A brief Report on the article "High order finite volume methods for singular perturbation problems"
 CHEN Zhong Ying, He ChongNan, and WU Bin

Science in China Series A: Mathematics, August. 2008, Vol. 51, No. 8, 1391-1400, 2008.

Report done by Professor Bradji, Abdallah
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji

1 To be read!!

In the same context of the present article, that is the use of piecewise high order polynomes for singularly perturbed equations, there is already article appeared in 2006:
Liu S., Xu Y. Galerkin methods based on Hermite splines dor singular perturbation problems. SIAM J Numer Anal, 43 2607-2623, 2006.

2 Equation to be solved

It is considered the following fourth order linear operator:

$$
\begin{equation*}
\left(\mathcal{L}_{\varepsilon} u\right)(x)=\varepsilon^{2} u^{(4)}(x)-\left(p(x) u^{\prime}(x)\right)^{\prime}+q(x) u^{\prime}(x)+r(x) u(x) \tag{1}
\end{equation*}
$$

and the following boundary value problem of fourth-order

$$
\begin{align*}
& \left(\mathcal{L}_{\varepsilon} u\right)(x)=f(x), x \in(0,1), \tag{2}\\
& u^{(j)}(0)=u^{(j)}(1), j \in\{0,1\} . \tag{3}
\end{align*}
$$

Setting the following notations:
-

$$
\begin{equation*}
a(u, v)=\left(u^{\prime \prime}, v^{\prime \prime}\right), \tag{4}
\end{equation*}
$$

-

$$
\begin{equation*}
b(u, v)=\left(-\left(p(x) u^{\prime}\right)^{\prime}+q u^{\prime}+r u, v\right) \tag{5}
\end{equation*}
$$

-

$$
\begin{equation*}
A_{\varepsilon}(u, v)=\varepsilon^{2} a(u, v)+b(u, v) \tag{6}
\end{equation*}
$$

The variational problem for $22-3$ is: Find $u \in \mathcal{V}=H_{0}^{2}(I)$ such that

$$
\begin{equation*}
A_{\varepsilon}(u, v)=(f, v), \forall v \in \mathcal{V} \tag{7}
\end{equation*}
$$

Of course, we should assume some conditions on the data p, q, f, r in order that 7 admits a unique solution, namely

$$
\begin{gather*}
p \in \mathcal{W}^{1, \infty}(I), q, r \in L^{\infty}(I) \tag{8}\\
p(x) \geq p_{\min }>0, \text { a. e. } x \in I \tag{9}
\end{gather*}
$$

Remark 1

- It useful to remark that $u \in \mathcal{V}=H_{0}^{2}(I)$ yields that $u(0)=u(1)=0$ and $u^{\prime}(0)=u^{\prime}(1)=0$ which give the boundary conditions 3 .
- Was useful if the authors mentioned how to justify the ellpiticity of the operator $A_{\varepsilon}(\cdot, \cdot)$ given by 6], and then using Lax-Milgram, we prove the existence and uniqueness of the solution $u \in H_{0}^{2}(I)$ of problem 7. Indeed:

$$
\begin{align*}
A_{\varepsilon}(u, u) & =\varepsilon^{2} a(u, u)+b(u, u) \\
& =\varepsilon^{2}\left(u^{\prime \prime}, u^{\prime \prime}\right)+b(u, u) \\
& =\varepsilon^{2} \int_{I}\left(u^{\prime \prime}\right)^{2}(x) d x+b(u, u) \tag{10}
\end{align*}
$$

Let us now compute the second term in the right hand side of 10

$$
\begin{align*}
b(u, u) & =\left(-\left(p u^{\prime}\right)^{\prime}, u\right)+\left(q u^{\prime}, u\right)+(r u, u) \\
& =\left(p(x) u^{\prime}, u^{\prime}\right)+\left(q u^{\prime}, u\right)+(r u, u) \\
& =\int_{I} p(x)\left(u^{\prime}\right)^{2}(x) d x+\int_{I} q(x) u^{\prime}(x) u(x) d x+\int_{I} r(x) u^{2}(x) d x \\
& =\int_{I} p(x)\left(u^{\prime}\right)^{2}(x) d x+\frac{1}{2} \int_{I} q(x)\left(u^{2}\right)^{\prime}(x) d x+\int_{I} r(x) u^{2}(x) d x \\
& =\int_{I} p(x)\left(u^{\prime}\right)^{2}(x) d x+\int_{I}\left(r(x)-\frac{1}{2} q(x)^{\prime}\right) u^{2}(x) d x \\
& \geq p_{\min } \int_{I}\left(u^{\prime}\right)^{2}(x) d x+\int_{I}\left(r(x)-\frac{1}{2} q(x)^{\prime}\right) u^{2}(x) d x \tag{11}
\end{align*}
$$

This last inequality with 11 yields

$$
\begin{equation*}
A_{\varepsilon}(u, u) \geq \varepsilon^{2} \int_{I}\left(u^{\prime \prime}\right)^{2}(x) d x+p_{\min } \int_{I}\left(u^{\prime}\right)^{2}(x) d x+\int_{I}\left(r(x)-\frac{1}{2} q(x)^{\prime}\right) u^{2}(x) d x . \tag{12}
\end{equation*}
$$

Perhaps there is other condition on q and r, e.g.,

$$
\begin{equation*}
q \in W^{1, \infty}(I) \text { and } r(x)-\frac{1}{2} q^{\prime}(x) \geq 0, \text { for a. e. } x \in I . \tag{13}
\end{equation*}
$$

The bilinear form $b(\cdot, \cdot)$ defined by 5 could be also defined by

$$
\begin{equation*}
b(u, v)=\left(p(x) u^{\prime}, v^{\prime}\right)+\left(q u^{\prime}+r u, v\right) . \tag{14}
\end{equation*}
$$

3 Finite volume approximation for 7

To define a finite volume approximation for 7, we have to define two spaces. The first space is the so called the trial space in which the finite volume approximate solution (is expected to approximate the solution u of 7). The second space is the so called the test space which approximates the space \mathcal{V}.

3.1 Trial space

Let us consider a one dimensional finite volume mesh \mathcal{T}_{N} given by a set of points $0=x_{0}<x_{1}<$ $\ldots<x_{N}$. For any $i \in \mathbb{Z}_{N}=\{1,2, \ldots, N\}$, we set $I_{i}=\left(x_{i-1}, x_{i}\right)$ and $h_{i}=x_{i}-x_{i-1}$.
The trial space \mathcal{U}_{N} is defined as the Hermite cubic element space with respect to $T t_{N}$, namely a function u_{N} belongs to the space \mathcal{U}_{N} means that

1. $u_{N} \in \mathcal{C}^{1}(I)$ and $u_{N}^{(j)}(0)=u_{N}^{(j)}(1)$ for all $j \in\{0,1\}$
2. $\left.u_{N}\right|_{I_{i}} \in \mathcal{P}_{3}\left(I_{i}\right)$, for all $i \in \mathbb{Z}_{N}$.

A basis for \mathcal{U}_{N} could be defined as:

$$
\begin{gather*}
\varphi_{i, 0}=\left\{\begin{array}{l}
\left(1-h_{i}^{-1}\left(x_{i}-x\right)\right)^{2}\left(2 h_{i}^{-1}\left(x_{i}-x\right)+1\right), x \in\left[x_{i-1}, x_{i}\right], \\
\left(1-h_{i+1}^{-1}\left(x-x_{i}\right)\right)^{2}\left(2 h_{i+1}^{-1}\left(x-x_{i}\right)+1\right), x \notin\left(x_{i}, x_{i+1}\right], \\
0, x \notin\left[x_{i-1}, x_{i+1}\right],
\end{array}\right. \tag{15}\\
\varphi_{i, 1}=\left\{\begin{array}{l}
\left(x-x_{i}\right)\left(h_{i}^{-1}\left(x_{i}-x\right)-1\right)^{2}, x \in\left[x_{i-1}, x_{i}\right], \\
\left(x-x_{i}\right)\left(h_{i+1}^{-1}\left(x-x_{i}\right)-1\right)^{2}, x \notin\left(x_{i}, x_{i+1}\right], \\
0, x \notin\left[x_{i-1}, x_{i+1}\right] .
\end{array}\right. \tag{16}
\end{gather*}
$$

The above basis allows us to write the functions belonging to \mathcal{U}_{N} as follows, for all $u_{N} \in \mathcal{U}_{N}$ (Recall that $\mathbb{Z}_{N-1}=\{1,2, \ldots, N-1\}$ and that $u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0$.):

$$
\begin{equation*}
u_{N}(x)=\sum_{\mathbb{Z}_{N-1}}\left(u_{N}\left(x_{i}\right) \varphi_{i, 0}(x)+u_{N}^{\prime}\left(x_{i}\right) \varphi_{i, 1}(x)\right) \tag{17}
\end{equation*}
$$

As we can see that $\operatorname{dim} \mathcal{U}_{N}=2(N-1)$.

3.2 Test space

The dual mesh \mathcal{T}_{N}^{\star} of \mathcal{T}_{N} is given by $0=x_{0}<x_{\frac{1}{2}}<\ldots<x_{N-1 / 2}<x_{N}=1$, where $x_{i-1 / 2}=$ $\left(x_{i-1}+x_{i}\right) / 2$, for all $i \in \mathbb{Z}_{N}$. The trial space \mathcal{V}_{N} is the piecewise linear polynomial space w.r.t. the mesh \mathcal{T}_{N}^{\star}.
The basis of \mathcal{T}_{N}^{\star} is defined by, for all $j \in \mathbb{Z}_{N-1}$:

$$
\begin{gather*}
\psi_{i, 0}=\left\{\begin{array}{c}
1, x \in\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], \\
0, x \notin\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right],
\end{array}\right. \tag{18}\\
\psi_{i, 1}=\left\{\begin{array}{l}
x-x_{i}, x \in\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], \\
0, x \notin\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right] .
\end{array}\right. \tag{19}
\end{gather*}
$$

Since the bilinear form $a(\cdot, \cdot)$ is not defined on $\mathcal{U}_{N} \times \mathcal{V}_{N}$, it is convenient to find an approximate bilinear form $\tilde{a}(\cdot, \cdot)$ for $a(\cdot, \cdot)$ and defined on $\mathcal{U}_{N} \times \mathcal{V}_{N}$. Since $\left\{\psi_{i, 0}, \psi_{i, 1}, i \in \mathbb{Z}_{N-1}\right\}$ spanned \mathcal{V}_{N}, it suffices then to define $\tilde{a}\left(u, \psi_{i, 0}\right)$ and $\tilde{a}\left(u, \psi_{i, 1}\right)$ for all $i \in \mathbb{Z}_{N-1}$. To define these last quantities, we assume that u is in $H^{4}(I)$, and then we set $\tilde{a}\left(u, \psi_{i, 0}\right)=a\left(u, \psi_{i, 0}\right)$ and $\tilde{a}\left(u, \psi_{i, 1}\right)=a\left(u, \psi_{i, 1}\right)$

$$
\begin{align*}
\tilde{a}\left(u, \psi_{i, 0}\right) & =a\left(u, \psi_{i, 0}\right) \\
& =\int_{0}^{1} u^{(4)}(x) \psi_{i, 0}(x) d x \\
& =\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} u^{(4)}(x) d x \\
& =u^{(3)}\left(x_{i+\frac{1}{2}}\right)-u^{(3)}\left(x_{i-\frac{1}{2}}\right) . \tag{20}
\end{align*}
$$

and, using an integration by parts

$$
\begin{align*}
\tilde{a}\left(u, \psi_{i, 1}\right) & =a\left(u, \psi_{i, 1}\right) \\
& =\int_{0}^{1} u^{(4)}(x) \psi_{i, 1}(x) d x \\
& =\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} x u^{(4)}(x) d x-x_{i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} u^{(4)}(x) d x \\
& =x_{i+\frac{1}{2}} u^{(3)}\left(x_{i+\frac{1}{2}}\right)-x_{i-\frac{1}{2}} u^{(3)}\left(x_{i-\frac{1}{2}}\right)-u^{(2)}\left(x_{i+\frac{1}{2}}\right)+u^{(2)}\left(x_{i-\frac{1}{2}}\right) \\
& -x_{i} u^{(3)}\left(x_{i+\frac{1}{2}}\right)+x_{i} u^{(3)}\left(x_{i-\frac{1}{2}}\right) \\
& =\frac{h_{i+1}}{2} u^{(3)}\left(x_{i+\frac{1}{2}}\right)-\frac{h_{i}}{2} u^{(3)}\left(x_{i-\frac{1}{2}}\right)+u^{(2)}\left(x_{i-\frac{1}{2}}\right)-u^{(2)}\left(x_{i+\frac{1}{2}}\right), \tag{21}
\end{align*}
$$

Since $x_{i+\frac{1}{2}} \in\left[x_{i}, x_{i+1}\right]$ and $\left.u\right|_{\left[x_{i}, x_{i+1}\right]} \in \mathcal{P}_{3}$, for all $u \in \mathcal{U}_{N}$, then the previous expressions 20-21 are well defined for all $u \in \mathcal{U}_{N}$.
From the computations 20-21, we deduce that

$$
\begin{equation*}
\tilde{a}(u, v)=\left(u^{(4)}, v\right), \forall(u, v) \in H^{4}(I) \times \mathcal{V}_{N} \tag{22}
\end{equation*}
$$

Let us define now the bilinear form \tilde{A}

$$
\begin{equation*}
\tilde{A}_{\varepsilon}(u, v)=\varepsilon^{2} \tilde{a}(u, v)+b(u, v) . \tag{23}
\end{equation*}
$$

The finite element finite volume solution is defined by : find $u_{N} \in \mathcal{U}_{N}$ such that

$$
\begin{equation*}
\tilde{A}_{\varepsilon}\left(u_{N}, v\right)=(f, v), \forall v \in \mathcal{V}_{N} . \tag{24}
\end{equation*}
$$

4 Optimal mesh

The optimal mesh is contructed thanks to a known expression for the exact solution u of 2 - 3 . Thanks to a known result, the solution of 2-23 can be expressed as

$$
\begin{equation*}
u=\mathcal{E}+\mathcal{F}+\mathcal{G}, \tag{25}
\end{equation*}
$$

where \mathcal{E}, \mathcal{F}, and \mathcal{G} are smooth functions satisfy: for all $j=0,1, \ldots$, there exists some two constants independent of the singular parameter ε such that

$$
\begin{equation*}
\left|\mathcal{E}^{(j)}(x)\right| \leq c,|\mathcal{F}(x)| \leq c \varepsilon^{1-j} e^{-\alpha x / \varepsilon},|\mathcal{G}(x)| \leq c \varepsilon^{1-j} e^{-\alpha(1-x) / \varepsilon} . \tag{26}
\end{equation*}
$$

It is introduced the following generating function $h^{0}(x)=\frac{\varepsilon}{N} e^{\frac{\alpha x}{4 \varepsilon}}$, and the primal mesh is controled using this generating function as follows:

$$
\begin{align*}
h_{i} & \leq \min \left\{h^{0}\left(x_{i-1}\right), h^{0}\left(1-x_{i}\right), \frac{1}{N}\right\} \\
& =\min \left\{\frac{\varepsilon}{N} e^{\frac{\alpha x_{i-1}}{4 \varepsilon}}, \frac{\varepsilon}{N} e^{\frac{\alpha\left(1-x_{i}\right)}{4 \varepsilon}}, \frac{1}{N}\right\} \tag{27}
\end{align*}
$$

5 The main result

The main result of this paper is the following Theorem

Theorem 5.1 Let u and u_{N} be the solutions of 7 and 24 respectively. There exists a positive constant C independent of the mesh parameters and the singular parameter ε such

$$
\begin{equation*}
\left\{\varepsilon^{2}\left\|u-u_{N}\right\|_{2}^{2}+\left\|u-u_{N}\right\|_{1}^{2}\right\}^{\frac{1}{2}} \leq C N^{-2} \tag{28}
\end{equation*}
$$

for a sufficiently large N.

Remark 2 Estimate 28 yields a uniform estimate w.r.t. to ε in the energy norm $\|\cdot\|_{1}$

