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Abstract

The authors consider a nonconforming mixed finite element approximation for the Sobolev equation

on anisotropic meshes. Convergence order is provided in the both cases of semi and full discretization

schemes. The error estimates are obtained without using Ritz–Volterra projection.

1 Introduction

It is well known that Sobolev equations have been found applications in many physical problems,

such as the porous theories concerned with percolation into rocks with cracks, the transport prob-

lems of humidity in soil, the heat-conduction problems in different mediums and so on.

However, all of the above studies using finite element methods rely on the regularity assumption or

the quasi-uniform assumption. i.e., hK
ρK
≤ C1 and h

hK
≤ C2, where K is an element, hK , ρK denote
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the diameter of K and the biggest circle contained in K, respectively. C1 and C2 are two constants

independent of h = maxK{hK} and the function considered. But when the domain concerned is

very narrow, if we employ the regular partition, the computing cost will be very high. The obvious

idea to overcome this difficulty is to use the anisotropic meshes with fewer degrees of freedom.

2 Sobolev equations

Let Ω be an open polygonal subset of IR2 which is composed by rectanglar subsets Th. The authors

considered the following Sobolev equations:

ut(x, t)−∇ · ( a(x, t)∇ut(x, t) + b(x, t)∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ], [1]

where T is a given positive constant; the function a, b are continuous functions with bounded

derivatives and

| b(x, t)| ≤ b1, 0 < a0 ≤ | b(x, t)| ≤ a1, x ∈ Ω, t ∈ (0, T ], [2]

u(x, 0) = u0, x ∈ Ω [3]

and

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ]. [4]

Sobolev equations have been found applications in many physical problems, such as the porous

theories concerned with percolation into rocks with cracks[4], the transport problems of humidity

in soil, the heat-conduction problems[19] in different mediums and so on.

3 Formulation for problem [1]–[4]

Let us set q = a∇u(x, t); so equation [1] becomes as:

ut(x, t)−∇ · ( qt(x, t) + β(x, t) q(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ], [5]

where

β(x, t) =
b(x, t)− at(x, t)

a(x, t)
q(x, t)

To define a weak formulation for problem [1]–[4], we denote by ( ·, ·) the usual inner product,

H(÷; Ω) = {v ∈
`
L2(Ω)

´2
,∇ · v = 0}.

The following weak formulation is given in [SHI 09], where α = 1
a

: find {u, q} : [0, T ] → H1
0 (Ω) ×

H(div; Ω) such that

(∇u,∇ v) = (α q,∇ v) , ∀ v ∈ H1
0 (Ω) [6]

(αt q, w) + (α qt, w) + (∇ · ( qt(x, t) + β(x, t) q(x, t)) ,∇ · w) = − ( f,∇ · w) , ∀w ∈ H(div; Ω) [7]

and

u(x, 0) = u0(x), x ∈ Ω. [8]
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4 Anisotropic finite element discretization

The finite element discretization is performed thanks to partition by rectangles K ∈ Th. For K ∈ Th,

the lenght of edges parallel to x and y–axis are 2hx and 2hy, and (xK , yK) is the center; the four

vertices are then denoted by a1(xK − hx, yK − hy), a2(xK + hx, yK − hy), a3(xK + hx, yK + hy),

and a4(xK − hx, yK + hy). The four edges then of K are denoted by a1a2, a2a3, a3a4 and a4a1.

Let K̂ = [−1, 1] × [−1, 1] be the reference element; the four vertices of K̂ are then denoted by

â1 = (−1,−1), â2 = (1,−1), â3 = (1, 1), and â4 = (−1, 1). The four edges of K̂ are l1 = â1â2,

l2 = â2â3, l3 = â3â4 and l4 = â4â1.

The affine mapping from K̂ to K can be defined as: x = xK +hxx̂ and y = yK +hy ŷ We introduce

two finite element types:

• first type:

P̂1 = span{1, x̂, ŷ, ϕ(x̂), ϕ(ŷ)}, [9]

where ϕ(t) = 1
2
(3t2 − 1); but i do not what is the difference between span{1, x̂, ŷ, ϕ(x̂), ϕ(ŷ)}

and span{1, x̂, ŷ, x̂2, ŷ2}

• second type:

P̂2 = span{1, x̂, ŷ} × span{1, x̂, ŷ} [10]

• first interpolation type:

1

K̂

Z
K̂

“
v̂ − Î1v̂

”
dx̂dŷ = 0 and

1

l̂

Z
l̂

“
v̂ − Î1v̂

”
ds = 0. [11]

• second interpolation type::

1

l̂

Z
l̂

Î2v̂ ds =
1

2

`
v̂(ai) + v̂(li+1)

´
[12]

To define the finite element spaces, we define the affine application defined on K̂ into K

x = xK + hxx̂ and y = yK + hy ŷ. [13]

4.1 Finite element spaces

• first finite element space:

Vh = {v, x̂ ∈ P̂1,

Z
F

[v]ds = 0, F ⊂ ∂ K}. [14]

• second interpolation type::

Wh = {q = (q1, q2), (q̂1, q̂2) ∈ P̂2 × P̂2, q(a) = 0, for any node a ∈ ∂ Ω}. [15]
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4.2 Discrete problem

Find {uh, qh} : [0, T ]→ Vh × Wh such that

(∇uh,∇ vh) = (α qh,∇ vh) ,∀ vh ∈ Vh [16]

(αt qh, wh)+(α (qh)t, wh)+(∇ · ( (qh)t(x, t) + β(x, t) qh(x, t)) ,∇ · wh) = − ( f,∇ · wh) , ∀wh ∈Wh

[17]

and

uh(x, 0) = (Π1u0)(x), x ∈ Ω. [18]

5 Convergence result

Theorem 5.1 Assume that u, ut ∈ H2(Ω) and q, qt ∈ (H2(Ω))2, then the following error estimates

hold

• estimate for uh

|u− uh|h ≤ C h(x, 0) = Π1(u0)(x), x ∈ Ω, [19]

where C depends on t, u, ut, q, and qt

• estimate for qh

‖ qh‖H(div;Ω) =≤ C h, [20]

where

| vh|2h =
X
K∈Th

| vh|21,Ω, [21]

‖ qh‖2H(div;Ω) =
X
K∈Th

`
| qh|20,Ω + |∇ · qh|20,Ω

´
. [22]
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