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Abstract: The author derives analytical and semianalytical solutions of convection–reaction equations with

general initial conditions. The analytical test functions are embedded into discretization methods for the

convection diffusion reaction equation. Further mobile and immobile equations can be treated with splitting

methods that allow of reducing the computational complexity and yield higher-order discretization schemes.

The author could also verify the new methods with analytical and numerical test examples and present the

higher-order results of the underlying schemes.

The convection-dominant equation can be solved with combined analytical and decomposed methods to

decouple the complicated equation systems and achieve the accuracy with iterative or analytical embedded

methods.

For complex computations of such convection–dominant problems, the author used these methods in the

initialization process of the computation and switch after sufficient accuracy to implicit methods with large

time-steps. .
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1 Some questions and remarks ...

1. I sitll do not understand what meant the author by ”Mobile and Immobile Gaseous Transport”

2 Some basic and useful information

1. Importance. The article seems interesting since it provides a numerical scheme for an interesting

model in Gaseous Transport

2. Importance again. The studies are motivated by a desire to model deposition processes based on

chemical vapor problems. The model problem is given by a coupled transport–reaction equation with

mobile and immobile areas, see [GEI 10].

3. The model. The mathematical model is a coupled system of transport equations (given by convection–

diffusion–reaction equations) and reaction equations.
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4. Which numerical method is used? Since the equations involved in the model are transport equations

which are conservation law systems, it is suitable to use finite volume methods, see [EYM 00, EYM 01,

EYM 02]

5. Some useful information.. The article contains useful information related to the practical side of

problem.

6. What is the mathematical model ? In the modeling equation, the author considers mobile and

immobile pore water, equilibrium sorption, diffusion and dispersion and chemical reaction of the

first-order. The modeling is based on homogenization of the underlying equivalent porous media,

[BEA 72, BEA 91]. The equations are coupled with the reaction terms and are presented as follows,

for i ∈ J 1,mK.

∂tRiui +∇ · vui = −λiRiui + λi−1Ri−1ui−1 + β(−ui + gi), (x, t) ∈ Ω× (0, T ) [1]

ui,0(x) = ui(x, 0), x ∈ Ω, [2]

∂tRigi = −λiRigi + λi−1Ri−1gi−1 + β(−gi + ui), (x, t) ∈ Ω× (0, T ), [3]

gi,0(x) = gi(x, 0), x ∈ Ω, [4]

where m is the number of equations and i is the index of each component. The unknown mobile

concentrations ui = ui(x, t) are considered in Ω× (0, T ) ⊂ Rn×R+, where n is the spatial dimension.

The unknown immobile concentrations gi = gi(x, t) are considered in Ω × (0, T ) ⊂ Rn × R+. The

retardation factors Ri are constant and Ri ≥ 0. The kinetic part is given by the factors λi . They

are constant and λi ≥ 0.
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