A brief Report on the article [AND 10] "A Zienkiewicz-type finite element applied to fourth-order problems"

A. B. Andreev and M.R. Racheva
Journal of Computational and Applied Mathematics 235 (2010) 348-357.

Report done by Professor Bradji, Abdallah
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji
Written in Thursday 23rd December, 2010

Abstract

The authors consider the biharmonic equation and its associated eigenvalue problem. They present finite element schemes for both problems based on the use of a \mathcal{C}^{0}-nonconforming Zienkiewicz-type triangle elements. The convergence order of the both schemes is one in some discrete Sobolev of order two. It is presented a relatively simple postprocessing method that gives better accuracy for eigenvalues. It is based on a postprocessing technique whereby an additional solving of a source problem on augmented FE space is involved. Numerical examples explaining stated results are presented

Key words and phrases: fourth order equation; biharmonic equation; eigenvalues; finite element methods; nonconforming Zienkiewicz-type triangle elements

Subject classification:65N30; 65N25

1 Basic information, an overview, and some remarks

1. equation solved two main problems are solved, the domain Ω is a thin elastic plate :
(a) equation solved:

$$
\begin{equation*}
\Delta^{2} u(x)=f(x), x \in \Omega \tag{1}
\end{equation*}
$$

with bounday condition

$$
\begin{equation*}
u(x)=u_{\mathbf{n}}(x)=0, x \in \partial \Omega . \tag{2}
\end{equation*}
$$

(b) eigenvalue problem solved:

$$
\begin{equation*}
\Delta^{2} u(x)=\lambda u(x), x \in \Omega, \tag{3}
\end{equation*}
$$

with bounday condition

$$
\begin{equation*}
u(x)=u_{\mathbf{n}}(x)=0, x \in \partial \Omega . \tag{4}
\end{equation*}
$$

2. weak formulation 1 -2 : a weak for problem $1-2$ is: find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f(x) v(x) d x, \forall v \in H_{0}^{2}(\Omega) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
a(u, v)=\sum_{i, j=1}^{2} \int_{\Omega} u_{x_{i} x_{j}} u_{x_{i} x_{j}} d x \tag{6}
\end{equation*}
$$

3. weak formulation (3)-4): a weak for problem 3 - 4 is: find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=\lambda \int_{\Omega} u(x) v(x) d x, \forall v \in H_{0}^{2}(\Omega) \tag{7}
\end{equation*}
$$

2 Some finite element scheme and main results

The discretization is performed thanks to triangles. The degrees of freedom of an element K are chosen as:

$$
\begin{gather*}
p\left(a_{i}\right), i \in\{1,2,3\} . \tag{8}\\
D p\left(a_{i}\right)\left(a_{j}-a_{i}\right),(i, j) \in\{1,2,3\} \times\{1,2,3\} \text { and } j \neq i . \tag{9}
\end{gather*}
$$

where $\left\{a_{i} ; i \in\{1,2,3\}\right\}$ are the vertex of the triangle element.
The space can be chosen as

$$
\begin{equation*}
\mathcal{P}_{K}=\mathcal{P}_{2}+\operatorname{span}\left\{\lambda_{i}^{2} \lambda_{j}-\lambda_{i} \lambda_{j}^{2} ; 1 \leq i<j \leq 3\right\} \tag{10}
\end{equation*}
$$

It is proved that The degree of freedom are \mathcal{P}_{K} unisolvent.
The finite element scheme suggested in the paper is a C^{0} finite element.

1. convergence order for the biharmonic equation: using the interpolation error and second Strang Lemma, it is proved that the error is of order one in some discrete Sobolev of order two. The regularity required is $H^{3}(\Omega)$.
2. convergence order for the eigenvalue problem associated to the biharmonic equation: it is also proved that the approximate eigenfunction converges to its corresponding eigenfunction by order one some discrete Sobolev of order two.
3. postprocessing: it is presented a relatively simple postprocessing method that gives better accuracy for eigenvalues. It is based on a postprocessing technique whereby an additional solving of a source problem on augmented FE space is involved

References

[AND 10] A. B. Andreeva, M. R. Racheva: A Zienkiewicz-type finite element applied to fourthorder problems Journal of Computational and Applied Mathematics, 235, 348-357, 2010.

