University of Annaba-Department of Technology
First year undergraduation

Analysis

Supplementary problems

Complex numbers

Exercise 1. Study the convergence of the following serie:

$$
\sum_{n=1}^{\infty} \frac{(1+i)^{n}}{5^{\frac{n}{2}}}
$$

Hint: use the fact that $1+i=\sqrt{2} \exp \left(i \frac{\pi}{4}\right)$
Exercise 2. Compute the convergence domain of: :
1.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^{3} 4^{n}} \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{2 n-1}}{(2 n-1)!} \tag{2}
\end{equation*}
$$

3.

$$
\begin{equation*}
\sum_{n=1}^{\infty} n!z^{n} \tag{3}
\end{equation*}
$$

Exercise 3. Study the uniform convergence of the following series:
1.

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n \sqrt{n+1}},|z| \leq 1
$$

2.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+z^{2}}, 1 \leq|z| \leq 2
$$

3.

$$
\sum_{n=1}^{\infty} \frac{\cos n z}{n^{3}},|z| \leq 1
$$

4.

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+|z|^{2}}
$$

Exercise 4. Show that the following serie diverges:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+i}}
$$

Exercise 5. Consider the following serie, which converges for $|z| \leq R$ to f :

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} .
$$

Prove that

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, f\left(\left.r \exp (i \theta)\right|^{2} d \theta=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2 n}, \forall 0 \leq r \leq R\right.
$$

Exercise 6. Study the convergence of the following series
1.

$$
\sum_{n=1}^{\infty} \frac{1}{n+|z|}
$$

2.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+|z|}
$$

3.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+|z|}
$$

4.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+z}
$$

