
A brief Report on the article [BAW 10]“Higher order

global solution and normalized flux for singularly

perturbed reaction-diffusion problems ”
Bawa, R. K.; Clavero, C.

Appl. Math. Comput. 216, No. 7, 2058-2068 (2010).

Report done by Professor Bradji, Abdallah

Provisional home page: http://www.cmi.univ-mrs.fr/∼bradji

Last update: Tuesday 29th March, 2011;

Abstract: The authors consider a one dimensional singularly perturbed reaction–diffusion equa-

tion. A modified Shishkin mesh is introduced and a higher order compact finite difference solution

on this mesh is presented. Piecewise cubic interpolants for both the exact solution and discrete

solution are formulated. Thanks to the modfied Shishkin mesh, the authors proved that the conver-

gence is uniform in the sense that the convergence accuracy is the same for any value of the diffusion

parameter ε. More precise, the convergence order analysis contains two principle results. The first

result states that the method is, almost, of fourth convergence order. The second result states

that the normalized flux of the piecewise cubic interpolant of the discrete solution approximates

the normalized flux of the piecewise cubic interpolant of the exact solution by order three, almost

everywhere, and by order four at mid–points of the mesh. The theoretical results are confirmed by

numerical examples.
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what i have learned from this article

1. principle references: the article [ROO 08, FAR 00] is well cited in the literature of ”numerical

methods for singularly perturbed reaction–diffusion equation”.

2. area where singularly perturbed problems (SPPs: SPPs arise in several branches of engi-

neering sciences: Fluid dynamics (which include linearized Navier–Stokes equation at high

Reynolds number, Quantum mechanics, Elasticity, Chemical reactor theory, Gaz porous elec-

trodes theory, Drift–Diffusion equation of semi–conductor device modeling...

3. boundary layers for small parameter: for ε << 1, problem [31]–[32] has two boundary lay-

ers (this statement needs more explanation, I think) of thikhness 0 (
√
ε ln(1/ε)) near the

boundaries x = 0, 1.
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4. classical finite difference methods for singularly perturbed problems: classical finite difference

methods using uniform meshes does not give a satisfactory (as said the authors of [BAW 10])

approximation (what meant by “satisfactory”), see [FAR 00, ROO 08] and references therein,

near the boundary layers.

5. practical case where the flux is importan: in some practical case, the computation of the

exact solution and its flux is important, see blow

6. good reference in splines: it is mentioned that [BOO 78] is a good reference in splines.

7. hoc scheme: the so called (HOC) higher order compact finite difference scheme is introduced

in [GRA 01]

1 An overview on some standard numerical methods for

singularly perturbed equations

Let us consider the following simple example (which is given in [FEI 04, Pages 342–344]):

− εu′′(x) + ν u′(x) = 1, x ∈ Ω = (0, 1), [1]

with

u(0) = u(1) = 0, [2]

where ε > 0 and ν 6= 0 are two constants. The solution of [1]–[2] is defined by

u(x) =
1

ν


x− exp(ν x/ε)− 1

exp(ν /ε)− 1

ff
, x ∈ [0, 1]. [3]

If ε→ 0 and ν > 0, then u(x)→ x/ν for x ∈ [0, 1). The limit function is the solution of

ν u′(x) = 1, x ∈ (0, 1) and u(0) = 0. [4]

1.1 Standard linear finite element methods and Gibs phenomenon

Let us apply the linear finite element method to approximate [1]–[2]. We then consider the uniform

mesh Th = {Ki; i = 0, . . . , N} with Ki = [xi, xi+1] and xi+1 − xi = h. The approximate solution

uh as well as the test functions are in the space:

Vh =
˘
ϕh ∈ C(Ω);ϕh|Ki ∈ P1, ∀Ki ∈ Th, ϕh(0) = ϕh(1) = 0

¯
. [5]

Multiplying both sides of [1] by ϕ ∈ C1(Ω), with ϕ(0) = ϕ(1) = 0, we getZ 1

0

(ε u′(x)ϕ′(x) + ν u′(x)ϕ(x))dx =

Z 1

0

ϕ(x)dx, ∀ϕ ∈ C1(Ω), ϕ(0) = ϕ(1) = 0. [6]

The approximate finite element solution is then defined by: find uhVh such thatZ 1

0

(ε u′h(x)ϕ′h(x) + ν u′h(x)ϕh(x))dx =

Z 1

0

ϕh(x)dx, ∀ϕ ∈ Vh. [7]

A.BRADJI 2



27th review for ZMAT

This is equivalent to the following linear system:

− ε

h2
(ui+1 − 2ui + ui−1) +

ν

2h
(ui+1 − ui−1) = 1, [8]

with

u0 = uN+1 = 0. [9]

Note that [8] is also a finite difference scheme by approximating:

1. u′′(xi) by
u(xi+1)− 2u(xi) + u(xi−1)

h2
. [10]

2. u′(xi) by the central quotient
u(xi+1)− u(xi−1)

2h
. [11]
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Figure 1: Left graph of the function u, right the finite difference solution [8]–[9] with h =

1/10; both simulations are in ε = 10−2 and ν = 1

The linear equations [8]–[9] can be written as

AU = 1, [12]

where A is a N × N matrix and 1 in the r.h.s. of [12] is the vector of RN whose components

are equal to 1. The matrix A is nonsymmetric, but for h < 2ε/|ν| it is diagonally dominant (In

the sense
PN

j=1,j 6=i | aij | ≤ | aii| for all i = 1, . . . , N with strict inequality for at least one i.) and

irreducibly. These previous stated properties of A guarantees good properties of the approximate

solution. But, for h ≥ 2ε/|ν|, the approximate solution do not make sense because of spurious

oscillations shown in the right Figure 1. This means that the Gibbs phenomenon arises here. We

see here that mesh Péclet number defined by

Pe =
hν

2ε
[13]
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must satisfy the condition

Pe < 1 [14]

in order to avoid the Gibbs phenomenon.

1.2 Gibbs phenomenon and upwind finite difference scheme

An issue to avoid the Gibbs phenomenon is to chose an upwind finite difference scheme instead of

the central finite difference scheme [8]–[9], that is to chose

− ε

h2
(ui+1 − 2ui + ui−1) +

ν

h
(ui − ui−1) = 1, [15]

with

u0 = uN+1 = 0. [16]

So, the upwind scheme [15]–[16] is performed thanks to

1. the approximation of u′′(xi) by

u(xi+1)− 2u(xi) + u(xi−1)

h2
. [17]

2. the approximation of u′(xi) by the central quotient

u(xi)− u(xi−1)

h
. [18]

Figure 2 represents, using Scilab, the finite difference solution [15]–[16] with h = 1/10. As we can

see that the finite difference solution [15]–[16] is more reasonable than that of [8]–[9].
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Figure 2: The upwind finite difference solution [15]–[16] with h = 1/10;ε = 10−2 and ν = 1
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1.3 Standard linear finite element methods and convergence order

As usual, we use the technique of Cea Lemma to compute the convergence order. The key, for that

target is the following equality:

a(u− uh, vh) = 0, ∀ vh ∈ Vh. [19]

This implies that

a(u− uh, u− uh) = a(u− uh, u− π u), [20]

where π is the usual interpolation operator defined from C(Ω) into Vh and

a(u, v) =

Z 1

0

(ε u′(x)v′(x) + ν u′(x)v(x))dx. [21]

Equality [20] implies that

α ‖u− uh‖21,Ω ≤ M ‖u− uh‖1,Ω‖u− π u‖1,Ω, [22]

which implies in turn, using the known result of the interpolation error

α ‖u− uh‖1,Ω ≤ CMhmax
x∈Ω
|u′′(x)|, [23]

where C is only depending on Ω, the constants α and M used in [22] are defined by

a(v, v) ≥ α ‖ v‖21,Ω, ∀ v ∈ H1
0 (Ω), [24]

and

a(u, v) ≤ M‖u‖1,Ω‖ v‖1,Ω, ∀u, v ∈ H1
0 (Ω). [25]

Let us compute M , α, and maxx∈Ω |u
′′(x)|

1. computation of α: using [21], the fact that v(0) = v(1) = 0, and the Poincaré inequality

a(v, v) = ε

Z 1

0

(v′)2(x)dx+ ν

Z 1

0

v′(x)v(x))dx

= ε

Z 1

0

(v′)2(x)dx+ ν

Z 1

0

(v2)′(x)dx

= ε

Z 1

0

(v′)2(x)dx

≥ εC(Ω)‖ v‖21,Ω, [26]

where C(Ω) is only depending on Ω.

2. computation of M : using the Cauchy Schwarz inequality, the fact that
“R 1

0
(u′)2(x)dx

” 1
2 ≤

‖ v‖1,Ω to get, assuming that ε << 1

a(u, v) =

Z 1

0

(ε u′(x)v′(x) + ν u′(x)v(x))dx

≤ ε‖u‖1,Ω‖ v‖1,Ω + ν‖u‖1,Ω‖ v‖L2(Ω)

≤ (ε+ ν)‖u‖1,Ω‖ v‖1,Ω

≤ (1 + ν)‖u‖1,Ω‖ v‖1,Ω. [27]
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3. computation of u′′(x): using expression [3] to get

u′′(x) = − ν

ε2

exp(ν x/ε)

exp(ν /ε)− 1
, ∀x ∈ (0, 1). [28]

So, an estimate for u′′ can be provided as, since 0 < exp(ν x/ε) ≤ exp(ν /ε):

max
x∈[0,1]

|u′′(x)| ≤ ν

ε2 (exp (ν /ε)− 1)
. [29]

Gathering [26]–[29] with [23] to get

‖u− uh‖1,Ω ≤ C(Ω)
M

α
hmax

x∈Ω
|u′′(x)|

≤ C(Ω)
ν(1 + ν)

ε3 (exp (ν /ε)− 1)
h. [30]

So, estimate [30] depends adversly on ε which is not so good when ε is small.

2 Motivation and some literature

The work [BAW 10] is interested with the following singularly perturbed reaction–diffusion equation:

Lu(x) = −εu(x) + b(x)u(x) = f(x), x ∈ D = (0, 1), [31]

with the following Dirichlet boundary condition:

u(0) = A, u(1) = B, [32]

where ε is a small parameter, b and f are smooth functions. We assume that, for some β > 0,

b(x) ≥ β, for all x ∈ D.

It is known that, under above assumptions, problem [31]–[32] has a unique solution satisfying

u ∈ C2(D) ∩ C(D) (see [ROO 08]).

SPPs arise in several branches of engineering sciences: Fluid dynamics (which include linearized

Navier–Stokes equation at high Reynolds number, Quantum mechanics, Elasticity, Chemical reactor

theory, Gaz porous electrodes theory, Drift–Diffusion equation of semi–conductor device modeling...

For ε << 1, problem [31]–[32] has two boundary layers of thikhness 0 (
√
ε ln(1/ε)) near the bound-

aries x = 0, 1. Classical finite difference methods using uniform meshes does not give a sat-

isfactory (as said the authors of [BAW 10]) approximation (what meant by “satisfactory”), see

[FAR 00, ROO 08] and references therein. We need then to use a special numerical methods giving

a uniform convergence, i.e., methods for which the convergence is same everywhere in the domain

D and for any value ε (convergence order is independent of the parameter ε).

In the study of some physical phenomena, if we consider a substance in a solution with a flux

satisfying Fick’s law, where the distribution is given by a diffusion equation, and the initial con-

centration of an admixture at the boundaryof the body is known, it is interesting to obtain a good

approximation for both the exact solution and its normalized flux. This problem appears in the
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context of environmental sciences in determining the pollution entering the environment from man-

ufacturing sources. The diffusion Fourier number, which is proportional to the diffusion coefficient

of the substance, can be sufficiently small. Then a diffusion boundary layer can appear in narrow

neighborhoods of the boundary of the domain. (it is useful to detail these information; i think it

are condensed)!!

The basic idea of using Lagrange’s interpolation to find the global solution and the normalized lux

was provided in [MIL 96].

In [SUR 97], a cubic splines were used to solve nonlinear reaction–diffusion problem, and the uniform

convergence of the method is shown. Nevertheless, the proof of the theoretical results is incom-

plete and is unclear. In [SUR 04], a quadratic spline was used to solve semilinear reaction–diffusion

problems, proving second order of uniform convergence at the mesh points and also the uniform

convergence for the global solution and the normalized flux. In [STA 05], a scheme is proposed to

approximate the global solution of singularly perturbed problems and it proves that the theoretical

convergence order at mesh points is min(h2, ε2) and for the global approximate solution is min(h, ε);

furthermore, no numerical results were presented to support the theory. Recently in [CLA 10], the

authors presented a hybrid scheme combining central difference and piecewise cubic interpolants,

and they obtained a second order convergent method for both the global solution and the global

normalized flux.

3 Aim of the paper and description of the main results

The aim of the article [BAW 10] is to obtain a higher order convergent global solution and global

normalized flux for the reaction–diffusion problem [31]–[32] by following ideas of [CLA 10].

To obtain higher order globally convergent solution and normalized flux, the authors of [BAW 10]

combined a finite difference scheme of higher order compact (HOC) type together with classical

piecewise cubic interpolant. More precise, the global approximate solution is a piecewise cubic

interpolant which concides with the numerical solution (HOC) of at the mesh points.

4 Definition of the scheme and outlines of the analysis

It is well known, see [MIL 96] that the solution of [31]–[32] satisfies

|u(x)| ≤ C(1 + ε−k/2e(x, β, ε)), 0 ≤ k ≤ j + 1, [33]

where

e(x, β, ε)) = exp
“
−
p
βξ/
√
ε
”

+ exp
“
−
p
β(1− ξ)/

√
ε
”
, [34]

and j depends on the smoothness of data b and f .

Next, we describe in brief the finite difference scheme and an outline for its analysis.

1. mesh: a modified Shishkin mesh is considered.
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2. scheme: (HOC) higher order finite difference scheme, see [GRA 01], is considered on the

modified Shishkin mesh. This HOC solution will be refereed to as the discrete solution

Uh = (Ui)i

3. piecewise cubic for the exact solution: a picewise cubic interpolant for the exact solution,

denoted by S, with some momentum values Mi = u′′(xi), for all mesh point xi

4. normalized flux: the normalized flux is
√
εS ′.

5. piecewise cubic for the discrete solution: a picewise cubic interpolant, denoted by Sh, for the

discrete solution with some momentum values M i = (biUi− fi)/ε, for all mesh point xi (it is

useful to note that (biu(xi)− f(xi))/ε = u′′(xi)).

6. normalized flux for the discrete solution: the normalized flux for the discrete solution is
√
εS ′h.

7. Errors: the following estimates hold:

sup
x∈[xi,xi+1]

|S(x)− Sh(x)| ≤ Ch4(1 + ε2 max ( e(xi, β, ε), e(xi+1, β, ε)) , [35]

and a similar estimate for supx∈[xi,xi+1] |
√
εS ′(x)−

√
εS ′h(x)|.
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