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Abstract: The authors provide us with a new technique to analyse the convergence of the error

interpolation of anisotropic finite element methods.

In their technique, the error interpolation is obtained thanks to the use of Newton’s formula of

the interpolation polynomials on the reference element. The error interpolation on general element

could be obtained, as usual thanks to transformation inequalities of function seminorms between a

general element and the reference element. These interpolation errors are used by the authors to

derive some error estimates of anisotropic finite element methods.

1 Introduction and statement of the main result of the

article

It is known that in conforming finite element method, i.e. the finite element space Vh is included

in the solution space V of the original variational space, the error is reduced to the interpolation

error of the finite element space thanks to Cea’s Lemma, see [CIA 78].

For non–conforming finite elements, Vh 6⊂ V, the consistent error is, at least, reduced to the inter-

polation error.

Therefore the interpolation error is a basic fact to derive the error estimate in finite element meth-

ods.

To derive interpolation error, we need two key points:

• transformation inequalities of function semi–norms between a general element and a reference

element,

• interpolation error on the reference element.

It is needed to compute interpolation error on the reference element the following key points that:

• the finite element is affine or equivalent,

• interpolation operator is bounded,
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• interpolation operator is reduced to the identity operator over some polynomial space

After we compute the error on the reference element, we pass using transformation inequalities of

function semi–norms to the interpolation error on the elements forming the triangulation. In the

interpolation error on an element, it appears, in general, constant depends on the ratio between of

the diameter of the element and the biggest ball included in that element. Therefore, we need to

bound this ratio in uniform with the mesh parameters. The he ratio is bounded in uniform with

the mesh parameter, this condition is called the regular condition, see for instance in [CIA 78], and

nondegenerate condition, see for instance [BRE 94, Page 106–107, (4.4.16)].

The elements which do not satisfy the regular condition are called isotropic elements.

The regular condition is sometime equivalent to the minimal angle condition, see [CIA 78, Page

128].

It is found that the regular condition is not necessary to obtain the convergence of the interpolation

error, see [BAB 76].

There are many works devoted to analyze the anisotropic finite element methods. The path followed

in almost of these works is based on two points mentioned above, i.e., getting the error in a reference

element and then, we use some inequalities between semi–norms, to obtain the error on a general

element.

I think that the path followed by the authors is the same one followed in the previous stated

literature, but the their idea is to use Newton’s formula concerning polynomial interpolation. With

the use of Newton’s formula, they could derive an error on reference element.

To derive error estimate on the reference element, the authors use the following Lemma (according

to the authors, the application of this Lemma could be replaced by the application of the classical

interpolation theorem)

Lemma 1.1 (Assumption to be assumed for interpolation error on reference element) Let α be a

multi–index, |α| = m and bT be a reference element. Let bP be the shape function space and bI:

Ck( bT )→ bP. Suppose that the following property holds:

bI(bp) = bp, ∀bp ∈ bPl( bT ). [1]

Assume that r = dim bDα bP. Suppose that bI ∈ L(W l+1,p( bT ),Wm,q( bT )), W l+1,p( bT ) ↪→Wm,q( bT ).

If there is an operator bS :W l+1−m,p( bT )→ bDα bP, bS ∈ L(W l+1−m,p( bT ), Lq( bT )) such that

bDαbIbv = bS bDαbv. [2]

Then the following interpolation error holds

‖ bDα(bv − bIbv)‖0,q, bT ≤ C(bI, bT )| bDαbv|l+1−m,p, bT . [3]

Using Newton’s formula of the interpolation error, it is proved the following anisotropic inter-

polation error
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Lemma 1.2 (Interpolation error on the reference element [0, 1]2 and [0, 1]3) There exists a constantbC such that

‖ bDα(bv − bΠjbv)‖L2( bT ) ≤ bC| bDαbv|Hm+1−|α|( bT ), j ∈ {2, 3}, |α| ≤ m, [4]

and

‖ bDα(bv − bLjbv)‖L2( bT ) ≤ bC| bDαbv|Hm+1−|α|( bT ), j ∈ {2, 3}, |α| ≤ m, [5]

where bΠ2 (resp. bΠ3) is the bi–m interpolation operator on [0, 1]2 (resp.the bi–m interpolation

operator on [0, 1]3) and bL2 (resp. bL3) is the Hermite interpolation operator on [0, 1]2 by polynomials

Q2m−1 (resp.the bi–m interpolation operator on [0, 1]3 by polynomials Q2m−1 ).

Thanks to the previous Lemma, the authors obtained the following Theorem:

Theorem 1.3 (Interpolation error on a general ractangle element) There exists a constant C inde-

pendent of the regular condition such that

‖v −Πjv‖Hk(T ) ≤ C
X

|β|=m+1−k

hβT |D
αv|Hk(T ), j ∈ {2, 3}, [6]

and

‖v − Ljv‖Hk(T ) ≤ C
X

|β|=2m−k

hβT |D
αv|Hk(T ), j ∈ {2, 3}, [7]

where Πj and Lj are given in the previous Lemma and hβT = hβ1
1 hβ2

2 , when T is a rectangle with

sides of lengths h1 and h2, hβT = hβ1
1 hβ2

2 hβ3
3 , when T is a cube sides of lengths h1, h2 and h3.

Remark 1 The estimates of the previous Theorem yields

‖v −Πjv‖Hk(T ) ≤ Ch
m+1−k|v|Hm+1(T ), j ∈ {2, 3}, [8]

and

‖v − Ljv‖Hk(T ) ≤ Ch
2m−k|v|H2m(T ), j ∈ {2, 3}, [9]

where h = maxi hi

Theorem 1.4 (Interpolation error on a general triangle or tetrahedron element) There exists a

constant C independent of the regular condition such that

‖v − Ijv‖Hk(T ) ≤ C‖B
−T
0

0@ X
|β|=m+1−k

l2βT |D
αv|Hk

l
(T )

1A 1
2

, j ∈ {2, 3}, [10]

where B−T0 is bounded by
1

sin θ
for triangle T and by

6

sinα0 sinα1 sinϕ1
for tetrahedron T and

θ is some angle in T and

Πj and Lj are given in the previous Lemma and hβT = hβ1
1 hβ2

2 , when T is a rectangle with sides

of lengths h1 and h2, hβT = hβ1
1 hβ2

2 hβ3
3 , when T is a cube with sides of lengths h1, h2 and h3; and

|w|2Hk
l
(T ) =

X
|β|=

‖Dβ
l w‖

2
L2(T ), [11]

where Dβ
l is some directional derivative.
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