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Abstract: The aim of this article is to provide a new approach to get higher order finite volume

approximatios. Among the main ideas of the article is to replace the integrands which appears after

integration of the divergence flux on the control volumes by Taylor expansions about the center

of faces and then replacing the derivatives by finite-difference approximations of a suitable order

that are smooth functions of their inputs. This approach has been used for elliptic and hyperbolic

equation when the physical domain in is mapped into a cube. Numerical examples are presented

to justify the theoretical results.
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1 basic idea

Let us consider a finite volume mesh based on rectangular meshs as in [EYM 00] and we consider

the approximation of the following divergence expression in two dimension:
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Let us consider the following Taylor’s expansion
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The idea is that If we replace the derivatives by finite-difference approximations of a suitable order
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that are smooth functions of their inputs, the resulting approximation of the average of the flux

divergence over a cell is of higher order

2 headlines of the article

1. assume that we have a problem posed on physical domain Ω ⊂ Rd and we assume that there

is a smooth mapping from D to the cube (0, 1)d

2. computations done on (0, 1)d can be mapped to Ω; in particular how to get higher order

schemes on (0, 1)d.

3. application to elliptic problems

4. application to hyperbolic problems
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