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1 Introduction

The objective of this paper is to report some of our recent efforts in exploring
the possibility of extending the general framework of adaptive finite element
methods based on a posteriori error estimates initiated in [BR78] to resolve
Maxwell singularities. A posteriori error estimates are computable quantities
in terms of the discrete solution and known data that measure the actual
discrete errors without the knowledge of exact solutions. They are essential in
designing algorithms for mesh modification which equi-distribute the compu-
tational effort and optimize the computation. The ability of error control and
the asymptotically optimal approximation property make the adaptive finite
element methods attractive for complicated physical and industrial processes.

The first problem we consider is the time-harmonic Maxwell equation in
the bounded domain, that is, the time-harmonic Maxwell cavity problem.
It is well-known that the solution of the time-harmonic Maxwell equations
could have much stronger singularities than the corresponding Dirichlet or
Neumann singular functions of the Laplace operator when the computational
domain is non-convex or the coefficients of the equations are discontinuous.
For example, for the domains that have “screen” or “crack” parts as indicated
in Fig 1, the regularity of the solution is only in Hs with s < 1/2. In this case
the H1-conforming discretization cannot be used directly to solve the time-
harmonic cavity problem. One way to overcome the difficulty is to use the
so-called singular field method which decomposes the solution into a regular
part that can be treated by H1-conforming Lagrangian finite elements and an
explicit singular part [ACS98], [DHL99]. For the mathematical analysis of the
singularities of the solutions of Maxwell equations, we refer to [BS87], [BS94],
[CD00], and the references therein.

A posteriori error estimates for Nédélec H(curl)-conforming edge elements
are obtained in [M98] for Maxwell scattering problems and in [BHHW00] for
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eddy current problems. The key ingredient in the analysis is the orthogo-
nal Helmholtz decomposition v = ∇ϕ + Ψ , where for any v ∈ H(curl; Ω),
ϕ ∈ H1(Ω), and Ψ ∈ H(curl; Ω). Since a stable edge element interpolation
operator is not available for functions in H(curl; Ω), some kind of regular-
ity result for Ψ ∈ H(curl; Ω) is required. This regularity result is proved in
[M98] for domains with smooth boundary and in [BHHW00] for convex poly-
hedral domains. The key observation in our analysis is that if one removes
the orthogonality requirement in the Helmholtz decomposition, the regularity
Ψ ∈ H1(Ω) can be proved in the decomposition v = ∇ϕ+Ψ for a large class of
non-convex polygonal domains or domains having screens [BS87], [BS94], see
also [DHL99]. Our extensive numerical experiments for the lowest order edge
element indicate that for the cavity problem with very strong singularities
Hs (s < 1/2), the adaptive methods based on our a posteriori error estimates
have the very desirable quasi-optimality property

‖E− Ek‖H(curl; Ω) ≤ C N
−1/3
k ,

where Nk is the number of elements of the k-th adaptive mesh Mk, and Ek

is the finite element solution over Mk.
The second problem concerns an adaptive perfectly matched layer (PML)

technique for solving the time harmonic electromagnetic scattering problem
with the perfectly conducting boundary condition. Adaptive PML technique
was first proposed in Chen and Wu [CW03] for scattering problem by peri-
odic structures (the grating problem) and in Chen and Liu [CL05] for the
acoustic scattering problem in which one uses the a posteriori error estimate
to determine the PML parameters. Combined with the adaptive finite element
method, the adaptive PML technique provides a complete numerical strategy
to solve the scattering problems in the framework of finite element which pro-
duces automatically coarse mesh size away from the fixed domain and thus
makes the total computational costs insensitive to the thickness of the PML
absorbing layer.

In the third problem we consider the time-dependent eddy current prob-
lems which involve discontinuous coefficients, reentrant corners of material
interfaces, and skin effect. Thus local singularities and internal layers of the
solution arise. We develop an adaptive finite element method based on reli-
able and efficient a posteriori error estimates for the H − ψ formulation of
eddy current problems with multiply connected conductors. The numerical
results indicate that our adaptive method has the following very desirable
quasi-optimality property:

ηtotal ≈ C N
−1/4
total

is valid asymptotically, where ηtotal is the total error estimate (see Theorem 5

below), and Ntotal :=
∑M

n=1Nn with M being the number of time steps and
Nn being the number of elements of the mesh Tn at the n-th timestep.
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In extending our general methodology of using adaptive PML technique
for solving time-domain Maxwell scattering problems, we need to consider the
convergence and stability of the time-domain PML methods for Maxwell scat-
tering problems. As a first step we consider here the stability and convergence
of the time-domain PML method for acoustic scattering problems. We will
consider the well-posedness and the stability of the time-dependent acoustic
scattering problem with the radiation condition at infinity, the well-posedness
of the unsplit-field PML method for the acoustic scattering problems, and
the exponential convergence of the non-splitting PML method in terms of the
thickness and medium property of the artificial PML layer. The stability of
the time-domain PML method can be proved by combining the stability of
original scattering problem and the convergence of the PML method.

2 The time-harmonic Maxwell cavity problem

Let Ω ⊂ R3 be a bounded polygonal domain with two disjoint connected
boundaries Γ and Σ. Given a current density f , we seek a time-harmonic
electric field E subject to the perfectly conducting boundary condition on Γ
and the impedance boundary condition on Σ

∇× (µ−1
r ∇× E) − k2εr E = f in Ω, (1)

µ−1
r (∇× E) × n − i kλEt = g on Σ, (2)

E× n = 0 on Γ, (3)

where n is the unit outer normal of the boundary, Et := (n × E|Σ) × n, εr

is the complex relative dielectric coefficient, µr > 0 is the relative magnetic
permeability of the material in Ω, k > 0 is the wave number, and λ > 0 is the
impedance on Σ.

Let f ∈ L2(Ω) and g ∈ L2(Σ) satisfying g · n = 0 on Σ. The weak
formulation of (1) – (3) is: Find E ∈ HΓ (curl; Ω) such that

a(E, v) =

∫

Ω

f · v +

∫

Σ

g · vt ∀v ∈ HΓ (curl; Ω), (4)

where HΓ (curl;Ω) = {v ∈ H(curl; Ω) | v × n = 0 on Γ and vt ∈ L2(Σ)}
and

a(E, v) := (µ−1
r ∇× E, ∇× v) − (k2εrE, v) − i

∫

Σ

k λEt · vt .

The existence and uniqueness of the solution of the problem (4) under various
conditions on the domain Ω, the coefficients εr, µr have been studied in [M03].
Here for the sake of simplicity we simply assume that the problem (4) has a
unique solution. Thus there exists a constant β > 0 depending only on Ω, εr,
µr, λ and the wave number k such that [BA73, Chapter 5]
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Fig. 1. A domain with screen Γ .

sup
06=v∈HΓ (curl; Ω)

a(E, v)

‖v‖HΓ (curl; Ω)
≥ β‖E‖HΓ (curl; Ω). (5)

For definiteness we assume in this section that Γ is a Lipschitz screen
such that Ω ∪ Γ is a Lipschitz domain (see Figure 1) and refer to the dis-
cussion of general cases to [CWZ07]. We recall that a surface ̥ is called a
Lipschitz screen, if it is a bounded open part of some two-dimensional C2-
smooth manifold such that its boundary ∂̥ is Lipschitz continuous and ̥

is on one side of ∂̥. The following decomposition theorem whose proof can
be found in [BS87], [BS94], [DHL99], [CWZ07] plays an important role in the
forthcoming a posteriori error analysis.

Theorem 1. For any v ∈ H(curl; Ω) satisfying v×n = 0 on Γ , there exists

a function vs ∈ H1(Ω) satisfying vs × n = 0 on Γ and ϕ ∈ H1
Γ (Ω) such that

v = ∇ϕ+ vs in Ω,

‖vs‖1,Ω + ‖ϕ‖1,Ω ≤ C ‖v‖H(curl; Ω).

Here H1
Γ (Ω) is the subspace of H1(Ω) whose functions have zero traces on Γ .

Let Mh be a regular tetrahedral triangulation of Ω and Fh be the set of
faces not lying on Γ . The finite element space Uh over Mh is defined by

Uh := {u ∈ H(curl; Ω) : u × n|Γ = 0 and

u|T = aT + bT × x with aT , bT ∈ R
3, ∀T ∈ Mh

}

.

Degrees of freedom on every T ∈ Mh are
∫

Ei
u · d l, i = 1, · · · , 6, where

E1, · · · , E6 are six edges of T . For any T ∈ Mh and F ∈ Fh, we denote the
diameters of T and F by hT and hF respectively.

The finite element approximation to (4) is: Find Eh ∈ Uh such that

a(Eh, v) =

∫

Ω

f · v +

∫

Σ

g · vt, ∀v ∈ Uh. (6)

Let E and Eh be the solutions of (4) and (6) respectively. Define the total
error function by eh := E− Eh. By (5), we know that
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‖eh‖HΓ (curl; Ω) ≤ β−1 sup
v∈HΓ (curl; Ω)

a(eh, v)

‖v‖HΓ (curl; Ω)
.

To derive a posteriori error estimates, we require the Scott-Zhang interpolant
Ih : H1

Γ (Ω) → Vh [SC94] and the Beck-Hiptmair-Hoppe-Wohlmuth inter-
polant Πh : H1(Ω) ∩ HΓ (curl; Ω) → Uh [BHHW00], where Vh is the stan-
dard piecewise linearH1

Γ -conforming finite element space over Mh. It is known
that Ih and Πh satisfy the following approximation and stability properties:
for any T ∈ Mh, F ∈ Fh, φh ∈ Vh, φ ∈ H1

Γ (Ω),

Ihφh = φh, ‖∇Ihφ‖0,T ≤ C|φ|1,DT

‖φ− Ihφ‖0,T ≤ ChT |φ|1,DT , ‖φ− Ihφ‖0,F ≤ C h
1/2
F |φ|1,DF ,

and for any T ∈ Mh, F ∈ Fh, wh ∈ Uh, w ∈ HΓ (curl;Ω),

Πhwh = wh, ‖Πhw‖H(curl; T ) ≤ C ‖w‖1,DT ,

‖w −Πhw‖0,T ≤ C hT |w|1,DT , ‖w −Πhw‖0,F ≤ C h
1/2
F |w|1,DF ,

where DA is the union of elements in Mh with non-empty intersection with
A, A = T or F .

By Theorem 1, for any v ∈ HΓ (curl; Ω), there exist a ϕ ∈ H1
Γ (Ω) and a

vs ∈ H1(Ω) ∩HΓ (curl; Ω) such that

v = ∇ϕ+ vs,

‖ϕ‖1,Ω + ‖vs‖1,Ω ≤ C ‖v‖H(curl; Ω),

where the constant C depends only on Ω. Since ∇Ihϕ and Πhvs belong to
Uh, by the Galerkin orthogonality, we have

a(eh, v) = a(eh, ∇ϕ−∇Ihϕ) + a(eh, vs −Πhvs) ∀v ∈ HΓ (curl; Ω).

For any face F ∈ Fh, assuming F = T1 ∩ T2, T1, T2 ∈ Mh and the unit
normal n points from T2 to T1, we denote the jump of a function v across F
by [[v]]F := v|T1 − v|T2 . The following theorem is proved in [CWZ07].

Theorem 2. Let g ∈ L2(Σ) satisfying divΣ g ∈ L2(Σ) and g · n = 0 on Σ.

Then there exists a constant C depending on β and the mesh Mh such that

‖eh‖2
HΓ (curl; Ω) ≤ C

∑

T∈Mh

h2
T ‖f + k2εr Eh −∇× (µ−1

r ∇× Eh)‖2
0,T

+ C
∑

T∈Mh

h2
T ‖div (k2εr Eh)‖2

0,T

+ C
∑

F∈Fh

hF ‖[[µ−1
r (∇× E)h × n]]F ‖2

0,F

+ C
∑

F∈Fh

hF ‖[[k2εr Eh · n]]F ‖2
0,F
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+ C
∑

F⊂Σ

hF ‖g + i kλEk,t + n × µ−1
r (∇× E)h‖2

0,F

+ C
∑

F⊂Σ

hF ‖divΣ(g + i k λEk,t)‖2
0,F .

Based on the a posteriori error estimates in above theorem, an adaptive
multilevel method for solving (1)-(3) is designed and implemented. The ex-
tensive numerical experiments in [CWZ07] for the lowest order edge element
indicate that the adaptive methods based on our a posteriori error estimates
can efficiently capture the Maxwell singualrity and achieve the following very
desirable quasi-optimality property

‖E− Eh‖H(curl; Ω) ≤ C N−1/3,

where N is the number of elements of the mesh Mh. Fig. 2 shows an adaptive
mesh of 2,947,848 elements after 11 adaptive iterations for solving a time-
harmonic problem containing an inner screen Γ := {(x, y, z) : −0.5 ≤ x, z ≤
0.5, y = 0}. In the example Ω = (−1, 1)3 \ Γ , Σ = ∂Ω \ Γ , µr = εr = λ = 1,
and

f := 0, g := (∇× Ei) × n− i kEi,t,

where Ei = (ei y, 0, ei y)T /
√

2 perpendicular to the perfect conducting “screen”.
Thus (1)–(3) models the scattering by Γ under the incident field Ei. In this
case, only Hs-regularity (s < 1/2) of the solution is guaranteed.. We observe
that the mesh is locally refined near the boundary of the “screen”. We refer
to [CWZ07] for more information on the adaptive multilevel algorithm and
more numerical examples.

3 The time-harmonic electromagnetic scattering problem

In this section we consider the time harmonic electromagnetic scattering prob-
lem with the perfectly conducting boundary condition

∇×∇× E− k2E = 0 in R
3\D̄, (7)

n× E = g on ΓD, (8)

|x|
[

(∇× E) × x̂ − ikE
]

→ 0 as |x| → ∞. (9)

Here D ⊂ R3 is a bounded domain with Lipschitz polyhedral boundary ΓD,
E is the electric field, g is determined by the incoming wave, x̂ = x/|x|, and
n is the unit outer normal to ΓD. We assume the wave number k ∈ R is a
constant.



Adaptive Methods for Electromagnetic and Acoustic Problems 7

Fig. 2. An adaptively refined mesh of 2,947,848 elements after 11 adaptive itera-
tions.

3.1 The PML equation

Let D be contained in the interior of the ball BR = {x ∈ R3, |x| < R} with
boundary ΓR. We first recall the series solution of the scattering problem
(7)-(9) outside the ball BR by following the development in Monk [M03].
Let Y m

n (x̂), m = −n, . . . , n, n = 1, 2, . . ., be the spherical harmonics which
satisfies

∆∂B1Y
m
n (x̂) + n(n+ 1)Y m

n (x̂) = 0 on ∂B1, (10)

where ∆∂B1 = 1
sin θ

∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂φ2 is the Laplace-Beltrami operator
for the surface of the unit sphere ∂B1. The set of all spherical harmonics
{Y m

n (x̂) : m = −n, . . . , n, n = 1, 2, . . .} forms a complete orthonormal basis of
L2(∂B1).

Denote the vector spherical harmonics

Um
n =

1
√

n(n+ 1)
∇∂B1Y

m
n , Vm

n = x̂ × Um
n ,

where ∇∂B1Y
m
n =

∂Y m
n

∂θ eθ + 1
sin θ

∂Y m
n

∂φ eφ, and {er, eθ, eφ} are the unit vec-
tors of the spherical coordinates. The set of all vector spherical harmonics
{Um

n ,V
m
n : m = −n, . . . , n, n = 1, 2, . . .} forms a complete orthonormal basis

of L2
t (∂B1) = {u ∈ L2(∂B1)

3 : u · x̂ = 0 on ∂B1}.
Let h

(1)
n (z) be the spherical Hankel function of the first kind of order n.

We introduce the vector wave functions
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Mm
n (r, x̂) = ∇× {xh(1)

n (kr)Y m
n (x̂)}, Nm

n (r, x̂) =
1

ik
∇× Mm

n (r, x̂),

which are the radiation solutions of the Maxwell equation (7) in R3\{0}. In
the domain R3\B̄R, the solution E of (7)-(9) can be written as, for r > R,

E(r, x̂) =

∞
∑

n=1

n
∑

m=−n

anmMm
n (r, x̂)

h
(1)
n (kR)

√

n(n+ 1)
+

ikRbnmNm
n (r, x̂)

z
(1)
n (kR)

√

n(n+ 1)
, (11)

where z
(1)
n (kR) = h

(1)
n (kR) + kRh

(1)′
n (kR), and anm, bnm are determined by

the trace of E on ΓR through x̂ × E|ΓR =
∑∞

n=1

∑n
m=−n anmUm

n + bnmVm
n .

The series in (11) converges uniformly of r > R.
Now we turn to the introduction of the absorbing PML layer. We surround

the domain ΩR = BR\D̄ with a PML layer ΩPML = {x ∈ R3 : R < |x| < ρ}.
Let α(r) = 1 + iσ(r) be the model medium property which satisfies

σ ∈ C(R), σ ≥ 0, and σ = 0 for r ≤ R.

Denote by r̃ the complex radius defined by

r̃ = r̃(r) =

{

r if r ≤ R,
∫ r

0
α(t)dt = rβ(r) if r ≥ R.

It is easy to check that the vector wave functions satisfy

Mm
n (r, x̂) = h(1)

n (kr)∇∂B1Y
m
n (x̂) × x̂,

Nm
n (r, x̂) =

1

ik
∇× Mm

n

=

√

n(n+ 1)

ikr
z(1)

n (kr)Um
n (x̂) +

n(n+ 1)

ikr
h(1)

n (kr)Y m
n (x̂)x̂.

We introduce

M̃m
n (r̃, x̂) = h(1)

n (kr̃)∇∂B1Y
m
n (x̂) × x̂,

Ñm
n (r̃, x̂) =

1

ik
∇̃ × M̃m

n

=

√

n(n+ 1)

ikr̃
z(1)

n (kr̃)Um
n (x̂) +

n(n+ 1)

ikr̃
h(1)

n (kr̃)Y m
n (x̂)x̂,

where ∇̃× is the curl operator with respect to the complex spherical variables
(r̃, θ, φ), that is, for Φ = Φrer + Φθeθ + Φφeφ,

∇̃ × Φ =
1

r̃ sin θ

(

∂

∂θ
(sin θΦφ) − ∂Φθ

∂φ

)

er

+
1

r̃

(

1

sin θ

∂Φr

∂φ
− ∂(r̃Φφ)

∂r̃

)

eθ

+
1

r̃

(

∂(r̃Φθ)

∂r̃
− ∂Φφ

∂θ

)

eφ.
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It is easy to check that ∇̃×Φ = A∇×BΦ, whereA = diag(β−2, α−1β−1, α−1β−1)
and B = diag(α, β, β) are 3 × 3 diagonal matrices.

We follow [M03] to derive the PML equation. For any

λ =
∞
∑

n=1

n
∑

m=−n

anmUm
n + bnmVm

n ∈ H−1/2(Div; ΓR),

let E(λ)(r̃, x̂) be the PML extension given by

E(λ)(r̃, x̂) =

∞
∑

n=1

n
∑

m=−n

anmM̃m
n (r̃, x̂)

h
(1)
n (kR)

√

n(n+ 1)
+

ikRbnmÑm
n (r̃, x̂)

z
(1)
n (kR)

√

n(n+ 1)
. (12)

For the solution E of the scattering problem (7)-(9), let Ẽ = E(x̂ × E|ΓR) be
the PML extension of x̂×E|ΓR . Since r̃ = r on ΓR, we know that x̂×Ẽ = x̂×E

on ΓR. On the other hand, since h
(1)
n (z) ∼ 1

z e
i(z− 1

2nπ− 1
2π) asymptotically as

|z| → ∞, heuristically Ẽ(r̃, x̂) will decay exponentially for r > R. It is obvious
that Ẽ satisfies

∇̃ × ∇̃ × Ẽ− k2Ẽ = 0 in R
3\B̄R,

which gives the desired PML equation in the spherical coordinates

∇×B(A∇×BẼ) − k2A−1Ẽ = 0 in R
3\B̄R.

The PML problem is then to find Ê, which approximates E in ΩR and BẼ

in ΩPML = Bρ\B̄R, as the solution of the following system

∇×BA(∇× Ê) − k2(BA)−1Ê = 0 in Ωρ = Bρ\D̄, (13)

n × Ê = g on ΓD, x̂× Ê = 0 on Γρ. (14)

The first hint of why the PML method should work is the following esti-
mate for the PML extension.

Lemma 1. For any λ ∈ H−1/2(Div; ΓR), let E(λ) be the PML extension in

(12). Then, for any r > R, we have

‖ x̂× E(λ) ‖H−1/2(Div;Γr) ≤ C(1 + kR)e
−Im(kr̃)(1− R2

|r̃|2
)1/2

‖λ ‖H−1/2(Div;ΓR).

We give a brief description of the proof of the lemma. The full proof can
be found in [CC06]. We first recall the following exponential decay estimate of
the first Hankel function proved in [CL05] based on the Macdonald formula.

Lemma 2. For any ν ∈ R, z ∈ C++ = {z ∈ C : Im(z) ≥ 0,Re(z) ≥ 0} and

Θ ∈ R such that 0 < Θ < |z|, we have

|H(1)
ν (z)| ≤ e

−Im(z)(1− Θ2

|z|2
)1/2

|H(1)
ν (Θ)|.
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Next by simple calculation we have

x̂ × E(λ) =

∞
∑

n=1

n
∑

m=−n

h
(1)
n (kr̃)

h
(1)
n (kR)

anmUm
n +

R

r̃

z
(1)
n (kr̃)

z
(1)
n (kR)

bnmVm
n ,

which together with following estimate for the spherical Hankel functions due
to Nedelec [N80, p.195] implies Lemma 1.

Lemma 3. For any Θ > 0, δn(Θ) =
z(1)

n (Θ)

h
(1)
n (Θ)

satisfies |δn(Θ)| ≥ n(n+1)
2Θ2+n+1 .

3.2 Finite element discretization

We start by introducing the weak formulation of the PML problem (13)-(14).
Let

b(Ψ,Φ) =

∫

Ωρ

(BA∇× Ψ · ∇ × Φ̄− k2(BA)−1Ψ · Φ̄)dx.

Then the weak formulation of (13)-(14) is: Given g ∈ H−1/2(Div; ΓD), find

Ê ∈ H(curl, Ωρ), such that n × Ê = g on ΓD, x̂ × Ê = 0 on Γρ, and

b(Ê,Φ) = 0, ∀Φ ∈ H0(curl;Ωρ). (15)

Let Γ h
ρ , which consists of piecewise triangles whose vertices lie on Γρ, be

an approximation of Γρ. Let Ωh
ρ be the subdomain of Ωρ bounded by ΓD and

Γ h
ρ . Let Mh be a regular triangulation of the domain Ωh

ρ . We will use the
lowest order Nédeléc edge element [N80] for which the finite element space
Uh over Mh is defined by

Uh = {u ∈ H(curl;Ωh
ρ ) : u|K = aK + bK × x, ∀aK ,bK ∈ R

3, ∀K ∈ Mh}.

Degrees of freedom of functions u ∈ Uh on every K ∈ Mh are
∫

ei
u ·

dl, i = 1, . . . , 6, where e1, . . . , e6 are six edges of K. Denote by
◦

Uh =
Uh∩H0(curl;Ωh

ρ ). In the following, we will always assume that the functions

in
◦

Uh are extended to the domain Ωρ by zero so that any function u ∈
◦

Uh

is also a function in H0(curl;Ωρ). The finite element approximation to (15)
reads as follows: Find Eh ⊂ Uh such that n × Eh = gh on ΓD, n × Eh = 0
on Γ h

ρ , and

b(Eh,Φh) = 0, ∀Φh ∈
◦

Uh.

Here gh is some edge element approximation of g on ΓD. Notice that the
integral in b(Eh,Φh) is actually over Ωh

ρ since Φh = 0 in Ωρ\Ωh
ρ by our

convention.
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For any K ∈ Mh, we denote by hK its diameter. Let Fh be the set of all
faces of the mesh Mh that do not lie on ΓD and Γ h

ρ . For any F ∈ Fh, hF

stands for its diameter. For any interior face F which is a common face of K1

and K2 in Mh, we define the following jump residuals across F

[[n × (BA∇× Eh)]] = nF × (BA∇× (Eh|K1 − Eh|K2)),

[[k2(BA)−1Eh · n]] = k2(BA)−1(Eh|K1 − Eh|K1) · nF ,

using the convention that the unit norm vector nF to F points from K2 to
K1. The local error indicator ηK for any K ∈ Mh is defined as

η2
K = h2

K‖ k2(BA)−1Eh −∇×BA∇× Eh ‖2
L2(K)

+ h2
K‖ div(k2(BA)−1Eh) ‖2

L2(K)

+ hK‖ [[n× (BA∇× Eh)]] ‖2
L2(∂K) + hK‖ [[k2(BA)−1Eh · n]] ‖2

L2(∂K).

The following theorem is the main result of this section whose proof can
be found in [CC06].

Theorem 3. There exists a constant C depending only on the minimum angle

of the mesh Mh and σ0 = maxτ∈R σ(τ) such that the following a posteriori

error estimate is valid

‖E− Eh‖H(curl;ΩR)

≤ C‖ g − gh ‖H−1/2(Div;ΓD) + C(1 + kR)3R1/2
(

∑

K∈Mh

η2
K

)1/2

+C(1 + kR)3e
−Im(kρ̃)(1− R2

|ρ̃|2
)1/2

‖ x̂× Eh ‖H−1/2(Div;ΓR).

3.3 A numerical example

The implementation of the adaptive algorithm in this section is based on the
adaptive finite element package ALBERT [SS00] and its adaptation to the
edge element by Dr. Long Wang. We use the a posteriori error estimate in
Theorem 3 to determine the PML parameters. We choose the PML medium
property as the power function and thus we need only to specify the thickness
ρ−R of the layer and the medium parameter σ0. Recall from Theorem 3 that
the a posteriori error estimate consists of two parts: the PML error and the
finite element discretization error. In our implementation we first choose ρ
and σ0 such that the exponentially decaying factor:

e
−kIm(ρ̃)(1− R2

|ρ̃|2
)1/2

≤ 10−8,

which makes the PML error negligible compared with the finite element dis-
cretization errors. Once the PML region and the medium property are fixed,
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we use the standard finite element adaptive strategy to modify the mesh ac-
cording to the a posteriori error estimate (cf. e.g. [CL05]).

The following numerical example concerns the scattering of the plane wave
Ei perpendicular to the screen described in last section. Figure 3 shows the
logNk-log Ek curves, where Ek = (

∑

K∈Mk
η2

K)1/2 is the associated a posteri-
ori error estimate. It indicates that the meshes and the associated numerical
complexity are quasi-optimal: Ek ≈ CN

−1/3
k is valid asymptotically.

Figures 4 shows the far fields in the direction (1, 0, 0) for different choices
of the PML parameters. We observe that the far fields are insensitive to the
choices of PML parameters. More numerical examples can be found in [CC06].
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Fig. 3. Quasi-optimality of the adaptive mesh refinements of the a posteriori error
estimator

4 The eddy current problem

Three dimensional eddy current problems describe very low-frequency elec-
tromagnetic phenomena by quasi-static Maxwell’s equations. In this case, dis-
placement currents may be neglected and thus Maxwell’s equations become
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

















curl H = J in R3, (Ampere’s law)

µ
∂H

∂t
+ curl E = 0 in R3, (Farady’s law)

div(µH) = 0 in R3,

(16)

where E is the electric field, H is the magnetic field, and J is the total current
defined by:

J =

{

σE in Ωc, (conducting region)

Js in R3 \Ωc. (nonconducting region)

Here µ is the magnetic permeability, σ is the electric conductivity, Js is the
solenoidal source current carried by some coils in the air, and Ωc is the con-
ducting region which carries eddy currents. To avoid extra complicated con-
straints on Js, we assume supp(Js) ∩ Ω̄c = ∅.

Let Ω ⊂ R3 be a sufficiently large convex polyhedral domain containing
all conductors and coils (see Fig. 5 for a typical model with one conductor
and one coil). We assume that µ and σ are real valued L∞(Ω) functions and
there exist two positive constants µmin and σmin such that µ ≥ µmin in Ω and
σ ≥ σmin in Ωc. Furthermore, we assume σ ≡ 0 outside of Ωc.

Since divJs ≡ 0, there exists a source magnetic field Hs such that

Js = curlHs in R
3. (17)
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Fig. 5. Setting of the eddy current problems: A conductor with a hole and a coil.

The field Hs can be written explicitly by the Biot-Savart Law for general coils:

Hs := curlAs where As(x) :=
1

4π

∫

R3

Js(y)

|x − y| dy.

In the following we are going to find the residual H0 := H − Hs. Clearly, by
(16) and (4), we have

curlH0 = 0 in Ω \Ωc .

Our goal is to write H0 as ∇ψ for some scalar potential ψ. Since Ω \Ωc may
not be simply connected, ψ may not be unique. To deal with this difficulty,
we introduce the following assumption (see [ABDG98, Hypothesis 3.3]).

Hypothesis. There exist I connected open surfaces Σ0, · · · , ΣI , called
“cuts”, contained in Ω \Ωc, such that

1. each cut Σi is an open part of some smooth two-dimensional manifold
with Lipschitz-continuous boundary, i = 1, · · · , I;

2. the boundary of Σi is contained in ∂Ωc and Σi ∩Σj = ∅ for i 6= j;
3. the open set Ω◦ := (Ω \ Ωc) \ (∪I

i=1Σi) is simply connected and pseudo-
Lipschitz (see [ABDG98, Definition 3.1] for the definition of pseudo-
Lipschitz domain).

For each Σi, we fix its unit normal vector n pointing to one side. Define

Θ := {ϕ ∈ H1(Ω◦) : [ϕ]Σj = const., 1 ≤ j ≤ I},
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where [ϕ]Σj is the jump of ϕ across the cut Σj . For any ϕ ∈ Θ, we can extend

∇ϕ ∈ L2(Ω◦) continuously to a function ∇̃ϕ ∈ L2(Ω \Ωc) such that

∇̃ϕ = ∇ϕ in Ω◦ .

It is known [ABDG98, Lemma 3.11] that for any ϕ ∈ H1(Ω◦), ϕ ∈ Θ if and
only if curl (∇̃ϕ) = 0 in Ω \Ωc.

Since Ω◦ is simply connected, there exists a unique potential ψ ∈ Θ/R1

such that

H0 = ∇ψ in Ω◦.

Thus the second equation in (16) becomes















µ
∂ (Hs + ∇ψ)

∂t
+ curlE = 0 in Ω◦,

µ
∂ (Hs + H0)

∂t
+ curlE = 0 in Ωc .

(18)

For the initial conditions, we set

ψ(·, 0) = 0, H0(·, 0) = 0. (19)

Since the total electro-magnetic energy is finite, we may assume H ∈ L2(R3)
which implies curlE ∈ L2(R3). Assuming Ω large enough, we set the following
boundary condition on ∂Ω:

∇ψ · n = −Hs · n on ∂Ω . (20)

Our next goal is going to derive a weak formula for (16), starting from (18).
Since the tangential field H0 × n is continuous through ∂Ωc, we add this
constraint to the test functions and define

X =
{

v : v = ∇̃ϕ in Ω \Ωc for some ϕ ∈ Θ/R1 and v = w in Ωc

for some w ∈ H(curl; Ωc) such that ∇̃ϕ× n = w × n on ∂Ωc

}

.

It is clear that X ⊂ H(curl; Ω). For any ϕ ∈ Θ/R1, we multiply the first
equation of (18) by ∇ϕ, integrate by part to obtain

∂

∂t

∫

Ω◦

µ (∇ψ + Hs) · ∇ϕ = −
∫

Ω◦

curlE · ∇ϕ

= −
∫

∂Ω◦

curlE · nϕ . (21)

Note that ∂Ω◦ = ∂Ω∪∂Ωc∪(∪I
j=1Σj). By (18) and (20) we have curlE · n = 0

on ∂Ω. Thus
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∂

∂t

∫

Ω◦

µ (∇ψ + Hs) · ∇ϕ =

I
∑

j=1

∫

Σj

E · [n×∇ϕ]Σj +

∫

∂Ωc

E · (n × ∇̃ϕ)(22)

=

∫

∂Ωc

E · (n× ∇̃ϕ),

where n is the unit outer normal to ∂Ωc, and we have used the fact that
[∇ϕ × n]Σj = 0 on Σj because of ϕ ∈ Θ. For any w ∈ H(curl; Ωc), we
multiply the second equation of (18) by w and integrate by part to obtain

∂

∂t

∫

Ωc

µ (Hs + H0) ·w = −
∫

Ωc

curlE ·w

=

∫

∂Ωc

E · (n × w) −
∫

Ωc

E · curlw .

By (2) and the first equation of (16), we have

∂

∂t

∫

Ωc

µ (Hs + H0) · w +

∫

Ωc

σ−1curlH0 · curlw =

∫

∂Ωc

E · (n× w),(23)

where n is the unit normal on ∂Ωc pointing to the exterior of Ωc, and we
have used (17) and the fact that Js ≡ 0 in Ωc. By the tangential continuity of
the electric field E, we add (21) to (23) and obtain, for any v ∈ X such that
v = ∇̃ϕ in Ω \Ωc and v = w in Ωc,

∂

∂t

∫

Ω◦

µ∇ψ · ∇ϕ+
∂

∂t

∫

Ωc

µH0 · w +

∫

Ωc

σ−1curlH0 · curlw

= − ∂

∂t

∫

Ω

µHs · v.

For the convenience in notation, we drop the subscript of H0 and denote
the reaction field by H in the rest of this section. Thus we are led to the fol-
lowing variational problem based on the magnetic reaction field and magnetic
scalar potential: Find H ∈ L2((0, T );X) such that H(·, 0) ≡ 0 and

∂

∂t

∫

Ω

µH · v +

∫

Ωc

σ−1curlH · curl v = − ∂

∂t

∫

Ω

µHs · v ∀v ∈ X. (24)

We use a fully discrete scheme to approximate (24). Let {t0, · · · , tM} form
a partition of the time interval [0, T] and τn = tn− tn−1 be the n-th timestep.
Let Tn be a regular tetrahedral triangulation of Ω such that T c

n := Tn|Ωc

and T ◦
n := Tn|Ω◦ are triangulations of Ωc and Ω◦ respectively. Let Tinit be

the initial regular triangulation of Ω such that each Tn, n = 0, · · · ,M , is a
refinement of Tinit.

Let Vn ⊂ H1(Ω) and V ◦
n ⊂ H1(Ω◦) be the conforming linear Lagrangian

finite element spaces over Tn and T ◦
n respectively, and Vc

n ⊂ H(curl; Ωc)
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be the Nédélec edge element space of the lowest order over T c
n [N80]. We

introduce the finite element space Xn ⊂ X by

Xn =
{

v : v = ∇̃ϕn in Ω \Ωc for some ϕn ∈ Θ ∩ V ◦
n /R

1 and v = wn in Ωc

for some wn ∈ Vc
n such that ∇̃ϕn × n = wn × n on ∂Ωc

}

.

Thus a fully discrete scheme of (24) is: Find Hn ∈ Xn such that H0 ≡ 0 and

∫

Ω

µ
Hn − Hn−1

τn
· v +

∫

Ωc

σ−1curlHn · curl v =

∫

Ω

f̄n · v ∀v ∈ Xn,(25)

where f := −µ∂Hs/∂t and f̄n := 1
τn

∫ tn

tn−1
f is the mean value of f over

[tn−1, tn]. The uniqueness and existence of solutions to (25) follows directly
from the Lax-Milgram Lemma.

As in the second section, the key ingredient in the analysis of a posteriori

error estimates for Maxwell’s equations is Helmholtz-type decompositions for
functions in H(curl; Ω). In the next, we will introduce an H(curl)-stable
decomposition for X. Since both Ωc and Ω \Ωc are multiply connected, it is
difficult to find a scalar function ψ with constant jumps across all “cuts” to
define the irrotational part. Instead, we represent these discontinuities by the
help of some finite element function [ZCW06].

Theorem 4. Let Xinit be the finite element space over Tinit. For any v ∈ X,

there exists a ϕ ∈ H1(Ω)/R1, a vinit ∈ Xinit, and a vs ∈ H(curl; Ω)∩H1(Ωc)
such that vs = 0 in Ω \Ωc and

v = ∇ϕ+ vinit + vs.

Furthermore, there exists a positive C depending only on Ω and Tinit such that

‖ϕ‖1,Ω + ‖vs‖1,Ωc + ‖vinit‖H(curl; Ω) ≤ C‖v‖H(curl; Ω) .

The following residual based a posteriori error estimate is proved in
[ZCW06].

Theorem 5. There exists a positive constant C depending only on Ω, µ, and

σ such that for any 0 ≤ m ≤M ,

‖√µ e(tm)‖2
0,Ω + ‖curl e‖2

L2((0,T );L2(Ω)) ≤ C
m

∑

n=1

τn

{

(ηn
time)

2 +
(

ηn
space

)2
}

,

where the a posteriori error estimates are given by
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(ηn
time)

2 = ‖curl(Hn − Hn−1)‖2
0,Ωc

+ τ−1
n ‖f − f̄n‖2

L2((tn−1,tn);L2(Ω)),

(

ηn
space

)2
=

∑

T∈Tn

h2
T

∥

∥

∥

∥

div

(

f̄n − µ
∂Hh

∂t

)
∥

∥

∥

∥

2

0,T

+
∑

T∈T c
n

h2
T

∥

∥

∥

∥

f̄n − µ
∂Hh

∂t
− curl(σ−1 curlHn)

∥

∥

∥

∥

2

0,T

+
∑

F∈FΩ
n

hF

∥

∥

∥

∥

[(

f̄n − µ
∂Hh

∂t

)

· n
]

F

∥

∥

∥

∥

2

0,F

+
∑

F∈F
Ωc
n

hF

∥

∥

∥

[

σ−1curlHn × n
]

J,F

∥

∥

∥

2

0,F

+
∑

F∈F∂Ω
n

hF

∥

∥

∥

∥

(

f̄n − µ
∂Hh

∂t

)

· n
∥

∥

∥

∥

2

0,F

.

Here FΩ
n , FΩc

n , and F∂Ω
n denote the edges in Ω, in Ωc, and on ∂Ω respectively.

Based the a posteriori error estimates in above theorem, an adaptive finite
element method with variable time-steps and designed and implemented in
[ZCW06]. The results indicate that our adaptive method has the following
very desirable quasi-optimality property:

ηtotal ≈ C N
−1/4
total

is valid asymptotically, where ηtotal is the total error estimate (see Theorem

5), and Ntotal :=
∑M

n=1Nn with M being the number of time steps and Nn

being the number of elements of the mesh Tn at the n-th timestep. We refer
to [ZCW06] for more details.

5 The time-domain acoustic scattering problem

We consider the acoustic scattering problem with the sound-hard boundary
condition on the obstacle

∂u

∂t
= −divp,

∂p

∂t
= −∇u in [R2\D̄] × (0, T ), (26)

p · nD = g on ΓD × (0, T ), (27)√
r(u− p · x̂) → 0, as r = |x| → ∞, a.e. t ∈ (0, T ), (28)

u|t=0 = u0, p|t=0 = p0. (29)

Here u is the pressure and p is the velocity field of the wave. D ⊂ R2 is
a bounded domain with Lipschitz boundary ΓD, g is determined by the in-
coming wave, x̂ = x/|x|, and nD is the unit outer normal to ΓD. u0,p0 are
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assumed to be supported in some circle BR = {x ∈ R2 : |x| < R} for some
R > 0. (9) is the radiation condition which corresponds to the well-known
Sommerfeld radiation condition in the frequency domain. We remark that
the results in this paper can be easily extended to solve the scattering prob-
lems with other boundary conditions such as the sound-soft or the impedance
boundary condition on ΓD.

One of the fundamental problem in the efficient simulation of the wave
propagation is the reduction of the exterior problem which is defined in the
unbounded domain to the problem in the bounded domain. For any s ∈ C

such that Re(s) > 0, let u
L

= L (u) and p
L

= L (p) be the Laplace transform
of u and p in time

u
L
(x, s) =

∫ ∞

0

e−stu(x, t)dt, p
L
(x, s) =

∫ ∞

0

e−stp(x, t)dt.

Since u0 and p0 are supported inside the circle BR, we know that u
L

satisfies
the following Helmholtz equation outside BR

−∆uL + s2uL = 0.

Moreover, (9) implies that u
L

satisfies the radiation condition

√
r

(

∂u
L

∂r
+ suL

)

→ 0, as r → ∞.

Thus we have the following series representation for u
L

outside BR

uL =

∞
∑

n=−∞

Kn(sr)

Kn(sR)
un

L
(R, s)einθ, (30)

where un
L
(R, s) = 1

2π

∫ 2π

0 u
L
(R, θ, s)e−inθdθ, and Kn(z) is the modified Bessel

function of order n. Since p0 is supported in BR, we have

p
L
· x̂ +

∞
∑

n=−∞

K ′
n(sR)

Kn(sR)
un

L
(R, s)einθ = 0 on ΓR.

By taking the inverse Laplace transform we obtain the following Dirichlet-
to-Neumann boundary condition for the solution of the scattering problem
(26)-(29) on ΓR × (0, T )

p · x̂ +
∞
∑

n=−∞

[

L
−1

(

K ′
n(sR)

Kn(sR)

)

∗ un(R, t)

]

einθ = 0, (31)

where un(R, t) =
1

2π

∫ 2π

0

u(R, θ, t)e−inθdθ is the Fourier coefficient of u on

ΓR.
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Theorem 6. Assume that u0 ∈ H2(ΩR), p0 ∈ H(div;ΩR), divp0 ∈ H2(ΩR)
so that supp(u0) ⊂ BR, supp(p0) ⊂ BR, and g ∈ H2(0, T ;H−1/2(ΓD)). Let

the following compatibility conditions are satisfied g|t=0 = p0 · nD, ∂tg|t=0 =
−∇u0 · nD on ΓD. Then the problem (26)-(27), (31), (29) has a unique solu-

tion u ∈ L2(0, T ;H1(ΩR)) ∩ H1(0, T ;L2(ΩR)), p ∈ L2(0, T ;H(div, ΩR)) ∩
H1(0, T ;L2(ΩR)) such that u|t=0 = u0, p|t=0 = p0, and for any v ∈
L2(0, T ;H1(ΩR)), q ∈ L2(0, T ;L2(ΩR)),

∫ T

0

[

(∂u

∂t
, v

)

− (p,∇v) − 〈(L −1 ◦G ◦ L )(u), v〉ΓR

]

dt =

∫ T

0

〈g, v〉ΓDdt,

∫ T

0

[

(∂p

∂t
· q

)

+ (∇u · q)

]

dt = 0.

Here (L −1 ◦G ◦L )(u) ∈ L2(0, T ;H−1/2(ΓR)). Moreover, (u,p) satisfies the

following stability estimate

[

∫ T

0

(

‖ ∂tu ‖2
L2(ΩR) + ‖∇u ‖2

L2(ΩR) + ‖ ∂tp ‖2
L2(ΩR) + ‖ divp ‖2

L2(ΩR)

)

dt

]1/2

≤ C max(1, T 3/2)‖(u0,p0)‖ΩR + Cmax(1, T )‖g‖H2(0,T ;H−1/2(ΓD)),

where ‖(u0,p0)‖ΩR = ‖ u0 ‖H2(ΩR) + ‖ divp0 ‖H2(ΩR).

The proof of the theorem can be found in [C07], which depends on the ab-
stract inversion theorem of the Laplace transform and sharp a priori estimate
for the Helmholtz equations. To the author’s best knowledge, this is the first
result of that kind for the time-domain scattering problems in the literature.

The exact non-local boundary condition (31) is the starting point of var-
ious approximate absorbing boundary conditions which have been proposed
and studied in the literature, see the review paper Hagstrom [H99] and the ref-
erences therein. An interesting alternative to the method of absorbing bound-
ary conditions is the method of perfectly matched layer (PML). Since the
work of Berenger [B94] which proposed a PML technique for solving the
time-dependent Maxwell equations in the Cartesian coordinates, various con-
structions of PML absorbing layers have been proposed and studied in the
literature (cf. e.g. Turkel and Yefet [TY98], Teixeira and Chew [TC01] for
the reviews). Under the assumption that the exterior solution is composed of
outgoing waves only, the basic idea of the PML technique is to surround the
computational domain by a layer of finite thickness with specially designed
model medium that would either slow down or attenuate all the waves that
propagate from inside the computational domain.

There are two classes of time-domain PML methods for the wave scattering
problems. The first class, called “split-field PML method” in the engineering
literature, includes the original Berenger PML method. It is shown in Abar-
banel and Gottlieb [AG97] that the Berenger PML method is only weakly
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well-posed and thus may suffer instability in practical applications. The sec-
ond class, the so-called “unsplit-field PML formulations” in the engineering
literature, is however, strongly well-posed. One such successful method is the
uniaxial PML method developed in Sacks et al [SKLL95] and Gedney [G96] for
the Maxwell equations in the Cartesian coordinates. The unsplit-field PML
methods in the curvilinear coordinates are introduced in Petropoulos [P00]
and Teixeira and Chew [TC01] for Maxwell equations.

Now we describe briefly the unsplit-field PML method for (26)-(29) to be
studied in this paper. Let α(r) = η(r) + s−1σ(r) be the artificial medium
property, where η = 1+ σ and σ ∈ C(R) such that σ ≥ 0 for r ∈ R and σ = 0
for r ≤ R. Denote by r̃ the complex radius

r̃ = r̃(r) =

{

r if r ≤ R,
∫ r

0
α(τ)dτ = rβ(r) if r ≥ R,

where β(r) = η̂(r) + s−1σ̂(r), and η̂(r) =
1

r

∫ r

R

η(τ)dτ, σ̂(r) =
1

r

∫ r

R

σ(τ)dτ.

The starting point is the series representation of u
L

= L (u) for r >
R in (30). Based on the observation that Kn(sr̃) = Kn(srη̂ + rσ̂) decays

exponentially for σ̂ since Kn(z) ∼
(

π
2z

)1/2
e−z as |z| → ∞, we define the PML

extension (ũ
L
, p̃

L
) of (u

L
,p

L
) as

ũ
L
(r, θ, s) =

∞
∑

n=−∞

Kn(sr̃)

Kn(sR)
un

L
(R, s)einθ, ∀r > R,

sp̃
L

= −∇̃ũ
L

= −
(

∂ũ
L

∂r̃
er +

1

r̃

∂ũ
L

∂θ
eθ

)

, ∀r > R,

where er and eθ are the unit vectors of the polar coordinates. Since ũ
L

satisfies

−∆̃ũ
L
+s2ũ

L
= 0 outside BR, where ∆̃ =

1

r̃

∂

∂r̃

(

r̃
∂

∂r̃

)

+
1

r̃2
∂2

∂2θ
is the Laplace

operator with respect to (r̃, θ), we know that, where p̃
L

= p̃
L,rer + p̃

L,θeθ,

sũ
L

= −∇̃ · p̃
L

= −
[

1

r̃

∂

∂r̃
(r̃p̃

L,r) +
1

r̃

∂p̃L,θ

∂θ

]

.

Since r̃ = rβ and
dr̃

dr
= α, for r ≥ R, by using the chain rule, we obtain

sũL = −
(

1

αβr

∂

∂r
(βrp̃L,r) +

1

βr

∂p̃
L,θ

∂θ

)

, sp̃L,r = − 1

α

∂ũ
L

∂r
, sp̃L,θ = − 1

βr

∂ũ
L

∂θ
.

Heuristically (ũ
L
, p̃

L
) decays exponentially for r > R and its inverse Laplace

transform (ũ, p̃) will also decay exponentially in the time domain. The de-
sired time-domain PML system will be obtained by taking the inverse Laplace
transform of above equations.
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ηη̂
∂û

∂t
+ divp̂ + (ση̂ + σ̂η)û+ σû∆ = 0 in Ωρ × (0, T ),

M
∂p̂

∂t
+ ∇û+ Λ∆(p̂− p̂∆) = 0 in Ωρ × (0, T ),

∂û∆

∂t
− σ̂û = 0,

∂p̂∆

∂t
+ Λ(p̂∆ − p̂) = 0 in Ωρ × (0, T ),

p̂ · nD = g on ΓD × (0, T ), û = 0 on Γρ × (0, T ),

û|t=0 = u0, p̂|t=0 = p0, û∆|t=0 = 0, p̂∆|t=0 = 0 in Ωρ.

By the construction of the PML problem, (û, p̂) is designed to approximate
the solution of the original scattering problem (u,p) in the domainΩR×(0, T ).

Although the tremendous attention and success in the application of PML
methods in the engineering literature, there are few mathematical results on
the convergence of the PML methods. For the Helmholtz equation in the fre-
quency domain, it is proved in Lassas and Somersalo [LS98], Hohage et al

[HSZ03] that the PML solution converges exponentially to the solution of
the original scattering problem as the thickness of the PML layer tends to
infinity. In Chen and Wu [CW03], Chen and Liu [CL05], an adaptive PML
technique is proposed and studied in which a posteriori error estimate is used
to determine the PML parameters. In particular, it is shown that exponential
convergence can be achieved for fixed thickness of the PML layer by enlarg-
ing PML medium properties. For the time-domain PML method, not much
mathematical convergence analysis is known except the work in Hagstrom
[H99] in which the planar PML method in one space direction is considered
for the wave equation. In de Hoop et al [DBR02] and Diaz and Joly [DJ06]
the PML system with point source is analyzed based on the Cagniard - de
Hoop method.

Our convergence analysis makes use of the following uniform exponential
decay property of the modified Bessel function Kn(z).

Lemma 4. For any ν ∈ R, s ∈ C with Re(s) > 0, ρ > R > 0, and τ > 0, we

have

|Kν(sρ+ τ)|
|Kν(sR)| ≤ e

−τ
�
1−R2

ρ2

�
.

The proof which can be found in [C07] depends on the Macdonald formula
for the integral representation of the product of modified Bessel functions and
extends our earlier uniform estimate in [CL05] for the first Hankel function
H1

ν (z), ν ∈ R.
Now for r > R, let ũ = L −1(ũ

L
), where ũ

L
is the PML extension

ũ(r, θ, t) =

∞
∑

n=−∞

[

L
−1

(

Kn(sr̃)

Kn(sR)

)

∗ un(R, t)

]

einθ,

where un(R, t) = L −1(un
L
(R, s)) = 1

2π

∫ 2π

0 u
L
(R, θ, t)e−inθdθ. Since sρ̃ =

sρη̂(ρ) + ρσ̂(ρ), by using the convolution estimate,
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‖ ũ ‖2
L2(0,T ;H1/2(Γρ))

= ρ

∞
∑

n=−∞

(1 + n2)1/2

∥

∥

∥

∥

L
−1

(

Kn(sρ̃)

Kn(sR)

)

∗ un(R, t)

∥

∥

∥

∥

2

L2(0,T )

≤ ρe2s1T
∞
∑

n=−∞

(1 + n2)1/2 max
−∞<s2<∞

∣

∣

∣

∣

Kn(sρ̃)

Kn(sR)

∣

∣

∣

∣

2

‖ un(R, t) ‖2
L2(0,T )

≤ ρ

R
e2s1T max

−∞<n<∞
max

−∞<s2<∞

∣

∣

∣

∣

Kn(sρ̃)

Kn(sR)

∣

∣

∣

∣

2

‖ u ‖2
L2(0,T ;H1/2(ΓR))

≤ ρ

R
e2s1T e

−2ρσ̂(ρ)
�
1− R2

ρ2η̂(ρ)2

�
‖ u ‖2

L2(0,T ;H1/2(ΓR)).

This implies

‖ ũ ‖L2(0,T ;H1/2(Γρ)) ≤
( ρ

R

)1/2

e
s1T−ρσ̂(ρ)

�
1− R2

ρ2η̂(ρ)2

�
‖ u ‖L2(0,T ;H1/2(ΓR)).

Since the above estimate is valid for any s1 > 0, we conclude by letting s1 → 0
that

‖ ũ ‖L2(0,T ;H1/2(Γρ)) ≤
( ρ

R

)1/2

e
−ρσ̂(ρ)

�
1− R2

ρ2 η̂(ρ)2

�
‖ u ‖L2(0,T ;H1/2(ΓR)).

We have the following theorem on the convergence of the PML system.

Theorem 7. Let (u,p) be the solution of the original scattering problem and

(û, p̂, û∆, p̂∆) be the solution of the PML problem. Then there exists a con-

stant C > 0 depending only on ρ/R but independent of σ, η,R, ρ, and T such

that

‖ u− û ‖L2(0,T ;L2(ΩR)) + ‖p− p̂ ‖L2(0,T ;L2(ΩR))

≤ C(ηmT )e
−ρσ̂(ρ)

�
1− R2

ρ2η̂(ρ)2

�
+T ‖ u ‖H1(0,T ;H1/2(ΓR)).

where ηm = maxR≤r≤ρ η(r).

Long time stability of the PML methods is also a much studied topic in the
literature (see e.g. Bécache and Joly [BJ02], Bécache et al [BPG04], Appelö et

al [AHK06]). For a PML method to be practically useful, it must be stable in
time, that is, the solution should not grow exponentially in time. We remark
that the well-posedness of the PML system which follows from the theory of
symmetric hyperbolic systems allows the exponential growth of the solutions.
In [BJ02, BPG04, AHK06] the stability of the PML systems is considered
under the assumption of constant PML medium property which, however,
violates the property of perfect matchness of the associated PML system.
Thus those studies do not fully explain the success of practical applications of
the PML methods. The strategy to prove the stability of the PML method is
based on the combination of the stability of the original scattering problem in
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Theorem 6 and the convergence of the PML method in Theorem 7. We refer
to [C07] for more details.
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