Département Sciences et Techniques-ST, Université de Annaba Module Maths 3, Second year Undergraduation 2016–2017

Série 1: Les Séries numériques

Exercice 1. Au moyens de leur sommes partielles, etudier la nature des series suivantes et calculer leur sommes si elles existent:

1)
$$\sum_{n\geq 2} \frac{1}{(n-1)n(n+1)}$$
 2)
$$\sum_{n\geq 1} (2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1})$$
 3)
$$\sum_{n\geq 2} \left(\int_0^1 (1 - \sqrt{x})^n dx \right)$$
 4)
$$\sum_{n>0} \frac{1}{(n+a)(n+a+1)(n+a+2)},$$

avec a > 0.

Exercice 2. Etudier les series suivantes dont le terme general est:

1. En utilisant la condition necessaire de convergence

1)
$$\sqrt{n^2 + n} - n$$
 2) $\arcsin \frac{n^3 + 1}{n^3 + 2}$ 3) $(\ln \alpha)^{\ln n} (\alpha \ge e)$ 4) $(-1)^n$ (1)

2. En utilisant le critere de Cauchy ou d' Alembert

1)
$$\frac{(n+1)(n+2)\dots(2n)}{(2n)^n}$$
 2) $\left(\frac{n^2-5n+1}{n^2-4n+2}\right)^{n^2}$ 3) $\frac{1}{2^n}\left(1+\frac{1}{n}\right)^{n^2}$ 4) $\frac{n!}{2^n+1}$ (2)

3. En utilisant les Théorèmes de Comparaison et d'equivalence

1)
$$\ln \frac{2+n^{\alpha}}{1+n^{\alpha}} (\alpha > 0)$$
 2) $\sqrt{\frac{n-1}{n^4+1}}$ 3) $\frac{1}{n^{1+\frac{1}{n}}}$ 4) $\frac{3^n-n^3}{5^n-2^n}$ 5) $\sin^2 \left(\pi \left(n+\frac{1}{n}\right)\right)$ (3)

4. En utilisant le critere integral

1)
$$\frac{1}{n \ln n}$$
 2) $\frac{1}{n \ln^2 n}$. (4)

Exercice 3. Montrer que la serie de Bertrand $\sum_{n\geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$ est convergente si et seulement si $\alpha>1$ ou $\alpha=1$ et $\beta>1$.

Exercice 4. Etudier la convergence, semi-convergence, et convergence absolue des series suivantes dont le terme general est:

$$\frac{(-1)^n}{\ln n}.\tag{5}$$

2.
$$(-1)^n \sin \frac{1}{n}$$
. (6)

$$(-1)^n \frac{\ln n}{\sqrt{n}}.\tag{7}$$

4.
$$\sin\left(\frac{\pi n^2}{n+1}\right). \tag{8}$$

Exercice 5. Etudier les series suivantes dont le terme general est:

$$\frac{\sqrt{n}}{n^4+1}, \quad \left(\frac{1}{2}\right)^{\sqrt{n}}, \quad \frac{3^n+7^{2n}}{\ln^2 n+8^{2n}+n^3}, \quad \frac{\lambda^n}{\lambda^{2n}+\lambda^n+1}(\lambda>0), \quad \frac{2^n}{n^2}\left(\sin\alpha\right)^{2n}, \quad \int_0^{\frac{1}{n}}\frac{\sqrt{x}}{(1+x)^{\frac{1}{3}}}dx, \quad n^{\frac{1}{n}}-1,$$

$$n^{\frac{1}{n}}-e, \quad \left(\cosh\frac{1}{n}\right)^{-n^3}, \quad (\ln n)^{\ln n}, \quad \left(1-\cos\frac{1}{n}\right)^{\sqrt{\ln n}}$$