University of Annaba–Department of Technology First year undergraduation

Analysis

Supplementary problems

Complex numbers

Exercise 1. Consider the function $f(z) = z^2$ and consider $z_1 = -2 + i$, $z_2 = 1 - 3i$. Put under the plar form, the following complex numbers:

- Drow $f(z_1)$ and $f(z_2)$
- Drow f(D), where

$$D = \{ z \in \mathbb{C} : |z| = 2, 0 \le \theta \le \frac{\pi}{2} \}.$$

 $\lim_{z \to 1} z^{\frac{1}{z^2 - 1}}.$

Exercise 2. Compute the limits: :

 $\lim_{z \to 0} \frac{z - \sin z}{z^2},\tag{1}$

2.

Exercise 3. Compute the derivatives of the following functions:

1. by definition

2.

 $f(z) = \cos(\log(z+i)),$

 $f(z) = \frac{(\operatorname{ch} z)^3}{\operatorname{ch} z^3}.$

 $f(z) = z^3,$

3.

Recall that

$$ch z = \frac{exp(z) + exp(-z)}{2},$$
$$sh z = \frac{exp(z) - exp(-z)}{2}.$$

Exercise 4. Let f be an hlomorphic function on an open subset D. Let $z_0 \in D$. Prove that there exists a neighborhood of z_0 such that :

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \eta(z),$$
(3)

and

$$\lim_{z \to z_0} \eta(z) = 0. \tag{4}$$

Exercise 5. Check the Cauchy–Riemann conditions for the following functions:

2009-2010

(2)

1.
$$f(z) = i \exp{(-z)},$$

2.
$$f(z) = \sin z.$$

Exercise 6.

1. Show that the following function is harmonic:

$$u(x, y) = \exp(-x)(x \sin y - y \cos y).$$

- 2. find the function v(x,y) such that f(z) = u(x,y) + iv(x,y) is an holomorphic function on \mathbb{C} .
- 3. Express f as a function in z.
- 4. Is the function $u(x, y) = x^2 y^2$ is harmonic?