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Abstract: The authors consider a fourth order singular perturbation problem posed on two di-

mensional rectangular domain . An anistroptic nonconforming finite element scheme is presented

to approximate the problem. The scheme is based on the use of a technique called the double set

parameter method. Thanks to the use of a convenient choice for the first and the second set param-

eters, a convergence of order one in the energy norm associated to the problem is proved uniformly

with respect to the singular parameter. Numerical examples are presented to explain theoretical

results.
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Some final remarks

Because of limited time, I could not finish well reading the article. Next some remarks:

1. convergence order: I order is said is optimal!! I have not understood this. Indeed, the shape

function space is spanned by quadratic polynomes and the cubic polynomes {ξ3, η3}. So, the

interpolation error, so far as I know, is of order h3+1−2 = h2 (2 is the order of the norm), see

[BRE 94, Theorem 4.4.4, Page 104]. This point is not clear for me!!

2. problem treated: the problem treated here is a special one ε2∆2u−∆u = f ; is it possible to

consider a more general fourth order equation. Is it possible to consider the domain problem

as a polygone instead of a rectangle.

3. weak formulation: the weak formulation followed in [CHE 10] is

ε2a(u, v) + b(u, v) = ( f, v) , ∀ v ∈ V, [1]

where

V = {v ∈ H2(Ω); v =
∂2v

∂ n2
= 0}, [2]
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a(u, v) =

Z
Ω

D2u(x) : D2v(x)dx, [3]

and

b(u, v) =

Z
Ω

∇u(x) · ∇u(x)dx. [4]

Which I find strange that the space V given by [2] is not well defined; more precise the

elements of V have with their first derivatives well defined traces, but I do not know if the

second derivatives of the elements of V have well defined trace, would say is ∂2v
∂ n2 well defined

for only v ∈ H2(Ω)?

1 Problem considered

The problem considered in [CHE 10] is

ε2∆2u(x)−∆u(x) = f(x), x ∈ Ω = (0, 1)2, [5]

with

u(x) =
∂2u

∂ n2
(x) = 0, x ∈ ∂Ω. [6]

2 Some preliminary computations on the biharmonic

equation

This article I’m reviewing now for Zmath has the same subject as that I reviewed since some days

ago; i.e. [BRE 94]. Since I’m new in the subject of the discretization of the biharmonic equation, I

would like to try to understand at least the basic background on the subject of biharmonic equation

and its discretization. The first item of the following items have been taken from a downloaded

paper from th link of the Brenner’s home page: http://www.math.sc.edu/∼fem/fe.html
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1. continuous case: let G be a somooth region in R2, u, v be two smooth functions defined on G,

we haveZ
G

∆2u(x)v(x)dx =

Z
G

∆(∆u)v(x)dx =

Z
G
∇ · (∇ (∆u(x))) v(x)dx

= −
Z
G
∇ (∆u(x)) · ∇ v(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

= −
2X
i=1

Z
G

∂∆u

∂ xi
(x)

∂ v

∂ xi
(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

=

Z
G

∆u(x)

2X
i=1

∂

∂ xi

„
∂ v

∂ xi

«
(x)dx−

Z
∂G

∆u(x)

2X
i=1

∂ v

∂ xi
(x)nidγ(x)

+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

=

Z
G

∆u(x) ∆u(x)dx−
Z
∂G

∆u(x)
∂ v

∂ n
(x)γ(x) +

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x).[7]

Another version for the previous identity which is used [BRE 94] is the followingZ
G

∆2u(x)v(x)dx =

Z
G

∆(∆u)v(x)dx =

Z
G
∇ · (∇ (∆u(x))) v(x)dx

= −
Z
G
∇ (∆u(x)) · ∇ v(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

= −
Z
G

∆ (∇u(x)) · ∇ v(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

= −
2X
i=1

Z
G

∆uxi(x)vxi(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

= −
2X
i=1

Z
G
∇ · ∇uxi(x)vxi(x)dx+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

=

2X
i=1

Z
G
∇uxi(x) · ∇ vxi(x)dx−

2X
i=1

Z
∂G

ni · ∇uxi(x)vxi(x)dγ(x)

+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

=

2X
i=1

2X
j=1

Z
G
uxjxi(x) vxjxi(x)dx−

2X
i=1

Z
∂G

ni · ∇uxi(x)vxi(x)dγ(x)

+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x)

=

Z
G
D2u(x) : D2v(x)dx−

Z
∂G

∂∇u
∂n

(x) · ∇ v(x)dx

+

Z
∂G

∂∆u

∂n
(x)v(x)dγ(x). [8]

Summing the previous identity, for u smooth and v piecewise smooth over G = K ∈ Th, we

getZ
Ω

∆2u(x)vh(x)dx =
X
K∈Th

Z
K

D2u(x) : D2vh(x)dx−
X
K∈Th

X
σ∈EK

Z
σ

∇ (∇u) · nK,σ(x) · ∇ vh(x)dx

+
X
K∈Th

X
σ∈EK

Z
σ

∇(∆u)(x) · nK,σvh(x)dγ(x), [9]
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where nK,σ is the unit vector normal to σ outward to K.

Let first that if σ is a common edge of two neighbouring element T and L, we have then,

since vh is continuousZ
σ

∇(∆u)(x) · nK,σvh(x)dγ(x) +

Z
σ

∇(∆u)(x) · nL,σvh(x)dγ(x) =

Z
σ

∇(∆u)(x) · nK,σvh(x)dγ(x)

−
Z
σ

∇(∆u)(x) · nK,σvh(x)dγ(x) +

Z
σ

= 0. [10]

For σ ⊂ ∂ Ω, we know that vh(x) = 0 for all x ∈ ∂Ω; so
R
σ
∇(∆u)(x) · nK,σvh(x)dγ(x) = 0

for all σ ⊂ ∂ Ω. ThereforeX
K∈Th

X
σ∈EK

Z
σ

∇(∆u)(x) · nK,σvh(x)dγ(x) = 0. [11]

Let tσ be the unite tangente to σ, we have then the following computations to simplify the

second term on the right hand side of [11]

∂∇u
∂nK,σ

· ∇ vh =
∂

∂nK,σ

„
∂ u

∂nK,σ
· nK,σ +

∂ u

∂ S
· tσ
«
·
„

∂ vh
∂nK,σ

· nK,σ +
∂ vh
∂ S

· tσ
«

=

 
∂2 u

∂n2
K,σ

· nK,σ +
∂2 u

∂nK,σ∂ S
· tσ

!
·
„

∂ vh
∂nK,σ

· nK,σ +
∂ vh
∂ S

· tσ
«

=
∂2 u

∂n2
K,σ

∂ vh
∂nK,σ

+
∂2 u

∂nK,σ∂ S

∂ vh
∂ S

, [12]

where ∂
∂ S

denotes the tangential derivative.

For σ is a common edge of two neighbouring element T and L, we have, as in [10]Z
σ

∂2 u

∂nK,σ∂ S

∂ vh
∂ S

dγ(x) +

Z
σ

∂2 u

∂nL,σ∂ S

∂ vh
∂ S

dγ(x) = 0. [13]

For σ ⊂ ∂ Ω, we know that vh(x) = 0 for all x ∈ ∂Ω; so
∂ vh
∂ S

and therefore
∂2 u

∂nK,σ∂ S

∂ vh
∂ S

dγ(x)

for all σ ⊂ ∂ Ω.

Combining now [9] with [10]–[13] and reordering the sum yields that

Z
Ω

∆2u(x)vh(x)dx =
X
K∈Th

Z
K

D2u(x) : D2vh(x)dx−
X
σ∈E

∂2 u(x)

∂n2
K,σ

s
∂ vh(x)

∂nK,σ

{
dγ(x), [14]

where J ·K is the jump of the two neighbouring elements.
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