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Abstract

This paper deals with the convergence of adaptive finite element methods for second order elliptic

eigenvalue problems. The authors consider the Lagrange finite elements of any degree and they

prove the convergence of the simple as well the multiple eigenvalues under a minimal refinement of

marked elements for all reasonable marking, strategies, and starting from any initial triangulation.

1 Basic knowledge

In many practical applications, it is of interest to find or to approximate the eigenvalues and

eigenfunctions of elliptic equations. Finite element approximations for these problems have been

widely used and analysed under a general framework. Optimal a priori error estimates for the
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eigenvalues and eigenfunctions have been obtained, see e.g. [BAB 89, BAB 91, RAV 83, STR 73]

and the references therein.

Adaptive finite element methods are an effective tool for making an efficient use of the computational

resources; for certain problems, it is even indisponsable to their numerical resolvability. A quite

popular, natural adaptive version of classical finite element methods consists of the following loop:

SOLVE → ESTIMATE → MARK → REFINE,

that is: solve for the finite element solution on the current grid, compute the a posteriori error

estimator, mark with its help elements to be subdivided, and refine the current grid into a new,

finer one. The ultimate goal of adaptive methods is to equidistribute the error and the computational

effort obtaining a sequence of meshes with optimal complexity. Historically, the first step to prove

optimality has always been to understand convergence of adaptive methods. A general result of

convergence for linear problems has been obtained by Morin et al. [MOR 09], where very geenral

conditions on the linear problems and the adaptive methods that guarantee convergence are stated.

The goal of the article under consideration is to analyze the convergence of adaptive finite element

methods for the eigenvalue problem consisting in finding λ ∈ IR, and u 6≡ 0 such that

−∇ · (A∇u) = λB u in Ω and u = 0 on ∂Ω, [1]

under general assumptions on A, B and Ω.

Adaptive finite element method is based on a posteriori error estimators, that are computable

quantities depending on the discrete solution and the data, and indicate a distribution of the error.

2 Problem to be solved

The authors consider the following problem: let Ω ⊂ IRd be a bounded open set with Lipschitz

boundary (in particular Ω could be a polygonal domain if d = 2 and a polyhedral domain if d = 3).

Let a, b : H1
0 (Ω)→ IR be the bilinear forms defined by

a(u, v) =

Z
Ω

A∇u(x) · ∇ v(x)dx, [2]

and

b(u, v) =

Z
Ω

B u(x) v(x)dx, [3]

where A is a piecewise W 1,∞ symmetric matrix valued function which is uniformly positive definite,

i.e. there exist two positive constants a1 and a2 such that

a1|ξ|2 ≤ A(x)ξ· ≤ a2|ξ|2, ∀ ξ ∈ IRd, ∀x ∈ Ω. [4]

and B is a scalar product such that

b1 ≤ B(x) ≤ b2|ξ|2, ∀x ∈ Ω, [5]
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for some two positives constants b1 and b2.

Continuous eigenvalue problem: Find λ ∈ IR and u ∈ H1
0 (Ω) such that8<: a(u, v) = λ b(u, v), ∀ v ∈ H1

0 (Ω)

‖u‖b = 1,
[6]

where ‖u‖2 = b(u, u).

It well known, cf. [BAB 89], that under assumptions on A and B, problem [6] has a countable

sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .↗∞ [7]

and corresponding eigenfunctions

u1, u2, u3, . . . [8]

which can be assumed to satisfy

b(ui, uj) = δij :=

8<: 1, i = j,

0, i 6= j.
[9]

where in the sequence {λj}j∈Z, the value λj is repeaded according to its geometric multiplicity.

Also, the eigenvalue can be characterized as extrema of the Rayleight quotient R(u) =
a(u, v)

b(u, v)
, by

the following relationships:

• Minimum priciple

λ1 = min
u∈H1

0 (Ω)
R(u) = R(u1) [10]

λj = min
u∈Wj

R(u) = R(uj), j = 2, 3, . . . , [11]

where

Wj = {u ∈ H1
0 (Ω), a(u, ui) = 0, ∀ i = 1, . . . , j − 1}. [12]

• Minimum–Maximum priciple

λj = min
Vj⊂H1

0 (Ω), dim Vj=j
max
u∈Vj

R(u) = max
u∈〈{u1,...,uj}〉

R(u), j = 1, 2, . . . [13]

Discrete eigenvalue problem We consider a conforming triangulation T of the domain Ω, that

is a partition of Ω into d–simplices such that if two elements intersect, they do so at a full ver-

tex/edge/face of both elements. For any triangulation S will denote the set of interior sides, where

by side we mean an edge if d = 2 and a face if d = 3. κT will denote the regularity of T , defined as

κT := max
T∈T

diam(T)

ρT
, [14]

A.BRADJI 3



Eight review for ZMATH

where diam(T) is the length of the longest edge of T , and ρT is the radius of the largest ball included

in T . It is also to define the mesh size hT := maxT∈T hT , where hT := |T |
1
d .

Let l ∈ IN be fixed, and let VT be the element space

VT :=
˘
v ∈ H1

0 (Ω) : v|T ∈ Pl(T ), ∀T ∈ T
¯
, [15]

Obviously VT ⊂ H1
0 (Ω) and if T? is a rafinement of T , then VT ⊂ V?. We consider then the

approximation of the continuous eigenvalue problem [6] as follows: Find λT ∈ IR and uT ∈ VT such

that 8<: a(uT , vT ) = λT b(uT , vT ), ∀ vT ∈ VT

‖uT ‖b = 1.
[16]

We have similar results to that of [6]. [16] has a countable sequence of eigenvalues

1, T 0 < λ1,T ≤ λ2,T ≤ λ3,T ≤ . . . ≤ λNT ,T , [17]

where NT := dim VT and corresponding eigenfunctions

u1,T , u1,T , u1,T , . . . , uNT ,T [18]

which can be assumed to satisfy

b(ui,T , uj,T ) = δij . [19]

The discrete eigenvalue can be characterized as extrema of the Rayleight quotient R(u) =
a(u, v)

b(u, v)
,

by the following relationships:

• Minimum priciple

λ1,T = min
uVT
R(u) = R(u1,T ) [20]

λj,T = min
u∈WT

j

R(u) = R(uj,T ), j = 2, 3, . . . , [21]

where

WTj = {u ∈ VT , a(u, ui) = 0, ∀ i = 1, . . . , j − 1}. [22]

• Minimum–Maximum priciple

λj,T = min
Vj,T ⊂VT , dim Vj,T =j

max
u∈Vj,T

R(u) = max
u∈〈{u∈u1,T ,...,uj,T }〉

R(u), j = 1, 2, . . . [23]

3 The main result

Theorem 3.1 Let λk and uk be the eigenvalue and eigenfunction of an adaptive finite element

algorithm described in [GAR 09]. Then, there exists an eigenvalue λ of the continuous problem

such that

lim
k→∞

λk = λ and lim
k→∞

distH1
0 (Ω)(uk,M(λ)) = 0, [24]

where M(λ) denotes the set of all eigenfunctions of the continuous problem corresponding to the

eigenvalue λ.
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