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Analysis

Supplementary problems

Complex numbers

Exercise 1. Study the convergence of the following serie:
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Exercise 2. Compute the convergence domain of: :
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Exercise 3. Study the uniform convergence of the following series:
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Exercise 4. Show that the following serie diverges:
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Exercise 5. Consider the following serie, which converges for | z| ≤ R to f :
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Prove that
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Exercise 6. Study the convergence of the following series
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