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1 To be read!!

In the same context of the present article, that is the use of piecewise high order polynomes for

singularly perturbed equations, there is already article appeared in 2006:

Liu S., Xu Y. Galerkin methods based on Hermite splines dor singular perturbation problems.

SIAM J Numer Anal, 43 2607–2623, 2006.

2 Equation to be solved

It is considered the following fourth order linear operator:

(Lεu)(x) = ε2u(4)(x)−
`
p(x)u′(x)

´′
+ q(x)u′(x) + r(x)u(x) [1]

and the following boundary value problem of fourth–order

(Lεu) (x) = f(x), x ∈ (0, 1), [2]

u(j)(0) = u(j)(1), j ∈ {0, 1}. [3]

Setting the following notations:

•

a(u, v) = (u′′, v′′), [4]

•

b(u, v) =
“
−
`
p(x)u′

´′
+ qu′ + ru, v

”
, [5]

•

Aε(u, v) = ε2a(u, v) + b(u, v). [6]
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The variational problem for [2]–[3] is: Find u ∈ V = H2
0 (I) such that

Aε(u, v) = (f, v), ∀v ∈ V. [7]

Of course, we should assume some conditions on the data p, q, f, r in order that [7] admits a unique

solution, namely

p ∈ W1,∞(I), q, r ∈ L∞(I). [8]

p(x) ≥ pmin > 0, a. e. x ∈ I. [9]

Remark 1

• It useful to remark that u ∈ V = H2
0 (I) yields that u(0) = u(1) = 0 and u′(0) = u′(1) = 0

which give the boundary conditions [3].

• Was useful if the authors mentioned how to justify the ellpiticity of the operator Aε(·, ·) given

by [6], and then using Lax–Milgram,we prove the existence and uniqueness of the solution

u ∈ H2
0 (I) of problem [7]. Indeed:

Aε(u, u) = ε2a(u, u) + b(u, u)

= ε2(u′′, u′′) + b(u, u)

= ε2
Z
I

`
u′′
´2

(x)dx+ b(u, u) [10]

Let us now compute the second term in the right hand side of [10]

b(u, u) =
“
−
`
pu′
´′
, u
”

+
`
qu′, u

´
+ (ru, u)

=
`
p(x)u′, u′

´
+
`
qu′, u

´
+ (ru, u)

=

Z
I

p(x)
`
u′
´2

(x)dx+

Z
I

q(x)u′(x)u(x)dx+

Z
I

r(x)u2(x)dx

=

Z
I

p(x)
`
u′
´2

(x)dx+
1

2

Z
I

q(x)
`
u2´′ (x)dx+

Z
I

r(x)u2(x)dx

=

Z
I

p(x)
`
u′
´2

(x)dx+

Z
I

„
r(x)− 1

2
q(x)′

«
u2(x)dx

≥ pmin

Z
I

`
u′
´2

(x)dx+

Z
I

„
r(x)− 1

2
q(x)′

«
u2(x)dx [11]

This last inequality with [11] yields

Aε(u, u) ≥ ε2
Z
I

`
u′′
´2

(x)dx+ pmin

Z
I

`
u′
´2

(x)dx+

Z
I

„
r(x)− 1

2
q(x)′

«
u2(x)dx. [12]

Perhaps there is other condition on q and r, e.g.,

q ∈W 1,∞(I) and r(x)− 1

2
q′(x) ≥ 0, for a. e. x ∈ I. [13]

The bilinear form b(·, ·) defined by [5] could be also defined by

b(u, v) =
`
p(x)u′, v′

´
+
`
qu′ + ru, v

´
. [14]
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3 Finite volume approximation for [7]

To define a finite volume approximation for [7], we have to define two spaces. The first space is the

so called the trial space in which the finite volume approximate solution (is expected to approximate

the solution u of [7]). The second space is the so called the test space which approximates the space

V.

3.1 Trial space

Let us consider a one dimensional finite volume mesh TN given by a set of points 0 = x0 < x1 <

. . . < xN . For any i ∈ ZN = {1, 2, . . . , N}, we set Ii = (xi−1, xi) and hi = xi − xi−1.

The trial space UN is defined as the Hermite cubic element space with respect to TtN , namely a

function uN belongs to the space UN means that

1. uN ∈ C1(I) and u
(j)
N (0) = u

(j)
N (1) for all j ∈ {0, 1}

2. uN |Ii ∈ P3(Ii), for all i ∈ ZN .

A basis for UN could be defined as:

ϕi,0 =

8>>><>>>:
(1− h−1

i (xi − x))2(2h−1
i (xi − x) + 1), x ∈ [xi−1, xi],

(1− h−1
i+1(x− xi))2(2h−1

i+1(x− xi) + 1), x 6∈ (xi, xi+1],

0, x 6∈ [xi−1, xi+1],

[15]

ϕi,1 =

8>>><>>>:
(x− xi)(h−1

i (xi − x)− 1)2, x ∈ [xi−1, xi],

(x− xi)(h−1
i+1(x− xi)− 1)2, x 6∈ (xi, xi+1],

0, x 6∈ [xi−1, xi+1].

[16]

The above basis allows us to write the functions belonging to UN as follows, for all uN ∈ UN (Recall

that ZN−1 = {1, 2, . . . , N − 1} and that u(0) = u′(0) = u(1) = u′(1) = 0.):

uN (x) =
X

ZN−1

`
uN (xi)ϕi,0(x) + u′N (xi)ϕi,1(x)

´
. [17]

As we can see that dimUN = 2(N − 1).

3.2 Test space

The dual mesh T ?N of TN is given by 0 = x0 < x 1
2
< . . . < xN−1/2 < xN = 1, where xi−1/2 =

(xi−1 + xi)/2, for all i ∈ ZN . The trial space VN is the piecewise linear polynomial space w.r.t. the

mesh T ?N .

The basis of T ?N is defined by, for all j ∈ ZN−1:

ψi,0 =

8<: 1, x ∈ [xi− 1
2
, xi+ 1

2
],

0, x 6∈ [xi− 1
2
, xi+ 1

2
],

[18]

ψi,1 =

8<: x− xi, x ∈ [xi− 1
2
, xi+ 1

2
],

0, x 6∈ [xi− 1
2
, xi+ 1

2
].

[19]
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Since the bilinear form a (·, ·) is not defined on UN × VN , it is convenient to find an approximate

bilinear form ã (·, ·) for a (·, ·) and defined on UN × VN . Since {ψi,0, ψi,1, i ∈ ZN−1} spanned VN ,

it suffices then to define ã (u, ψi,0) and ã (u, ψi,1) for all i ∈ ZN−1. To define these last quantities,

we assume that u is in H4(I), and then we set ã(u, ψi,0) = a(u, ψi,0) and ã(u, ψi,1) = a(u, ψi,1)

ã(u, ψi,0) = a(u, ψi,0)

=

Z 1

0

u(4)(x)ψi,0(x)dx

=

Z x
i+ 1

2

x
i− 1

2

u(4)(x)dx

= u(3)(xi+ 1
2
)− u(3)(xi− 1

2
). [20]

and, using an integration by parts

ã(u, ψi,1) = a(u, ψi,1)

=

Z 1

0

u(4)(x)ψi,1(x)dx

=

Z x
i+ 1

2

x
i− 1

2

xu(4)(x)dx− xi
Z x

i+ 1
2

x
i− 1

2

u(4)(x)dx

= xi+ 1
2
u(3)(xi+ 1

2
)− xi− 1

2
u(3)(xi− 1

2
)− u(2)(xi+ 1

2
) + u(2)(xi− 1

2
)

− xiu
(3)(xi+ 1

2
) + xiu

(3)(xi− 1
2
)

=
hi+1

2
u(3)(xi+ 1

2
)− hi

2
u(3)(xi− 1

2
) + u(2)(xi− 1

2
)− u(2)(xi+ 1

2
), [21]

Since xi+ 1
2
∈ [xi, xi+1] and u|[xi,xi+1] ∈ P3, for all u ∈ UN , then the previous expressions [20]-[21]

are well defined for all u ∈ UN .

From the computations [20]-[21], we deduce that

ã(u, v) = (u(4), v), ∀(u, v) ∈ H4(I)× VN . [22]

Let us define now the bilinear form Ã

Ãε(u, v) = ε2ã(u, v) + b(u, v). [23]

The finite element finite volume solution is defined by : find uN ∈ UN such that

Ãε(uN , v) = (f, v), ∀v ∈ VN . [24]

4 Optimal mesh

The optimal mesh is contructed thanks to a known expression for the exact solution u of [2]–[3].

Thanks to a known result, the solution of [2]–[3] can be expressed as

u = E + F + G, [25]
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where E , F , and G are smooth functions satisfy: for all j = 0, 1, . . ., there exists some two constants

independent of the singular parameter ε such that

|E(j)(x)| ≤ c, |F(x)| ≤ cε1−je−αx/ε, |G(x)| ≤ cε1−je−α(1−x)/ε. [26]

It is introduced the following generating function h0(x) =
ε

N
e
αx
4ε , and the primal mesh is controled

using this generating function as follows:

hi ≤ min


h0(xi−1), h0(1− xi),

1

N

ff
= min


ε

N
e
αxi−1

4ε ,
ε

N
e
α(1−xi)

4ε ,
1

N

ff
[27]

5 The main result

The main result of this paper is the following Theorem

Theorem 5.1 Let u and uN be the solutions of [7] and [24] respectively. There exists a positive

constant C independent of the mesh parameters and the singular parameter ε such

˘
ε2‖u− uN‖22 + ‖u− uN‖21

¯ 1
2 ≤ CN−2, [28]

for a sufficiently large N .

Remark 2 Estimate [28] yields a uniform estimate w.r.t. to ε in the energy norm ‖ · ‖1
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