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1 Equation to be solved

It is considered the following Cahn–Hilliard equation:

∂tu(x, t) + ∆(u(x, t)− u3(x, t) + κ∆u(x, t)) = 0, (x, t) ∈ Ω× IR+, [1]

u(·, t) is L− periodic for all t ∈ IR+, [2]

u(x, 0) = u0(x), x ∈ Ω. [3]

Here the domain Ω is the open set (0, L1) × (0, L2) of IR2, ∂tu = ∂u
∂t

, κ is a positive constant,

(L1, L2), u0 : Ω→ IR is a given function.

It is to useful to test the conservation of the total mass in the following sense: using equation [1],

an integration by part, and [2], we get

∂

∂t

Z
Ω

u(x, t)dx = −
Z

Ω

∆(u(x, t)− u3(x, t) + κ∆u(x, t))dx

= −
Z

∂Ω

∂

∂n
(u(x, t)− u3(x, t) + κ∆u(x, t))dx. [4]

Would be nice then if it is mentioned in the article if this previous property is satisfied by the

spectral Galerkin scheme!

2 Plan of this article

• Definition of a weak solution to [1]–[2]:

Definition 2.1 A function u : Ω × IR+ → IR is called a weak solution for [1]–[3], if u ∈

L∞(0, T ;L2(Ω))∩L2(0, T ;H2
per(Ω)) and ∂tuL

2(0, T ;H−2
per(Ω)) for all T > 0 such that for all

v ∈ H2
per(Ω) there holds:
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(∂tu, v) +
`
∇(u3 − u),∇v

´
+ κ(∆u,∆v) = 0, ∀ 0 < t < T, [5]

with the initial condition u(0) = u0, where (·, ·) is the usual notation of the inner product in

L2(Ω).

Remark 1 Under the hypothesis u ∈ L2(0, T ;H2(Ω)) and ∂tu ∈ L2(0, T ;H−2
per(Ω)), we get,

thanks to [Evans, Theorem 3, Page 287], u ∈ C(0, T ;L2(Ω)) which gives a sense for the unitial

condition u(0) = u0.

• A spectral Galerkin method for [1]–[2]

• Lemma 2.1.: some known results concerning relations between some norms and other results

concerning some convergence results in spectral methods

• Lemma 2.2.: a uniform version for Gronwell Lemma

• [YIN 08, Theorem 2.3, Page 1488]: existence and uniqueness of the spectral Galerkin solution

(to this end it only assumed u0 ∈ L2(Ω)); it is the subject of [YIN 08, Theorem 2.3, Page

1488] . The techniques used in this item are:

– some known results in the theory of initial–value problems of the ordinary differential

equations

– the previous stated uniform version for Gronwell Lemma.

• Stability of the spectral Galerkin solution: they are obtained the following stability results:

– [YIN 08, Theorem 2.4, Page 1489]: first energy inequalities of the spectral Galerkin

approximate solution. Techniques used in the Proof consist of some integrations and

the use of Lemma 2.1

– [YIN 08, Theorem 2.5, Page 1490]: second energy inequalities of the spectral Galerkin

approximate solution. Techniques used in the Proof consist of some integrations, the

use of Lemma 2.1., and Gronwell Lemma.

– [YIN 08, Theorem 2.6, Page 1492]: second energy inequalities of the spectral Galerkin

approximate solution. Techniques used in the Proof consist of some integrations, the

use of Lemma 2.1., Young inequality, and Gronwell Lemma.

• Convergence of the spectral Galerkin method:

– since u0 ∈ H1
per(Ω), one could apply [YIN 08, Theorem 2.4, Page 1489] to get uN ∈

L∞(IR+, T ;L2(Ω))∩L2(0, T ;H2
per(Ω)) and ∂tuN ∈ L2

`
0, T ;H−2

per(Ω)
´
, and the following

a priori estimate

‖uN‖L∞(IR+;L2(Ω)) + ‖uN‖L2(0,T ;H−2
per(Ω))

+ ‖∂tuN‖L∞(0,T ;H−2
per(Ω)) ≤ CT , ∀T > 0, [6]
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where CT is a positive constant depending on (u0, T,Ω, κ).

This with compactness result, given in [TEM 83] implies the existence of a subsequence

of the {uN , N = 1, . . . ,∞}, and a function u such that u ∈ L∞(IR+, T ;L2(Ω)) ∩

L2(0, T ;H2
per(Ω)) and ∂tu ∈ L2

`
0, T ;H−2

per(Ω)
´

in which some convergence of uN to-

wards u, as N →∞, holds (it is well given in [YIN 08, (3.9)–(3.12)]).

– Passing to the limt in the scheme and using the previous stated convergence, we get

that u satisfies the weak formulation given in the Definition 2.1.

– We prove that u satisfies [5], with u(x, 0) = u0, is unique

– The previous two items yields the convergence of the whole sequence {uN}∞1 (not only

a subsequence) convergence to u, in the sense of [YIN 08, (3.9)–(3.12)], such that u ∈

L∞(IR+;L2(Ω)) ∩ L2(0, T ;H2
per(Ω)) and ∂tu ∈ L2

`
0, T ;H−2

per(Ω)
´

and u is the unique

weak solution given in the Definition 2.1.

– it is useful to notify here that the convergence of the spectral Galerkin method of CH

equation yields an existence of a weak solution to CH equation.

– the previous result is proven when only u0 ∈ H1
per(Ω). If we assume more regularity on

the data (which yields more regularity on the exact solution), u0 ∈ H4
per(Ω), an error

estimate between the exact solution and the spectral Galerkin approximate solution is

given in [YIN 08, Theorem 3.1, Page 1497]. It useful to notify that this error estimate

is given in the everage norm L2(Ω) for all t ≥ 0.

Remark 2 (Typos)

• In the second line of the Proof of Theorem 3.1, Page 1494, it is written “uN ∈ L∞(IR+, T ;L2(Ω))”.

I think the right statement is “uN ∈ L∞(IR+;L2(Ω))”.

• I think that the last term on the left hand side of (3.8), Page 1494, is ‖∂tuN‖L2(0,T ;H−2
per(Ω))

instead of ‖∂tuN‖L∞(0,T ;H−2
per(Ω))

• It is remarked that there is a small typos in the article in the page 1496, line just before

(3.21): it is written “Thus, taking the limit N → ∞ in (3.21),. . . ”. I think right sentence is

“Thus, taking the limit N → ∞ in (3.20),. . . ” (would say that (3.21) should be replaced by

(3.20).
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