University of Annaba-Department of Technology
First year undergraduation
2009-2010

Analysis

Supplementary problems

Complex numbers

Exercise 1. Consider the function $f(z)=z^{2}$ and consider $z_{1}=-2+i, z_{2}=1-3 i$. Put under the plar form, the following complex numbers:

- Drow $f\left(z_{1}\right)$ and $f\left(z_{2}\right)$
- Drow $f(D)$, where

$$
D=\left\{z \in \mathbb{C}:|z|=2,0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

Exercise 2. Compute the limits: :
1.

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{z-\sin z}{z^{2}} \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\lim _{z \rightarrow 1} z^{\frac{1}{z^{2}-1}} \tag{2}
\end{equation*}
$$

Exercise 3. Compute the derivatives of the following functions:

1. by definition

$$
f(z)=z^{3}
$$

2.

$$
f(z)=\cos (\log (z+i))
$$

3.

$$
f(z)=\frac{(\operatorname{ch~} \mathrm{z})^{3}}{\operatorname{ch~} \mathrm{z}^{3}}
$$

Recall that

$$
\begin{aligned}
\operatorname{ch} \mathrm{z} & =\frac{\exp (\mathrm{z})+\exp (-\mathrm{z})}{2} \\
\operatorname{sh} \mathrm{z} & =\frac{\exp (\mathrm{z})-\exp (-\mathrm{z})}{2}
\end{aligned}
$$

Exercise 4. Let f be an hlomorphic function on an open subset D. Let $z_{0} \in D$. Prove that there exists a neighborhood of z_{0} such that:

$$
\begin{equation*}
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\eta(z) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \eta(z)=0 \tag{4}
\end{equation*}
$$

Exercise 5. Check the Cauchy-Riemann conditions for the following functions:
1.

$$
f(z)=i \exp (-z)
$$

2.

$$
f(z)=\sin z .
$$

Exercise 6.

1. Show that the following function is harmonic:

$$
u(x, y)=\exp (-x)(x \sin y-y \cos y)
$$

2. find the function $v(x, y)$ such that $f(z)=u(x, y)+i v(x, y)$ is an holomorphic function on \mathbb{C}.
3. Express f as a function in z.
4. Is the function $u(x, y)=x^{2}-y^{2}$ is harmonic?
