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Abstract: The authors consider the biquadratic finite volume element approximation for the Pois-

son’s equation on the rectangular domain Ω = (0, 1)2. The primal mesh is performed using a

ractangular partition. The control volumes are chosen in such a way that the vertices are stress

points of the primal mesh. In order to solve the scheme more efficiently, the authors wrote the bi-

quadratic finite volume element scheme as a tensor product form and used the alternating direction

technique to solve it.

Thanks to the fact that the primal mesh satisfies a superconvergence property in the interpo-

latory approximation, the authors prove that the numerical gradients of the method have h3–

superconvergence order at optimal stress points. Using the dual argument technique, the authors

also prove that the convergence order in L2–norm is h4 at nodal points. A numerical example is

presented to support the theoretical results.
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1 Basic knowledge and motivation

1. (definition): Finite volume element methods, biefly FVEM (called also box methods in its early

time and generalized difference methods in China) discretize integral form of conservation law

of differential equations by chosing linear or bilinear finite element spaces as trial spaces.

2. (uses...): FVEM have been widely used in the numerical approximation of partial differential

equations because they keep the conservation law of mass or energy.

3. (interpolation...): both finite element and finite volume element methods are both based on

the interpolations:
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(a) (order of approximation): numerical derivatives have only order k for interpolating

polynomials of order k.

(b) (stress points): the previous item does not exclude the possiblity that the approximation

of derivatives may have higher order at some points called stress points.

(c) (superconvergence): based on the stress points, superconvergence property has been

intensively studied.

2 Oulines of the article

2.1 Idea behind the article: stress points

Let consider the reference element K̂ = [−1, 1]2. Let û be a given continuous function defined on

K̂ = [−1, 1]2. π̂2 û denotes the biquadratic interpolation of û, i.e.

1. π̂2 û ∈ Q2(K̂)

π̂2 û =
X

0≤α,β≤ 2

ξαηβ

2.

π̂2 û(â) = û(â), ∀ â ∈ {(−1, η), (0, η), (1, η); η ∈ {−1, 0, 1}}

Let us consider

ξ1 = − 1√
3
, ξ2 =

1√
3

[1]

η1 = − 1√
3
, η2 =

1√
3

[2]

Some computation leads to

∂ π̂2 û

∂ ξ
(ξ1, η1) =

∂ û

∂ ξ
(ξ1, η1) +

∂4 û

∂ ξ4
(ξ̄, η̄), [3]

where (ξ̄, η̄) is some point in the neigbouring of (ξ1, η1).

The previous stated results imply that on an element K, we have

∂ π2 u

∂ x
(x1, y1) =

∂ u

∂ x
(x1, y1) + 0(h3), [4]

where h is the mesh size.

2.2 Control volumes

Let Ω = (0, 1)2 be the domain problem.

For a given rectangular partition Qh for Ω, let us denote by (xi, yj), i(j), i = 0, . . . , 2Nx (j =

0, . . . , 2Ny) denotes the mesh points in x–axis (resp. y–axis). Qh has NxNy elements Eij =

[x2i−2, x2i] × [y2j−2, y2j ]. The center of Eij is (x2j−1, y2j−1). The control volume associated to
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(x2j−1, y2j−1) is the points rectangle formed by the associated points for (ξ1, η1), (ξ1, η2), (ξ2, η1),

and (ξ2, η2) by the usual bilinear transformation between K and K̂.

2.3 Finite volume scheme

Problem is

−∆u(x) = f(x), x ∈ Ω, [5]

with

u(x) = 0, x ∈ ∂Ω. [6]

The finite volume scheme is based on the integration of [5] on each control volume described in

the previous subsecion, and then we consider the finite volume element solution uh as a bilinear

function.

2.4 Superconvergence property

The result [3] is the key of the following result:

1. a bilinear finite volume element approximation for the solution Poisson’s problem

2. the vetices of the control volumes are stress points for the primitive biquadratic interpolation

3. the numerical gradients of the method have h3–superconvergence order at optimal stress

points.

4. the convergence order in L2–norm is h4 at nodal points.
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