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Abstract: The authors consider the Laplace equation with non homogeneous Dirichlet boundary

conditions in one and two dimensions. A finite element scheme is suggested using a special varia-

tional formulation involving the boundary condition data as a term in the equation, whereas the

space of the solution and the space of test functions are {u ∈ H1(Ω); ∆u ∈ L2(Ω)}.

In the one dimensional case and using the above stated variational formulation, the authors sug-

gested a piecewise linear space in order to approximate the exact solution and the space of the test

functions. A convergence analysis based on the use of inf-sup inequality is provided. It is proved

that the convergence order is optimal in the sense that the order is one, in the energy norm, and is

two in the average norm.

Unfortunately, the analysis used in the one dimensional case can not be used in higher dimension

for some geometrical reason stated by the authors. Consequently, some numerical experiments in

dimension two are presented to justify the need of additional stabilization methods to obtain a re-

liable numerical method. The choice followed by the authors is the Nitsche method: that is to add

some additional terms to the discrete bilinear and discrete linear forms. Thanks to some numerical

experiments, it is proved that the addition of the Nitsche terms is not sufficient: a compatibility

condition between the domain and the discrete grid should be added. Under this compatibility

condition, discrete Nitsche problem is well posed and its solution converges to the exact solution

by optimal order.

Key words and phrases: Laplace equation with non homogeneous Dirichlet boundary conditions;

finite element methods; Nitsche method; geometrical compatibility condition

Subject Classification : 65N30; 65M15

1 Some final remark

1. In the statement of the model problem, it is mentioned that Ω is a domain of Rd, d = 2 or 3,

but the cases treated throughout the paper are d = 1 and d = 2.

2. Is not clear for me what is the advantage when we use the variational form and its discretiza-

tion treated in [DUP 10] and the usual variational form and its discretization: it would be
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useful if the authors could explain more their approach and more precise the difference of

the usual variational [7] with its usual discretization and the discretization based on the

formulation [3]. .

2 Problem and its variational form

The following problem is studied in [DUP 10]; let Ω be a domain of Rd, d = 2, d = 3

−∆u(x) = f(x), x ∈ Ω, [1]

with boundary condition

u(x) = g(x), x ∈ ∂Ω, [2]

where f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω) are given functions.

The following variational form is used in [DUP 10]: Find v in appropriate space H such that

B(v, ϕ) = L2(ϕ), ∀ϕ ∈ H, [3]

where

B(v, ϕ) =

Z
Ω

∇ v(x) · ∇ϕ(x)dx−
Z

∂Ω

(u(x)∂nϕ(x) + ϕ(x)∂nu(x)) dγ(x), [4]

and

L2(ϕ) =

Z
Ω

f(x)ϕ(x)dx−
Z

∂Ω

g(x)∂nϕ(x) dγ(x). [5]

Indeed, the bilinear form [4] is well defined for v, ϕ inH thanks to the following version of integration

by parts, see [BRE 94, Proposition 5.1.6], for all (u, v) ∈ H× H1(Ω):Z
Ω

(−∆u(x))v(x)dx =

Z
Ω

∇u(x) · ∇ v(x)dx−
Z

∂Ω

∂nu(x)v(x) dγ(x). [6]

It is useful to note that H(1, 1) = 0 and H(u, u) ≤ 0, for all harmonic function u.

The standard formulation is to find u ∈ H1(Ω) such that the trace γ̃(u) = g on ∂Ω:Z
Ω

∇u(x) · ∇ v(x)dx =

Z
Ω

f(x)v(x)dx, ∀ v ∈ H1
0 (Ω) [7]

or equivalently, we seek for w ∈ H1
0 (Ω) such thatZ

Ω

∇w(x) · ∇ v(x) = −
Z

Ω

∇ g̃(x) · ∇ v(x)dx+

Z
Ω

f(x)v(x)dx, ∀ v ∈ H1
0 (Ω), [8]

where, this is feasible since g ∈ H
1
2 (∂Ω),

γ̃(g̃) = g. [9]

Typically, the space H is given by

H = H∆ =
˘
u ∈ H1(Ω); ∆u ∈ L2(Ω)

¯
. [10]

The following Theorem is given in [DUM 06]

Theorem 2.1 Problem [3]–[5], where H is the space defined in [10], has a unique solution.
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3 How it the situation in the one dimensional case?

3.1 A functional result useful for inf–sup result

Th the finite element scheme presented by thr authors is based on the discretization of [3]–[5], where

H is the space defined in [10] using piecewise linear finite element space. The convergence analysis

is done thanks to inf–sup inequality. The following result is used to check an inf–sup result:

Theorem 3.1 Let V be a Hilbert space endowed with the norm ‖ · ‖ decomposed as V = V ⊕ V

where the angle between V1 and V2 has a cosine γ different from 1, where

γ = sup
(v1,v2)∈V1\{0}×V2\{0}

| 〈 v1, v2〉|
‖ v1‖ ‖ v2‖

. [11]

Let B(·, ·) be a continuous bilinear form on V × V. If B satisfies an inf–sup condition on V1 × V1

with a constant α1, then there exists a constant α > 0 such that

inf
u∈V

sup
v∈V

| B(u, v)|
‖u‖ ‖ v‖ ≥ α. [12]

3.2 Some discrete subspaces to check inf–sup inequality

Let Vh be the piecewise linear space, with spacing h, on interval [0, 1]. The following subspaces of

Vh are useful:

1. the two spaces containing function basis which do not vanish on the boundary mesh:

V1
h = 〈 {ϕ0, ϕ1}〉, [13]

B(u− uh, u− uh)V2
h = 〈 {ϕN , ϕN+1}〉. [14]

2. interior subspace:

V3
h = 〈 {ϕ2, . . . , ϕN−1}〉. [15]

The previous two subsection allow the authors to justify that discrete problem is well posed.

4 What about the convergence order?

The first key, as usual, that the following equality holds

B(u− uh, vh) = 0, ∀ vh ∈ Vh. [16]

So, thanks an elementary reasoning based on the fact that B(·, ·) is bilinear, we get

B(u− uh, u− uh) = B(u− uh, u−Πu), [17]

which implies using the fact that B(·, ·) is continuous

B(u− uh, u− uh) ≤ C‖u− uh‖1,Ω ‖u−Πu‖1,Ω. [18]
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On the other hand, we remark that

B(u− uh, u− uh) = ‖∇ (u− uh)‖2L2(Ω), [19]

which implies uing the Poincaré inequality, for some positive constant Cp

B(u− uh, u− uh) ≥ Cp‖u− uh‖21,Ω. [20]

This with [18] and the standard interpolation error, we get

‖u− uh‖1,Ω ≤ Ch|u− uh|2,Ω. [21]

I do not know if the duality argument can be applied here to obtain the order two in L2(Ω)

norm (The authors just said the order is two in L2(Ω), in Theorem 2.2, without any comment or

justification but the authors provided detailed proof on the order one in the enery norm as it is

mentioned in [16]–[21].). Because of limited time, I stop here and my hope I come back another

time to see details on the average error in the one dimension, and then I pass to the dimension two

in which, I think, there are useful knowledge to be learned from this article like the Nitsche method.
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