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Abstract: The authors consider the biharmonic equation posed on two dimensional bounded

polygonal domain . The finite element discretization presented by the authors is based on the use

of a quadratic C0–interior penalty method. They derived an error estimator, denoted by ηh. This

error estimator ηh is reliable (resp. efficient) in the sense that it is bounded below (resp. above)

by the error between the exact solution and the finite element approximate solution. Numerical

examples are presented.
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1 Some final remarks

1. in my opinion, the present article [BRE 10] is a useful work: some nice literature (around 44

references provided) is provided as well as nice details for the results provided by the article.

My hope I find some time to come back to this article!!

2. the discrete formulation is based on the use of the expression involved in the continuous

formulation plus some terms and a penalty term. I think that, these additional terms have

been added because of the nonregularirty of the discrete functions. These terms yeild some

consistensy, stability, and symmetrization. I understood that more information about these

additional terms as well as the properties of consistensy and stability have been detailed in

the previous papers [ENG 02, BRE 05].

http://www.cmi.univ-mrs.fr/~bradji
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2 Useful knowledge

Let Ω ⊂ R2 be a bounded polygonal domain and f ∈ L2(Ω). A weak formulation of the biharmonic

problem is to find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀ v ∈ H2
0 (Ω), [1]

where

a(u, v) =

Z
Ω

D2u(x) : D2v(x)dx, [2]

D2u : D2v =

2X
i,j=1

∂2u

∂ xi∂ xj

∂2v

∂ xi∂ xj

= uxxvxx + uyyvyy + 2uxyvxy

= ∆u∆ v + ( 2uxyvxy − uxxvyy − uyyuxx) [3]

and ( ·, ·) denotes the L2–inner product.

So, D2u is the Hessian matrix and D2u : D2v denotes the summation of each corresponding

component product.

1. what problem represents [1]–[3]: according to [BRE 08, Theorem 5.9.6, Page 144], if u ∈

H4(Ω) and f ∈ L2(Ω), the weak unique solution of [1]–[3] satisfies (the idea behind of such

result is, maybe, the use of the integration by parts which yields verious versions of the cross

derivatives uxxyy) the biharmonic equation in the L2(Ω)–sense:

∆2 u = f. [4]

2. standard methods for the biharmonic equation: Conforming finite element methods for [1]

requires C1–finite element spaces, which are complicated to construct and involve a large

number of degree of freedom.

3. another issue: another issue is to use mixed finite element methods.

4. what about mixed finite element for [1]: according to the authors of [BRE 10], the design of

stable (would be fine from the authors to give more details here as the notion of stability)

mixed finite element methods is a delicate task and highly nontrivial for more complicated

fourth order equations.

5. path followed by the authors of [BRE 10]: the path followed by the authors is to use an

interior penalty which preserves the symmetric positive definitness of [1] and at the same

time uses only C0–finite elements for second–order problems was proposed, for instance, in

[ENG 02].

6. some literature:

(a) multigrid and domain for C0–interior penalty methods were studied in [BRE 05] and

[BRE 05]
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(b) the authors said (I enjoyed this nice sentence) “In this paper we develop a simple

residual–based a posteriori error estimator for a quadratic C0–interior penalty method

for [1]. ”

(c) while there is a vast literature on error estimators for conforming finite element methods

for second order elliptic problems, see for instance [VER 92] and [VER 95].

(d) there are also quite a few papers on error estimators for nonconforming finite element

methods.

(e) there are only a hanful of papers on error estimators for fourth order elliptic equations.

3 Some mathematics: finite element discretization

Let Th be a simplicial triangulation of Ω. The interior (resp. boundary) edges are denoted by E i
h

(resp. E b
h ) and define Eh = E i

h ∪ E b
h . Let hT = diam(T) and h = max{hT : T ∈ Th}. The length of

an edge e ∈ E is denoted by he. The following Sobolev space associated to Th is introduced

Hk(Ω, Th) =
n
v ∈ H1

0 (Ω) : vT = v|T ∈ Hk(Ω), ∀T ∈ Th

o
. [5]

The C0–finite element space is

Vh =
˘
vh ∈ H1

0 (Ω) : vh|T ∈ P2(Ω), ∀T ∈ Th

¯
. [6]

3.1 Finite element approximate solution

We introduce the following discrete bilinear form:

Ah(uh, vh) =
X

T∈Th

Z
T

D2uh : D2vhdx+
X
e∈Eh

Z
e

JJ
∂2uh

∂2n
KKJ

∂ uh

∂n
K dγ(x)

+
X
e∈Eh

Z
e

J
∂ uh

∂n
KJJ

∂ uh

∂n
KK dγ(x) +

X
e∈Eh

σ

he

Z
e

J
∂ uh

∂n
KJ
∂ vh

∂n
K dγ(x), [7]

where JJ·KK (resp. J·K) denotes the mean (resp. the jump) between two neighbouring triangles, n is

the usual normal derivative, and σ is the penalty parameter.

The following properties hold, for more details see the link http://www.math.sc.edu/∼fem/fe.html

in the home page of Professor Brenner http://www.math.sc.edu/∼fem/brenner.html:

1. symmetry:

Ah(uh, vh) = Ah(vh, uh), ∀uh, vh ∈ Vh. [8]

2. consistensy: let u be the exact solution of [4]

Ah(u, vh) = ( f, vh) , ∀ vh ∈ Vh. [9]
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3. stability:

Ah(vh, vh) ≥ ‖ vh‖2H2(Ω,Th), [10]

where

‖ vh‖2H2(Ω,Th) = ah(vh, vh) +
X
e∈Eh

σ

he

Z
e

J
∂ vh

∂n
K2 dγ(x), ∀ vh ∈ Vh, [11]

with

ah(uh, vh) =
X

T∈Th

Z
T

D2uh : D2vhdx,∀uh, vh ∈ Vh. [12]

So, the finite element appximation is defined by: Find uh ∈ Vh such that

Ah(uh, vh) = ( f, vh) ∀ vh ∈ Vh. [13]

3.2 Definition of a reliable estimator

The error estimator ηh is defined by

ηh =

0@ X
T∈Th

η2
T +

X
e∈Eh

η2
e,1 +

X
e∈E i

h

η2
e,2

1A 1
2

, [14]

where

ηT = h2
T ‖ f‖L2(Ω), [15]

ηe,1 =
σ√
he

‖ J
∂ uh

∂n
K‖2L2(e), [16]

and

ηe,2 =
√
he‖ J

∂ uh

∂n
K‖2L2(e). [17]

The error estimator ηh given by [14]–[17] since it satifies [BRE 10, Theorem 3.1, Page 783] which

is:

Theorem 3.1 Let u (rep. uh) be the exact solution of [1]–[3] (resp. [13]). Then the following

estimate holds

‖u− uh‖H2(Ω,Th) ≤ Cηh, [18]

where error estimator ηh is given by [14]–[17].

3.3 Why the error estimator [14]–[17] is efficient

Error estimator [14]–[17] is efficient since ηh satisfies [BRE 10, Theorem 4.1, Page 786]

Theorem 3.2 Let u (rep. uh) be the exact solution of [1]–[3] (resp. [13]). Then the following

estimate holds

ηh ≤ C

0@σ‖u− uh‖2H2(Ω,Th) +
X

T∈Th

h4
T ‖ f − f̄‖2L2(Ω)

1A 1
2

, [19]

where error estimator ηh is given by [14]–[17], and

f̄ =
1

meas(T)

Z
T

f(x)dx. [20]
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