A brief Report on the article [SHI 09]: "Nonconforming H^{1}-Galerkin Mixed FEM for Sobolev Equations on
 Anisotropic Meshes"
 Dong-yang Shi, Hai-hong Wang

Acta Mathematicae Applicatae Sinica, Vol. 25, No. 2 (2009) 335-344.

Report done by Professor Bradji, Abdallah
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji
This report is not finished yet.
Written in Thursday 1st April, 2010

Primary AMS Subject Classification 2010:
65N30

Secondary AMS Subject Classification 2010:
 35Q10

Key words and phrases:

Sobolev equations; nonconforming Galerkin mixed finite element methods; anisotropic meshes; error estimates

Abstract

The authors consider a nonconforming mixed finite element approximation for the Sobolev equation on anisotropic meshes. Convergence order is provided in the both cases of semi and full discretization schemes. The error estimates are obtained without using Ritz-Volterra projection.

1 Introduction

It is well known that Sobolev equations have been found applications in many physical problems, such as the porous theories concerned with percolation into rocks with cracks, the transport problems of humidity in soil, the heat-conduction problems in different mediums and so on.

However, all of the above studies using finite element methods rely on the regularity assumption or the quasi-uniform assumption. i.e., $\frac{h_{K}}{\rho_{K}} \leq C_{1}$ and $\frac{h}{h_{K}} \leq C_{2}$, where K is an element, h_{K}, ρ_{K} denote
the diameter of K and the biggest circle contained in K, respectively. C_{1} and C_{2} are two constants independent of $h=\max _{K}\left\{h_{K}\right\}$ and the function considered. But when the domain concerned is very narrow, if we employ the regular partition, the computing cost will be very high. The obvious idea to overcome this difficulty is to use the anisotropic meshes with fewer degrees of freedom.

2 Sobolev equations

Let Ω be an open polygonal subset of \mathbb{R}^{2} which is composed by rectanglar subsets \mathcal{T}_{h}. The authors considered the following Sobolev equations:

$$
\begin{equation*}
u_{t}(x, t)-\nabla \cdot\left(a(x, t) \nabla u_{t}(x, t)+b(x, t) \nabla u(x, t)\right)=f(x, t), x \in \Omega, t \in(0, T], \tag{1}
\end{equation*}
$$

where T is a given positive constant; the function a, b are continuous functions with bounded derivatives and

$$
\begin{gather*}
|b(x, t)| \leq b_{1}, 0<a_{0} \leq|b(x, t)| \leq a_{1}, x \in \Omega, t \in(0, T], \tag{2}\\
u(x, 0)=u_{0}, x \in \Omega \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
u(x, t)=0, x \in \partial \Omega, t \in(0, T] \tag{4}
\end{equation*}
$$

Sobolev equations have been found applications in many physical problems, such as the porous theories concerned with percolation into rocks with cracks[4], the transport problems of humidity in soil, the heat-conduction problems[19] in different mediums and so on.

3 Formulation for problem |1]-[4]

Let us set $q=a \nabla u(x, t)$; so equation (1) becomes as:

$$
\begin{equation*}
u_{t}(x, t)-\nabla \cdot\left(q_{t}(x, t)+\beta(x, t) q(x, t)\right)=f(x, t), x \in \Omega, t \in(0, T], \tag{5}
\end{equation*}
$$

where

$$
\beta(x, t)=\frac{b(x, t)-a_{t}(x, t)}{a(x, t)} q(x, t)
$$

To define a weak formulation for problem 1-4, we denote by (\cdot, \cdot) the usual inner product, $H(\div ; \Omega)=\left\{v \in\left(L^{2}(\Omega)\right)^{2}, \nabla \cdot v=0\right\}$.
The following weak formulation is given in SHI 09, where $\alpha=\frac{1}{a}$: find $\{u, q\}:[0, T] \rightarrow H_{0}^{1}(\Omega) \times$ $H(d i v ; \Omega)$ such that

$$
\begin{equation*}
(\nabla u, \nabla v)=(\alpha q, \nabla v), \forall v \in H_{0}^{1}(\Omega) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\alpha_{t} q, w\right)+\left(\alpha q_{t}, w\right)+\left(\nabla \cdot\left(q_{t}(x, t)+\beta(x, t) q(x, t)\right), \nabla \cdot w\right)=-(f, \nabla \cdot w), \forall w \in H(d i v ; \Omega)[7] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \Omega \tag{8}
\end{equation*}
$$

4 Anisotropic finite element discretization

The finite element discretization is performed thanks to partition by rectangles $K \in \mathcal{T}_{h}$. For $K \in \mathcal{T}_{h}$, the lenght of edges parallel to x and y-axis are $2 h_{x}$ and $2 h_{y}$, and $\left(x_{K}, y_{K}\right)$ is the center; the four vertices are then denoted by $a_{1}\left(x_{K}-h_{x}, y_{K}-h_{y}\right), a_{2}\left(x_{K}+h_{x}, y_{K}-h_{y}\right), a_{3}\left(x_{K}+h_{x}, y_{K}+h_{y}\right)$, and $a_{4}\left(x_{K}-h_{x}, y_{K}+h_{y}\right)$. The four edges then of K are denoted by $\overline{a_{1} a_{2}}, \overline{a_{2} a_{3}}, \overline{a_{3} a_{4}}$ and $\overline{a_{4} a_{1}}$. Let $\hat{K}=[-1,1] \times[-1,1]$ be the reference element; the four vertices of \hat{K} are then denoted by $\hat{a_{1}}=(-1,-1), \hat{a_{2}}=(1,-1), \hat{a_{3}}=(1,1)$, and $\hat{a_{4}}=(-1,1)$. The four edges of \hat{K} are $\bar{l}_{1}=\hat{\hat{a_{1}} \hat{a_{2}}}$, $\bar{l}_{2}=\overline{\hat{a_{2}} \hat{a_{3}}}, \bar{l}_{3}=\overline{\hat{a_{3}} \hat{a_{4}}}$ and $\bar{l}_{4}=\overline{\hat{a_{4}} \hat{a_{1}}}$.
The affine mapping from \hat{K} to K can be defined as: $x=x_{K}+h_{x} \hat{x}$ and $y=y_{K}+h_{y} \hat{y}$ We introduce two finite element types:

- first type:

$$
\begin{equation*}
\hat{\mathcal{P}}^{1}=\operatorname{span}\{1, \hat{\mathrm{x}}, \hat{\mathrm{y}}, \varphi(\hat{\mathrm{x}}), \varphi(\hat{\mathrm{y}})\} \tag{9}
\end{equation*}
$$

where $\varphi(t)=\frac{1}{2}\left(3 t^{2}-1\right)$; but i do not what is the difference between $\operatorname{span}\{1, \hat{\mathrm{x}}, \hat{\mathrm{y}}, \varphi(\hat{\mathrm{x}}), \varphi(\hat{\mathrm{y}})\}$ and $\operatorname{span}\left\{1, \hat{x}, \hat{y}, \hat{x}^{2}, \hat{y}^{2}\right\}$

- second type:

$$
\begin{equation*}
\hat{\mathcal{P}}^{2}=\operatorname{span}\{1, \hat{x}, \hat{y}\} \times \operatorname{span}\{1, \hat{x}, \hat{y}\} \tag{10}
\end{equation*}
$$

- first interpolation type:

$$
\begin{equation*}
\frac{1}{\hat{K}} \int_{\hat{K}}\left(\hat{v}-\hat{I}^{1} \hat{v}\right) d \hat{x} d \hat{y}=0 \text { and } \frac{1}{\hat{l}} \int_{\hat{l}}\left(\hat{v}-\hat{I}^{1} \hat{v}\right) d s=0 \tag{11}
\end{equation*}
$$

- second interpolation type::

$$
\begin{equation*}
\frac{1}{\hat{l}} \int_{\hat{l}} \hat{I}^{2} \hat{v} d s=\frac{1}{2}\left(\hat{v}\left(\bar{a}_{i}\right)+\hat{v}\left(\bar{l}_{i+1}\right)\right) \tag{12}
\end{equation*}
$$

To define the finite element spaces, we define the affine application defined on \hat{K} into K

$$
\begin{equation*}
x=x_{K}+h_{x} \hat{x} \text { and } y=y_{K}+h_{y} \hat{y} \tag{13}
\end{equation*}
$$

4.1 Finite element spaces

- first finite element space:

$$
\begin{equation*}
V_{h}=\left\{v, \hat{x} \in \hat{\mathcal{P}}_{1}, \int_{F}[v] d s=0, F \subset \partial K\right\} \tag{14}
\end{equation*}
$$

- second interpolation type::

$$
\begin{equation*}
W_{h}=\left\{q=\left(q_{1}, q_{2}\right),\left(\hat{q}_{1}, \hat{q}_{2}\right) \in \hat{\mathcal{P}}_{2} \times \hat{\mathcal{P}}_{2}, q(a)=0, \text { for any node } a \in \partial \Omega\right\} \tag{15}
\end{equation*}
$$

4.2 Discrete problem

Find $\left\{u_{h}, q_{h}\right\}:[0, T] \rightarrow V_{h} \times W_{h}$ such that

$$
\begin{equation*}
\left(\nabla u_{h}, \nabla v_{h}\right)=\left(\alpha q_{h}, \nabla v_{h}\right), \forall v_{h} \in V_{h} \tag{16}
\end{equation*}
$$

$\left(\alpha_{t} q_{h}, w_{h}\right)+\left(\alpha\left(q_{h}\right) t, w_{h}\right)+\left(\nabla \cdot\left(\left(q_{h}\right)_{t}(x, t)+\beta(x, t) q_{h}(x, t)\right), \nabla \cdot w_{h}\right)=-\left(f, \nabla \cdot w_{h}\right), \forall w_{h} \in W_{h}$
and

$$
\begin{equation*}
u_{h}(x, 0)=\left(\Pi_{1} u_{0}\right)(x), x \in \Omega . \tag{18}
\end{equation*}
$$

5 Convergence result

Theorem 5.1 Assume that $u, u_{t} \in H^{2}(\Omega)$ and $q, q_{t} \in\left(H^{2}(\Omega)\right)^{2}$, then the following error estimates hold

- estimate for u_{h}

$$
\begin{equation*}
\left|u-u_{h}\right|_{h} \leq C h(x, 0)=\Pi_{1}\left(u_{0}\right)(x), x \in \Omega, \tag{19}
\end{equation*}
$$

where C depends on t, u, u_{t}, q, and q_{t}

- estimate for q_{h}

$$
\begin{equation*}
\left\|q_{h}\right\|_{H(d i v ; \Omega)}=\leq C h \tag{20}
\end{equation*}
$$

where

$$
\begin{gather*}
\left|v_{h}\right|_{h}^{2}=\sum_{K \in \mathcal{T}_{h}}\left|v_{h}\right|_{1, \Omega}^{2}, \tag{21}\\
\left\|q_{h}\right\|_{H(d i v ; \Omega)}^{2}=\sum_{K \in \mathcal{T}_{h}}\left(\left|q_{h}\right|_{0, \Omega}^{2}+\left|\nabla \cdot q_{h}\right|_{0, \Omega}^{2}\right) . \tag{22}
\end{gather*}
$$

References

[SHI 09] Dong-yang Shi, Hai-hong Wang: Nonconforming H^{1}-Galerkin mixed finite element method for Sobolev equations on anisotropic meshes. Acta Mathematicae Applicatae Sinica, Vol. 25, No. 2, 335-344, 2009.

