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Abstract: The authors developed and analyzed a new method for an exact discretization of the

spheroidal domains and for a construction of finite element spaces on such domains. Such method

is based on a radial projection mapping defined on the ball into the cube in any space dimensions.

The new method is applied on the Laplace–Beltrami equation and an eigenvalue problem posed on

the sphere. The convergence order of the method is one in H1–norm and then by duality argument

is two in L2–norm when the elements are linear in the box. So, the order of the method is optimal

because it coincides with that when the domain is polyhedral and meshed with triangular elements.

In the end of the paper, the authors presented some numerical experiments which illustrate the

effectiveness and characteristics of the method.
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1 Some questions

1. (existence–uniqueness)?: It is mentioned in [MEI 09] that the following equation

−∆Sµ+ µ = f, [1]

where −∆S is the Laplace–Beltrami operator (on the unit sphere S), see [14]–[16], has a

unique solution (it is a classical result). Since I do not know this existence–uniqueness result

before, may be it is useful to express equation [1] in the particular case when S is the unit

cercle.

2. (polar coordinates?): using polar coordinates, one could map disc (ball in R2) into rectangle;

could this technique be applied in this article?

May be it is useful to ask a question from the corresponding authors: ajm@auburn.edu or

tuncer@efl.edu

http://www.cmi.univ-mrs.fr/~bradji
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2 What I learned from this nice article!

1. (area of pds on sphere): Mathematical weather models and climate models consist of partial

differential equations posed on a domain assumed to be a sphere for an obvious reason.

2. (other area of application): pds on spheroidal and cylindrical shells arise frequently in ege-

neering applications, see [LEE 03, KIR 93].

3. (some literature on numerical methods for...): lately, the study of the numerical approxima-

tion of solutions of partial differential equations defined on the sphere has garnered much

interests: see [DU 03, DU 05] and references therein.

4. (quality of the grid): Grid generation (would be nice if there is some short definition for

Grid generation) is an important part of approximating solutions of pds (partial differential

equations), since the accuracy of numerical solutions depends on the quality of the grid (what

sense of quality of the grid), see [DU 05].

5. (approximation of pds on spheres): two main approaches:

(a) approximate the sphere, or other surface by a plyhedron (or polyhedral surface), see

[DZI 88]. In this approach, the domain is (or becomes after approximation) piecewise

planar so discretization techniques can be used.

(b) construct a mesh on the sphere (path followed in the article under consideration [MEI 09]).

In this approach, given a mesh on the sphere, a finite element space (and the associ-

ated basis functions) can be constructed, e.g., by constructing the finite element basis

directly on shperical triangles by using barycentric coordinate systems, see [BAU 85],

or using mapping as done in [MEI 09].

3 Motivation of the article [MEI 09]

Two reasons on which [MEI 09] is motivated:

1. ( exact discretization): a desire for a exact finite element discretization of the sphere and

other spheroidal domains (yielding a conforming finite element approximation),

2. (codes): a requirement that this new approach be easy to implement or easy to incorporate

into existing finite element codes.

4 Heart idea behind [MEI 09]: radial projection

Let Bd be the box centered at the origin and of length 2d in Rn, that is

Bd = {x = (x1, . . . , xn) ∈ Rn : ‖x‖∞ = d}, [2]
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where ‖x‖∞ = max(|x1|, . . . , |xn|), and Sr be the sphere of radius r, that is

Sr = {a = (a1, . . . , an) ∈ Rn : ‖ a‖2 = r}, [3]

where ‖ a‖∞ =
p
a2
1 + . . .+ a2

n is the Euclidean norm.

The interior of box Bd (resp. sphere Sr) called the cube (resp. ball).

Let us consider the radial projection mapping defined on the box Bd into the sphere Sr:

P : Bd → Sr [4]

by

P(x) =
r

‖x‖2
x. [5]

P is one to one mapping and its inverse is defined by

P−1(a) =
d

‖ a‖∞
a. [6]

Let us now, define the mapping from cube centered at origin and of length d into the ball centered

at origin and of radius r:

M(x) =
r‖x‖∞
d‖x‖2

x. [7]

M is one to one mapping and its inverse is defined by

M−1(a) =
d‖ a‖2
r‖ a‖∞

a. [8]

So, as we can remark that

M|Bd = P. [9]

This means that M transform the box Bd into the sphere Sr.

4.1 Properties of the radial projection mapping

The following two Lemmata have been used mainly in [MEI 09]

Lemma 4.1 The radial projection P defined, on the box Bd (it is defined by [2]) into the sphere Sr

(it is defined by [3]), by [5] satisfies the following inequalities

‖P(x)− P(y)‖2 ≤
2r

‖x‖2
‖x− y‖2, [10]

and

‖P−1(a)− P−1(b)‖∞ ≤
2d

‖ a‖∞
‖ a− b‖∞. [11]

Corollary 4.2 The radial projection P defined, on the box Bd (it is defined by [2]) into the sphere

Sr (it is defined by [3]), by [5] satisfies the following inequalities

‖P(x)− P(y)‖2 ≤
2r

d
‖x− y‖2, [12]

and

‖P−1(a)− P−1(b)‖∞ ≤
2dn

r
‖ a− b‖∞. [13]
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5 Continuous problem: Laplace–Beltrami equation

The model considered in [MEI 09] is the second order elliptic pde posed on the sphere:

−∆Sµ+ µ = f, [14]

where −∆S is the Laplace–Beltrami operator (on the unit sphere S). The Laplace–Beltrami equa-

tion is defined as

∆S = ∇S · ∇S , [15]

and ∇S is the tangential gradient defined as

∇S = ∇− n(∇ · n), [16]

where n is the unit outward pointing vector normal to the sphere S.

Existence–uniqueness of a solution for [14] is classical (can also be justified from the fact that S is

smooth), see [AUB 80].

6 Finite element approximation for [14]

Thanks to radial projection mapping [5] and its properties, the authors first constructed a finite

elements on the cube (resp. box) and then these elements are transformated to the ball (resp.

sphere).
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