Written by Prof. Bradji, Abdallah

Last update: Friday December 11th, 2015
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji

Aim of this note

It is known that if two sequences U_{n} and V_{n} have a constant sign for a sufficiently large n and $\lim _{n \rightarrow+\infty} \frac{U_{n}}{V_{n}}=L \neq 0$ then the series corresponding to the general terms U_{n} and V_{n} converge or diverge together. We will show, using a counter example, that when U_{n} (or V_{n}) has not the same sign, the above implication is not true.

1 Details

Assume that U_{n} and V_{n} are two sequences and they have a constant sign for a sufficiently large n and $\lim _{n \rightarrow+\infty} \frac{U_{n}}{V_{n}}=L \neq 0$. We assume without loss of generality that U_{n} and V_{n} are positive (elsewhere, we consider $-U_{n}$ and $-V_{n}$). There exists $N \in \mathbb{N}^{\star}$ such that for all $n \geq N$, we have

$$
\begin{equation*}
\frac{L}{2} \leq \frac{U_{n}}{V_{n}} \leq \frac{3 L}{2} \tag{1}
\end{equation*}
$$

This gives that, for all $n \geq N$

$$
\begin{equation*}
\frac{L}{2} V_{n} \leq U_{n} \leq \frac{3 L}{2} V_{n} . \tag{2}
\end{equation*}
$$

Using the Comparison criteria, the series corresponding to the general terms U_{n} and V_{n} converge or diverge together.
If we assume only that $\lim _{n \rightarrow+\infty} \frac{U_{n}}{V_{n}}=L \neq 0$, i.e in the absence of the assumption that U_{n} and V_{n} have a constant sign, we can not ensure that the series corresponding to the general terms U_{n} and V_{n} converge or diverge together. Let us consider the example of two series with the following general terms:

$$
\begin{equation*}
U_{n}=\frac{(-1)^{n}}{\sqrt{n}}, \quad n \geq 2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=\ln \left(1+U_{n}\right), \quad n \geq 2 . \tag{4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} U_{n}=0 \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\ln \left(1+U_{n}\right)}{U_{n}}=1 \tag{7}
\end{equation*}
$$

Which is

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{V_{n}}{U_{n}}=1 \tag{8}
\end{equation*}
$$

The series $\sum_{n \geq 2} U_{n}$ of general term U_{n} converges thanks to alternating test since $\frac{1}{\sqrt{n}}$ decreases monotonically and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=$ 0 . However, we will show that the series $\sum_{n \geq 2} V_{n}$ of general term V_{n} diverges. Indeed, using a Taylor expansion yields

$$
\begin{equation*}
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \frac{1}{(1+\theta x)^{3}}, \tag{9}
\end{equation*}
$$

where $\theta \in(0,1)$.
Taking $x=U_{n}$ in (9) yields that

$$
\begin{equation*}
V_{n}-U_{n}=-\frac{U_{n}^{2}}{2}+\xi_{n} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{n}=\frac{U_{n}^{3}}{3} \frac{1}{\left(1+\theta U_{n}\right)^{3}} \tag{11}
\end{equation*}
$$

We first remark that the series whose the general term is given by the first term in right hand side of 10 converges, i.e.

$$
\begin{equation*}
-\sum_{n \geq 2} \frac{U_{n}^{2}}{2}=-\sum_{n \geq 2} \frac{1}{2 n} \quad \text { diverges } \tag{12}
\end{equation*}
$$

In addition to this, since $\lim _{n \rightarrow \infty} U_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{1}{\left(1+\theta U_{n}\right)^{3}}=1$. Consequently the sequence $\frac{1}{\left(1+\theta U_{n}\right)^{3}}$ is bounded, i.e. there exists $M>0$ such that

$$
\begin{equation*}
\left|\frac{1}{\left(1+\theta U_{n}\right)^{3}}\right| \leq M, \quad \forall n \geq 2 \tag{13}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left|\xi_{n}\right| \leq \frac{M}{3 n^{\frac{3}{2}}} \tag{14}
\end{equation*}
$$

Consequently, the series $\sum_{n \geq 2} \xi_{n}$ is absolutely convergent, i.e.

$$
\begin{equation*}
\sum_{n \geq 2}\left|\xi_{n}\right| \quad \text { converges. } \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\sum_{n \geq 2} \xi_{n} \quad \text { converges. } \tag{16}
\end{equation*}
$$

Using $\sqrt[10]{12}$, and 16 , we remark that $\sum_{n \geq 2}\left(V_{n}-U_{n}\right)$ is the sum of two series: one is convergent and the other one is divergent. Consequently $\sum_{n \geq 2}\left(V_{n}-U_{n}\right)$ is divergent. Therefore, since $\sum_{n \geq 2} U_{n}$ is convergent, $\sum_{n \geq 2}\left(V_{n}-U_{n}\right)+\sum_{n \geq 2} U_{n}$ divergent. Which gives that

$$
\begin{equation*}
\sum_{n \geq 2} V_{n} \quad \text { diverges } \tag{17}
\end{equation*}
$$

References

[1] K. Allab, Elément d'Analyse: Fonction d'une Variable Réelle. OPU, 1990.
[2] W. F. Trench, Introduction to Real Analysis. ISBN 0-13-045786-8, Free Hyperlinked Edition 2.03, November 2012.

