ) and L(T ) upon the
length of a given branch, and allows us to compute the maximum of the
likelihood with respect to that branch. The search for that maximum is
rather easy in the case of the model of evolution which we have described
above (on maximizes the logarithm of L(T ), which replaces the product of
the Ls(T )’s by a sum, and thus simplifies the maximization).

Remark 7.8.1. Not all models of evolution are reversible. It is still possible
to give explicitly the dependence of the likelihood with respect to the length
of a given branch, but one has to be careful using the transition probability
of the time–reversed process whenever the displacement of the root makes the
process starting from the new root run along a branch in the direction which
the inverse of the inital one.

7.8.3 The Bayesian approach to phylogeny

Let us go back to the expression for the likelihood. Denote by D the vector
of the observed random variables, and by d the vector of the observed values
(d like “data”), i. e. d contains the various aligned sequences.

We now describe the various parameters upon which the likelihood de-
pends. Among the unknown parameters (which we want to estimate), we
have

• on one hand the shape of the tree, which we shall denote by τ , which
is an unknown in a finite set T (whose cardinal is (2n− 3)!! in the case of a
rooted tree with n leaves, (2n− 5)!! in the case of an unrooted tree – where
we have used the notation k!! = 1 × 3 × 5 × · · · × k for an odd number k),
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• on the other hand the lengths of the various branches, and the infinites-
imal generator Q of the model of evolution (at least the parameters of that
matrix other than the invariant probability disribution). The branch lengths
and the unknown parameters of the matrix Q vary in a subset of an Euclidian
space V ⊂ IRd. We shall denote by λ this set of parameters.

Thus the unknown parameter is the pair θ = (τ, λ), whose value is arbi-
trary in the set Θ = T × V , and the likelihood is the function

L(θ) = IPθ(D = d).

The likelihood of the value θ of the unknown parameter is the probability of
observing the data which we have in our computer, if θ is the true of that
parameter.

In the Bayesian framework, the unknown parameter θ is the realization of
a random variable, that is (τ, λ) is the realization of a random vector (T,Λ).
This point of view forces us to choose an a priori probability distribution,
which is an occasion to incorporate a priori information about the unknown
parameter, which the anti–Bayesians refuse to do, since they claim that the
only information which one should use is that contained in the data.

We shall thus give us an a priori probability distribution for the random
vector (T,Λ), which we will take of the form :

• we specify the law of T , which is a probability distribution on the finite
set T , hence we specify the ατ = IP(T = τ)’s, τ ∈ T ;

• we specify the conditional law of Λ, given T , and we assume that for
all τ ∈ T , the conditional law of Λ, given that T = τ , has a density qτ (λ), in
other words for any Borel measurable function

f : T × V → IR+,

IE[f(T,Λ)] =
∑

τ∈T

∫

V

f(τ, λ)pτ (λ)dλ,

if we use the notation pτ (λ) = ατ × qτ (λ).
In this context, we have a random pair, consisting of both a “parameter”

(T,Λ), and the data D. The law of this pair is specified by
- on the one hand the a priori law of (T,Λ);
- on the other hand the conditional law of the data, given the parameter.
More precisely, in this Bayesian framework, the likelihood is interpreted

as the conditional probability distribution of the data, given the parameters :

L(τ, λ) = IP (D = d|(T,Λ) = (τ, λ)) .



214 CHAPTER 7. JUMP MARKOV PROCESSES

The rule of the game is to compute the a posteriori law of the parameter,
which is the conditional law of the “parameter” (T,Λ), given the data, i. e.
given that D = d. This conditional probability distribution is given by the
famous “Bayes formula”, which in our case specifies the joint law of (T,Λ)
given that D = d in the form

pτ (λ|D = d) =
IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)∑

τ∈T
∫

V
IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)dλ

.

In other words, again if
f : T × V → IR+,

IE [f(T,Λ)|D = d] =

∑
τ∈T

∫
V
f(τ, λ)IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)dλ∑

τ∈T
∫

V
IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)dλ

.

For example, we might want to specify the a posteriori probability distri-
bution of the shape of the tree, i. e. of the r. v. T . It is given by the next
formula : for all τ ∈ T ,

IP (T = τ |D = d) =

∫
V

IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)dλ∑
τ∈T

∫
V

IP (D = d|(T,Λ) = (τ, λ)) pτ (λ)dλ
.

The MCMC algorithm Suppose that we want to compute the last quan-
tity for a small number of values of τ . An explicit computation is hopeless,
because of the size of the data (the number of species which we consider) and
the complexity of the models which we might use. One is thus led to use a
Monte Carlo type of method, using random draws. However, it is not really
possible to simulate under the a posteriori probability distribution of (T,Λ),
given the data. Indeed, in order to identify this probability distribution, it
would be necessary to compute the denominator in the formula above. As
soon as the cardinality of T is huge, this task becomes impossible.

We are exactly in the situation described at the beginning of section 3.1.
Let us recall the Metropolis–Hastings algorithm. Denote by π the a poste-

riori probability distribution. Let Q denote a transition matrix on F (which
has nothing to do with the probability distribution π), whose transitions
are easy to simulate. We choose as transition matrix P the matrix whose
off–diagonal entries read

Pxy = min

(
Qxy,

πy

πx
Qyx

)
,
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and whose diagonal entries are given by

Pxx = 1 −
∑

y 6=x

Pxy,

provided the matrix P thus defined is irreducible, which is the case if for
instance Q is irreducible and satisfies the property : for all x, y, Qxy >
0 ⇔ Qyx > 0. This matrix P is clearly a transition matrix (Pxy ≤ Qxy,
x 6= y implies that Pxx ≥ 0), and π is P–invariant, since the detailed balance
equation

πxPxy = πyPyx, ∀x 6= y

holds. For x, y ∈ F let,

r(x, y) =
Pxy

Qxy

= min

(
1,
πyQyx

πxQxy

)
.

One way of simulating a transition of the chain {Xk} with the transition
matrix P is as follows. Suppose that Xk = x, and we wish to simulate
Xk+1. We first simulate a transition of the chain {Yk} with the transition
matrix Q, starting from Yk = x. Suppose that the result of this simulation
is Yk+1 = y. We accept this transition (and in this case Xk+1 = y) with
probability r(x, y); we reject this transition (and in this case Xk+1 = x)
with probability 1 − r(x, y). Note that r(x, x) = 1, hence whenever y = x,
Xk+1 = x.

In other words the transition from Xk = x to Xk+1 is computed as follows
• we draw a realization Yk+1 of the probability distribution Qx·;
• we draw Uk+1 with the uniform law on [0, 1];

and we let

Xk+1 = Yk+11{Uk+1≤r(x,Yk+1)} +Xk1{Uk+1>r(x,Yk+1)}.

Implementation of the MCMC algorithm The implementation of the
MCMC algorithm poses delicate questions, for which we essentially have no
really satisfactory answer, in particular in the application to phylogeny. We
have already discussed that issue in a general framework at section 3.3. Re-
call that one should eliminate the first simulations (burn–in). Moreover, in
order to obtain a sample of the a posteriori law, one keeps only one iteration
among n, where the choice of n depends upon the speed of decorrelation of
the chain, which might be estimated from simulations. Some of the imple-
mentations involve the simulation of several chains in parallel, some of them
being possibly “heated”, see section 3.1.4.
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7.9 Application to discretized partial differ-

ential equations

Let D be a bounded domain in IR2 (we could as well treat a problem in
higher dimensions), whose boundary ∂D is Lipschitz continuous. Suppose
that 0 ∈ D. Consider the Dirichlet problem :

{
∆u(x) = 0, x ∈ D;

u(x) = f(x), x ∈ ∂D;

where f ∈ C(∂D). It is well known that this equation has a unique solution
u in C(D).

Given h > 0, let hZ2 denote the set of points of the plane whose coor-
dinates are multiples of h. Define Dh = D ∩ hZ2. ∂Dh is made of those
points in Dc ∩ hZ2 which are at distance h from at least one point in Dh,
and D̄h = Dh ∪ ∂Dh. Let e1 and e2 the two vectors of an orthonormal basis.
We define the approximate operator ∆h as :

(∆hv)(x) =
1

4

2∑

i=1

(v(x+ hei) + v(x− hei)) − v(x).

From the Exercise 7.11.4, the solution of the discretized Dirichlet problem

{
∆huh(x) = 0, x ∈ Dh;

uh(x) = f(x), x ∈ ∂Dh;

is given by the formula uh(x) = IE[f(Xh
T h

Dc
h

)|Xh
0 = x], where {Xh

t ; t ≥ 0} is

an hZ2–valued jump Markov process with the infinitesimal generator
1

2
∆h,

and

T h
Dc

h
= inf{t ≥ 0;Xh

t ∈ Dc
h}.

Note that {Xh
t , t ≥ 0} has the same law as {hX1

h−2t, t ≥ 0}, and we explained
just after Theorem 7.6.9, that this process converges towards a standard one
dimensional Brownian motion, as h→ 0. It is not too hard to deduce that

uh(x) → u(x) = IE[f(BTDc )|B0 = x],
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(where TDc = inf{t ≥ 0;Bt ∈ Dc}). This formula gives a probabilistic
interpretation of the Dirichlet problem. We then have a proof (which is an
alternative to classical arguments from numerical analysis) of the convergence
of uh towards u.

Note that the discretized Dirichlet problem could also be interpreted in
terms of a discrete time Markov chain with the transition matrix ∆h + I.

Such a probabilistic interpretation justifies the use of Monte Carlo numer-
ical methods for the approximate computation of solutions of PDE’s. These
methods are mainly used in those cases where “classical” numerical anal-
ysis algorithms cannot be used (in particular in cases of high dimensional
problems), see [33]. They are also very much appreciated for the simplicity
with which the associated programs can be written. A few lines of code are
sufficient for programming the computation of the approximate solution of
a partial differential equation ! Even if we need to let the computer run a
bit longer than would be needed to obtain the same precision with a finite
difference, finite element or finite volume method, the fact that the program
is very easy to write is greatly appreciated by users, especially in situations
where a program writen by one person might have to be modified later by
another.

7.10 Simulated annealing (sequel to section

3.4)

In this section, E is assumed to be finite. Recall that we want to maximize
a function

U : E → IR−,

such that
max
x∈E

Ux = 0.

In other words, we look for one of the x’s which are such that Ux = 0.
To each β > 0 we associate the infinitesimal generator Q = {Qxy, x, y ∈

E}, where for x 6= y

Qxy = 1{(x,y)∈G} exp

[
β

2
(Uy − Ux)

]
,

G is a non–oriented graph in E, i. e. a collection of pairs of points from
E, chosen in such a way that the jump Markov process with infinitesimal
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generator Q is irreducible (which means that ∀x, y ∈ E, ∃n and x1, x2, . . . , xn

such that (x, x1) ∈ G, (x1, x2) ∈ G, . . . , (xn, y) ∈ G).
The jump Markov process with the infinitesimal generator Q is clearly

reversible with respect to its invariant probability distribution πβ defined by

πβ,x = Z−1
β eβUx , x ∈ E.

We define the Dirichlet form associated to Q as the bilinear form on
IRE :

E(ϕ, ϕ) =< ϕ,−Qϕ >π

= −
∑

x,y

ϕxQxyϕyπx

=
1

2

∑

x,y

|ϕx − ϕy|2Qxyπx,

where we have exploited reversibility and twice the identity
∑

y Qxy = 0,

hence −Q : ℓ2(π) → ℓ2(π) is a selfadjoint positive semi definite operator.

Definition 7.10.1. We call the quantity

λ
def
= inf

ϕ non–constant

E(ϕ, ϕ)

V arπ(ϕ)

the spectral gap of Q, where V arπ(ϕ) =
∑

x∈E

ϕ2
xπx −

(
∑

x∈E

ϕxπx

)2

.

Lemma 7.10.2. Since Q is the infinitesimal generator of an irreducible jump
Markov process with values in a finite set E, its spectral gap is strictly posi-
tive.

Proof From the above formula for E(ϕ, ϕ), the ratio

E(ϕ, ϕ)

V arπ(ϕ)

is not modified if we add a constant to ϕ. We then can minimize this ratio
over those ϕ which are such that IEπ(ϕ) = 0, whence

λ = inf
ϕ 6≡0;IEπ(ϕ)=0

〈ϕ,−Qϕ〉π
〈ϕ, ϕ〉π

,



7.10. SIMULATED ANNEALING 219

and λ is the smallest eigenvalue of −Q, considered as a linear operator on
ℓ2(π), restristed to the sub–vector space orthogonal to the constants. Since
Q is a selfadjoint positive semi definite operator, it suffices to show that the
eigenspace associated to the eigenvalue 0 is the set of constant functions. But
if ϕ belongs to that eigenspace,

∑

y

Qxyϕy = 0, ∀x ∈ E,

then a fortiori

0 = −
∑

x,y

ϕxQxyϕyπx =
1

2

∑

x,y

|ϕx − ϕy|2Qxyπx,

which, since Q is irreducible, does imply that ϕ is constant. �

Now let {Xt, t ≥ 0} be a jump Markov process with infinitesimal gener-
ator Q. For each t > 0, let µ(t) = (µx(t); x ∈ E) denote the law of Xt. We
let

ε(t) =
∑

x∈E

(
µx(t)

πx

− 1

)2

πx,

and remark that ε(t) = 0 if and only if µ(t) = π.

Lemma 7.10.3. λ denoting the spectral gap of Q,

ε(t) ≤ ε(0)e−2λt.

Proof We first remark that

ε(t) =
∑

x

(
µx(t)

πx

− 1

)2

πx

=
∑

x

(
µx(t)

πx

)2

πx − 1.
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Hence

dε

dt
(t) = 2

∑

x

µx(t)µ
′
x(t)

πx

= 2
∑

x,y

µx(t)µy(t)Qyx

πx

= 2
∑

x,y

µx(t)

πx
× µy(t)

πy
× πyQyx

= 2 < Q

(
µ(t)

π

)
,
µ(t)

π
>π

≤ −2λV arπ

(
µ(t)

π

)

= −2λε(t),

and consequently
d

dt
log ε(t) ≤ −2λ.

�

We have shown that µt → π at exponential speed (compare with Theorem
2.6.8).

We now get to “annealing”. We shall now let β depend upon t, and let
it go to infinity (and hence the “temperature”, its inverse, towards zero) as
t → ∞. More precisely, ∆ being a constant which will be specified below,
we choose

β(t) =
1

∆
log(1 + t),

hence β(0) = 0 and β(t) → +∞ as t → ∞. Of course, the chain is no
longer time homogeneous, since the infinitesimal generator Q, the spectral
gap λ, the invariant measure π, and the normalization constant Z all become
functions of t : Q(t), λ(t), π(t), Z(t). Note that π(0) is the uniform measure
on E, Z(0) = |E|−1, while π(∞) = lim

t→∞
π(t) is the uniform measure on the

zeros of U (i. e. on the maxima of U).

Let M
def
= sup

x∈E
(−Ux). Our goal is to show:

Theorem 7.10.4. If ∆ > M , then µ(t) → π(∞) as t→ ∞.
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We first establish :

Lemma 7.10.5.

λ(t) ≥ λ(0)

(
1

1 + t

)M
∆

.

Proof Choose ϕ such that IEπ(0)[ϕ] = 0.Then from the definition of λ(0),

1

2

∑

x,y

|ϕx − ϕy|2Qxy(0)πx(0) ≥ λ(0)
∑

x

ϕ2
xπx(0).

On the other hand,

Qxy(t)πx(t) = Qxy(0)
eβ(t)

Ux+Uy
2

Z(t)

≥ Qxy(0)
e−β(t)M |E|
Z(t)

πx(0)

Hence

Et(ϕ, ϕ) =
1

2

∑

x,y

|ϕx − ϕy|2Qxy(t)πx(t)

≥ e−β(t)M |E|
2Z(t)

∑

x,y

|ϕx − ϕy|2Qxy(0)πx(0)

≥ λ(0)e−β(t)M
∑

x

ϕ2
x

1

Z(t)

≥ λ(0)e−β(t)M
∑

x

ϕ2
xπx(t)

≥ λ(0)e−β(t)MV arπ(t)(ϕ),

where we have used for the third inequality the fact that Ux ≤ 0, hence
Z−1(t) ≤ πx(t). The two extreme expressions of this set of inequalities being
invariant under the addition of a constant to ϕ, the resulting inequality still
holds without the restriction that IEπ(0)[ϕ] = 0. The Lemma is etablished,
since

e−β(t)M =

(
1

1 + t

)M
∆

.
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�

Proof of the Theorem It suffices to show that ε(t) → 0, where

ε(t) =
∑

x

(
µx(t)

πx(t)
− 1

)2

πx(t)

=
∑

x

µx(t)
2

πx(t)
− 1.

Note that ε(t) is an upper bound on the square of the L1– norm of the
difference µ(t) − π(t). Indeed, from Cauchy–Schwarz,

∑

x

|µx(t) − πx(t)| =
∑

x

|µx(t) − πx(t)|√
πx(t)

√
πx(t) ≤

√
ε(t).

We have that

dε

dt
(t) =

∑

x

d

dt

[
µx(t)

2

πx(t)

]

=
∑

x

πx(t)
−2

[
2µx(t)

dµx

dt
(t)πx(t) − µx(t)

2dπx

dt
(t)

]

= −2Et

(
µ(t)

π(t)
,
µ(t)

π(t)

)
− β ′(t)

∑

x

Ux
µ2

x(t)

π2
x(t)

πx(t)

+ β ′(t)
∑

x,y

Uye
β(t)Uy

Z2(t)
× µ2

x(t)

π2
x(t)

eβ(t)Ux

≤ −2λ(t)ε(t) + β ′(t)M(ε(t) + 1)

≤ −(2λ(t) −M(β ′(t))ε(t) +Mβ ′(t)

≤ −
(

2λ(0)

(1 + t)M/∆
− M

∆(1 + t)

)
ε(t) +

M

∆(1 + t)

Since ∆ > M , (1 + t)−M/∆ >> (1 + t)−1 as t → ∞, and there exists c > 0
such that, for t large enough,

dε

dt
(t) ≤ −c(1 + t)−M/∆ε(t) +

M

∆
(1 + t)−1,

and the Theorem follows from
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Lemma 7.10.6. Let x, b ∈ C1(IR+; IR+), a ∈ C(IR+; IR+) be such that

(i)

∫ ∞

0

a(t) dt = +∞;

(ii) b(t) ց 0 as t→ ∞;

(iii)
dx

dt
(t) ≤ −a(t)(x(t) − b(t)).

Then x(t) → 0 as t→ ∞.

Proof

d

dt

(
x(t) exp

(∫ t

0

a(s)ds

))
= e

R t
0 a(s)ds

(
dx

dt
(t) + a(t)x(t)

)

≤ e
R t

0
a(s)dsa(t)b(t).

Integrating, we obtain

x(t) ≤ x(0)e−
R t

0
a(s)ds +

∫ t

0

e−
R t

s
a(r)dra(s)b(s)ds.

The right hand side of this inequality is the solution of a linear ODE, which
majorizes x(t). Hence it suffices to establish the result with x(t) solution of
the ODE, in other words we can as well assume that :

dx

dt
(t) = −a(t)(x(t) − b(t)).

Let y(t) = x(t) − b(t). It suffices to show that y(t) → 0 as t→ ∞.

dy

dt
(t) = −a(t)y(t) − b′(t).

Note that b′(t) ≤ 0, and −
∫ ∞

t

b′(s)ds = b(t) <∞. Hence for t ≥ N ,

y(t) = e−
R t
0

a(s)dsy(0) −
∫ t

0

e−
R t
s

a(r)drb′(s)ds

≤ e−
R N

0
a(s)dsy(0) +

∫ ∞

N

|b′(s)|ds+ e−
R t

N
a(r)dr

∫ N

0

e−
R N

s
a(r)dr|b′(s)|ds.
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Let δ > 0 be arbitrary. We choose N large enough such that the sum of the

two first terms of the right hand side be smaller than
δ

2
. Choosing now t

large enough, the third term is smaller than
δ

2
. The lemma is etablished. �

Remark 7.10.7. The function β(t) =
1

∆
log(1+t) tends too slowly to infinity

as t→ ∞ to be used in practice. One can prove some results which are weaker
than µ(t) → π(∞) with a function β which grows faster than a logarithm
(a power function). If on the other hand we ask how to achieve the best
possible result on a fixed finite horizon, one can show that some β’s growing
at exponential speed are close to the optimum.

7.11 Exercises

Exercise 7.11.1. Let {Tn, n ≥ 1} be a Poisson point process with intensity
λ, and {Zn, n ≥ 0} be an E–valued Markov chain which is independent of
{Tn, n ≥ 1}, with transition matrix Pxy, x, y ∈ E. We let

Xt =

∞∑

n=0

Zn1[Tn,Tn+1[(t), t ≥ 0.

Show that {Xt, t ≥ 0} is a jump Markov process, and give its transition
matrices, its infinitesimal generator, and the law of its first jump time.

Exercise 7.11.2. Let {Xt; t ≥ 0} be a jump Markov process with values in a
finite or countable state space E, with infinitesimal generator {Qxy; x, y ∈ E}.
Assume that λ := supx −Qxx < ∞. Let {Nt; t ≥ 0} denote the counting
process of the jumps of {Xt}, and {N ′

t, t ≥ 0} a Poisson process with intensity
λ.

Compare IP(Nt ≥ n) and IP(N ′
t ≥ n), IE[f(Nt)] and IE[f(N ′

t)], where the
function f is increasing from IN into IR. Show that exercise 7.11.1 gives
another proof of that result.

Exercise 7.11.3. Let {Nt, t ≥ 0} and {Pt, t ≥ 0} be two mutually indepen-
dent Poisson processes, with intensities λ and µ respectively.
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1. Show that {Xt, t ≥ 0} defined by

Xt = Nt − Pt

is a Z– valued irreducible jump Markov process, and give its infinitesi-
mal generator.

2. We assume that λ 6= µ. Show that {Xt/t} and {Xt} converge a. s. in
ĪR as t → ∞. What is the limit of {Xt}, depending upon the sign of
λ− µ ? Show that {Xt} is transient.

3. Assume that λ = µ. Give the transition matrix of the embedded chain.
Deduce from exercises 2.10.11 and 2.10.13 that {Xt} is null recurrent.

Exercise 7.11.4. 1. Let {Xt, t ≥ 0} be an E–valued jump Markov pro-
cess, with infinitesimal generator {Qxy; x, y ∈ E}. Let F ⊂ E. Define

TF =

{
inf{t;Xt ∈ F}, if such a t exists;

∞, otherwise,

the function u : E → IR by

u(x) = IE[h(XTF
)1{TF <∞}|X0 = x],

where h is a bounded mapping from F into IR, and the function v :
E → IR ∪ {+∞} by

v(x) := IE[TF |X0 = x].

Show that TF is a stopping time.

Show that u and vsolve respectively the equations :

Qu(x) = 0, x ∈ E\F
u(x) = h(x), x ∈ F ;

Qv(x) + 1 = 0, x ∈ E\F
v(x) = 0, x ∈ F ;

(Hint : condition upon (T1, X(T1))).
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2. Consider next the case of an E = Z–valued birth and death pro-
cess,whose infinitesimal generator Q satisfies Qx,x+1 = α(x), Qx,x−1 =
β(x), Qx,x = −α(x)−β(x), in the particular case α(x) = α, β(x) = β,
x ∈ Z (α, β > 0). Let F = {1, 2, . . . , N − 1}c, where N is a positive
integer. Compute u(x) = IE[XTF

|X0 = x], x ∈ Z. Show that TF is a. s.
finite. Give the conditional law of the r. v. XTF

, given that X0 = x.

Exercise 7.11.5. Given a probability space (Ω,Ft, P ) equipped with a filtra-
tion {F} (i. e. an increasing collection indexed by t ∈ IR+ of sub–σ–fields of
A), a martingale (with respect to the filtration {Ft}) is a stochastic process
{Mt, t ∈ IR+} which satisfies :

Mt is integrable , ∀t ≥ 0; IE[Mt|Fs] = Ms, ∀0 ≤ s ≤ t.

1. Let {Mt, t ∈ IR+} be a martingale which is continuous on the right,
and S a stopping time which is bounded by a constant t. Show that
IE[MS] = IE[Mt] = IE[M0].

2. Let {Xt, t ≥ 0} be an E–valued jump Markov process, with the infinites-
imal generator {Qxy; x, y ∈ E} satisfying supxQxx < ∞, and f be a
bounded mapping from E into IR. Show that {Mt, t ∈ IR+} defined by

Mt = f(Xt) −
∫ t

0

Qf(Xs)ds

is a martingale with respect to the filtration {FX
t } (accept the fact that

for any bounded function f from E into IR, and any r > 0, PrQf =
QPrf).

3. Use again the notation from the second part of the previous exercise.
Compute IE(TF |X0 = x) in terms of the law of XTF

( Hint : in the
case α 6= β, use the results of the two preceding questions with the
function f(x) = x and the stopping time S = inf(TF , t), the let t tend to
infinity; in the case α = β, do the same computations with f(x) = x2).
You should assume that the result in question 2. applies to those two
functions, even though they are not bounded.



7.11. EXERCISES 227

Exercise 7.11.6. Let {Xt; t ≥ 0} be an IN–valued jump Markov process,
with infinitesimal generator

Q =




−µ µ 0 0 0 . . .
λ −(λ+ µ) µ 0 0 . . .
0 λ −(λ + µ) µ 0 . . .

0
...

...
...

...
...


 .

where λ, µ > 0.

1. Specify the embedded chain. Show that {Xt; t ≥ 0} is irreducible.

2. Show that {Xt; t ≥ 0} is recurrent in the case λ ≥ µ, transient in the
case λ < µ.

3. Show that whenever λ > µ, {Xt; t ≥ 0} possesses a unique invariant
probability distribution π which you should specify.

4. Show that {Xt; t ≥ 0} is positive recurrent in the case λ > µ, null
recurrent in the case λ = µ.

Exercise 7.11.7. With P denoting the transition matrix defined at exercise
2.10.9, we let Q = P − I, and consider a continuous time jump Markov
process {Xt, t ≥ 0} whose infinitesimal generator is Q.

1. Give the transition matrix P ′ of the embedded chain.

2. Describe the trajectories of the process {Xt}, and specify the parameters
of the exponential laws of the time spent in the various states.

3. Show that the process {Xt} is irreducible and positive recurrent. De-
termine its invariant probability distribution.

4. Determine the invariant probability distribution of the embedded chain.

Exercise 7.11.8. Consider both the E = IN–valued discrete time Markov
chain {Xn; n ∈ IN} whose transition matrix is

P =




q p 0 0 . . .
q 0 p 0 . . .
0 q 0 p . . .
0 0 q 0 p . . .
...

...
...

...
. . .





