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Abstract: The authors consider a one dimensional second order semilinear singularly perturbed

equation. The diffusion parameter is denoted by ε2. On an arbitrary mesh and thanks to a

posteriori estimate, it remarked that it is possible to obtain second order accurate uniformly after

a suitable choice for the mesh. To get this convenient mesh, the authors used the monitor function

equidistribution. The aim of this paper is then to resolve two questions. The fisrt question is to

discuss the existence of a solution to equidistribution problem, and the second question is to suggest

an algorithm which yields second order accurate uniformly w.r.t. the singular parameter for the

discrete solution.

It is first established the existence of a solution to the equidistribution problem. This is done

in a framework which can be applied to a more general equidistribution problem. An algorithm

is suggested which yields second order accurate uniformly, when the equation is linear and under

further mild assumptions, after O(| ln ε|/ lnN) iterations, where N+1 is the number of mesh points.
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1 An overview on some standard numerical methods for

singularly perturbed equations

Let us consider the following simple example (which is given in [FEI 04, Pages 342–344]):

− ε2u′′(x) + ν u′(x) = 1, x ∈ Ω = (0, 1), [1]
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with

u(0) = u(1) = 0, [2]

where ε > 0 and ν 6= 0 are two constants. The solution of [1]–[2] is defined by

u(x) =
1

ν


x− exp(ν x/ε)− 1

exp(ν /ε)− 1

ff
, x ∈ [0, 1]. [3]

If ε→ 0 and ν > 0, then u(x)→ x/ν for x ∈ [0, 1). The limit function is the solution of

ν u′(x) = 1, x ∈ (0, 1) and u(0) = 0. [4]

1.1 Standard linear finite element methods and Gibs phenomenon

Let us apply the linear finite element method to approximate [1]–[2]. We then consider the uniform

mesh Th = {Ki; i = 0, . . . , N} with Ki = [xi, xi+1] and xi+1 − xi = h. The approximate solution

uh as well as the test functions are in the space:

Vh =
˘
ϕh ∈ C(Ω);ϕh|Ki ∈ P1, ∀Ki ∈ Th, ϕh(0) = ϕh(1) = 0

¯
. [5]

Multiplying both sides of [1] by ϕ ∈ C1(Ω), with ϕ(0) = ϕ(1) = 0, we getZ 1

0

(ε u′(x)ϕ′(x) + ν u′(x)ϕ(x))dx =

Z 1

0

ϕ(x)dx, ∀ϕ ∈ C1(Ω), ϕ(0) = ϕ(1) = 0. [6]

The approximate finite element solution is then defined by: find uhVh such thatZ 1

0

(ε u′h(x)ϕ′h(x) + ν u′h(x)ϕh(x))dx =

Z 1

0

ϕh(x)dx, ∀ϕ ∈ Vh. [7]

This is equivalent to the following linear system:

− ε

h2
(ui+1 − 2ui + ui−1) +

ν

2h
(ui+1 − ui−1) = 1, [8]

with

u0 = uN+1 = 0. [9]

Note that [8] is also a finite difference scheme by approximating:

1. u′′(xi) by
u(xi+1)− 2u(xi) + u(xi−1)

h2
. [10]

2. u′(xi) by the central quotient
u(xi+1)− u(xi−1)

2h
. [11]

The linear equations [8]–[9] can be written as

AU = 1, [12]

where A is a N × N matrix and 1 in the r.h.s. of [12] is the vector of RN whose components

are equal to 1. The matrix A is nonsymmetric, but for h < 2ε/|ν| it is diagonally dominant (In

the sense
PN

j=1,j 6=i | aij | ≤ | aii| for all i = 1, . . . , N with strict inequality for at least one i.) and
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Figure 1: Left graph of the function u, right the finite difference solution [8]–[9] with h =

1/10; both simulations are in ε = 10−2 and ν = 1

irreducibly. These previous stated properties of A guarantees good properties of the approximate

solution. But, for h ≥ 2ε/|ν|, the approximate solution do not make sense because of spurious

oscillations shown in the right Figure 1. This means that the Gibbs phenomenon arises here. We

see here that mesh Péclet number defined by

Pe =
hν

2ε
[13]

must satisfy the condition

Pe < 1 [14]

in order to avoid the Gibbs phenomenon.

1.2 Gibbs phenomenon and upwind finite difference scheme

An issue to avoid the Gibbs phenomenon is to chose an upwind finite difference scheme instead of

the central finite difference scheme [8]–[9], that is to chose

− ε

h2
(ui+1 − 2ui + ui−1) +

ν

h
(ui − ui−1) = 1, [15]

with

u0 = uN+1 = 0. [16]

So, the upwind scheme [15]–[16] is performed thanks to

1. the approximation of u′′(xi) by

u(xi+1)− 2u(xi) + u(xi−1)

h2
. [17]
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2. the approximation of u′(xi) by the central quotient

u(xi)− u(xi−1)

h
. [18]

Figure 2 represents, using Scilab, the finite difference solution [15]–[16] with h = 1/10. As we can

see that the finite difference solution [15]–[16] is more reasonable than that of [8]–[9].
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Figure 2: The upwind finite difference solution [15]–[16] with h = 1/10;ε = 10−2 and ν = 1

1.3 Standard linear finite element methods and convergence order

As usual, we use the technique of Cea Lemma to compute the convergence order. The key, for that

target is the following equality:

a(u− uh, vh) = 0, ∀ vh ∈ Vh. [19]

This implies that

a(u− uh, u− uh) = a(u− uh, u− π u), [20]

where π is the usual interpolation operator defined from C(Ω) into Vh and

a(u, v) =

Z 1

0

(ε u′(x)v′(x) + ν u′(x)v(x))dx. [21]

Equality [20] implies that

α ‖u− uh‖21,Ω ≤ M ‖u− uh‖1,Ω‖u− π u‖1,Ω, [22]

which implies in turn, using the known result of the interpolation error

α ‖u− uh‖1,Ω ≤ CMhmax
x∈Ω
|u′′(x)|, [23]
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where C is only depending on Ω, the constants α and M used in [22] are defined by

a(v, v) ≥ α ‖ v‖21,Ω, ∀ v ∈ H1
0 (Ω), [24]

and

a(u, v) ≤ M‖u‖1,Ω‖ v‖1,Ω, ∀u, v ∈ H1
0 (Ω). [25]

Let us compute M , α, and maxx∈Ω |u
′′(x)|

1. computation of α: using [21], the fact that v(0) = v(1) = 0, and the Poincaré inequality

a(v, v) = ε

Z 1

0

(v′)2(x)dx+ ν

Z 1

0

v′(x)v(x))dx

= ε

Z 1

0

(v′)2(x)dx+ ν

Z 1

0

(v2)′(x)dx

= ε

Z 1

0

(v′)2(x)dx

≥ εC(Ω)‖ v‖21,Ω, [26]

where C(Ω) is only depending on Ω.

2. computation of M : using the Cauchy Schwarz inequality, the fact that
“R 1

0
(u′)2(x)dx

” 1
2 ≤

‖ v‖1,Ω to get, assuming that ε << 1

a(u, v) =

Z 1

0

(ε u′(x)v′(x) + ν u′(x)v(x))dx

≤ ε‖u‖1,Ω‖ v‖1,Ω + ν‖u‖1,Ω‖ v‖L2(Ω)

≤ (ε+ ν)‖u‖1,Ω‖ v‖1,Ω

≤ (1 + ν)‖u‖1,Ω‖ v‖1,Ω. [27]

3. computation of u′′(x): using expression [3] to get

u′′(x) = − ν

ε2

exp(ν x/ε)

exp(ν /ε)− 1
, ∀x ∈ (0, 1). [28]

So, an estimate for u′′ can be provided as, since 0 < exp(ν x/ε) ≤ exp(ν /ε):

max
x∈[0,1]

|u′′(x)| ≤ ν

ε2 (exp (ν /ε)− 1)
. [29]

Gathering [26]–[29] with [23] to get

‖u− uh‖1,Ω ≤ C(Ω)
M

α
hmax

x∈Ω
|u′′(x)|

≤ C(Ω)
ν(1 + ν)

ε3 (exp (ν /ε)− 1)
h. [30]

So, estimate [30] depends adversly on ε which is not so good when ε is small.

A.BRADJI 5



28th review for ZMAT

2 Aim of the article and description for the main results

The work [CHA 11] is interested with the following singularly perturbed reaction–diffusion equation:

Lu(x) = −ε2u(x) + b(x, u(x)) = 0, x ∈ D = (0, 1), [31]

with the following Dirichlet boundary condition:

u(0) = u(1) = 0, [32]

where ε is a small parameter and b is sufficiently smooth such that, for some two constants γ0 and

γ̄

0 < γ2
0 ≤ bs(x, s) ≤ γ̄2, ∀ (x, s) ∈ [0, 1]× R. [33]

Under the previous stated assumption on b, problem [31]–[32] has a unique solution which exhibits

sharp boundary layers of width O(ε ln(1/ε)) (maybe this result can be found in [ROO 08])

Consider an arbitrary mesh {xi}Ni=0 with 0 = x0 < x1 < . . . < xN = 1, and we define the local

mesh size hi := xi − xi−1, for i = 1, . . . , N .

The finite difference scheme is defined by

LN uN
i = −ε2δ2uN

i + b(xi, u
N
i ) = 0, i ∈ J1, N − 1K, [34]

with

uN
0 = uN

N = 0, [35]

where

δ2uN
i =

2

hi + hi+1

„
uN

i+1 − uN
i

hi+1
− ui − uN

i−1

hi

«
. [36]

There exists a unique solution for [34]–[35].

2.1 Some interesting estimates and questions to be answered

A first key in the article is the following estimate given [KOP1 07]:

max
x∈[0,1]

|uN (x)− u(x)| ≤ C̄ max{M̄N
i hi}2, [37]

where

M̄N
i = min{|δ2uN

i−1|, |δ2uN
i |}

1
2 +

“
|δ3uN

i |
” 1

2
+ 1, [38]

which uses the discrete third derivative δ3uN
i =

δ2ui − δ2uN
i−1

hi
.

In [KOP2 07], it is proved that

C̄ max{M̄N
i hi} ≤ C max{ ¯̄MN

i hi}, [39]

where

¯̄MN
i = min{|δ2uN

i−1|, |δ2uN
i |}

1
2 + 1, [40]
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So the third discrete derivative which appears in [38] is unecessary.

Thanks to [38], [39], and [40], we look then for mesh for mesh {xi} and a computational solution

such that ¯̄MN
i hi ≤ CN−1 and therefore the order of the computational solution is uniformy two.

To look for a mesh {xi} such that ¯̄MN
i hi ≤ CN−1, the authors used the so called monitor function

equidistribution:

Definition 2.1 (Monitor function equidistribution) Let N be a given integer. A mesh {xi}Ni=0 is

said to equidistribute a monitor function M(x) > 0 ifZ xi+1

xi

M(x)dx =
1

N

Z 1

0

M(x)dx, ∀i ∈ J1, NK. [41]

The a posteriori error estimate [37] with [40] suggest to consider M(x) = MN
i , for all x ∈ [xi, xi+1]

with MN
i = ¯̄MN

i , for all x ∈ [xi, xi+1]. So, in this case, [41] is equivalent to

MN
i hi =

1

N

NX
j=1

MN
j hj , ∀i ∈ J1, NK. [42]

Note that a mesh {xi}Ni=0 implies {uN
i }Ni=0 given by [34]–[35]. This suggests the following problem:

Equidistribution problem: Find {xi}Ni=0 and {uN
i }Ni=0, with {uN

i }Ni=0 is computed from {xi}Ni=0

thanks to [34]–[35], such that [42] holds.

It is useful to note also that {xi}Ni=0 and {uN
i }Ni=0 are a priori uknown. Consequently, even [31] is

linear, the equidistribution problem [42], which requires the simultaneous solution for [34] and [42],

is nonlinear. The following questions to be answered in the article [CHA 11]:

1. Does the equidistribution problem have a solution?

2. Is there an algorithm to solve the stated equidistribution problem which yields to second

order accurate?
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