University of Annaba-Department of Economy
First year undergraduation
2008-2009

Analysis
Supplementary problems
Derivation

Exercise 1. Let us the consider the function $f(x)=|x|$. Recall that the function f is defined by

$$
\begin{equation*}
f(x)=x, x \geq 0 \text { and } f(x)=-x, x \leq 0 \tag{1}
\end{equation*}
$$

Recall that a function f is derivable on point x_{0} if the following condition is fulfilled

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \in \mathbb{R} \tag{2}
\end{equation*}
$$

This means that f is derivable on point x_{0} if the limit $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists (some times does not exist!!) and is finite. When the limit $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists and finite, we denote it by $f^{\prime}\left(x_{0}\right)$.

- Using the definition (2), prove that for any $x_{0}>0, f$ has derivative equal to 1 on x_{0}.
- Using the definition (2), prove that for any $x_{0}<0, f$ has derivative equal to -1 on x_{0}.
- Using the definition (2), prove that for $x_{0}=0, f$ is not derivable on x_{0} (Hint: prove that

$$
\left.\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=1 \text { and } \lim _{h \rightarrow 0^{-}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=-1 .\right)
$$

Exercise 2. Let us the consider the function f defined by

$$
\begin{equation*}
f(x)=x^{2}-1+|x-2| . \tag{3}
\end{equation*}
$$

1. Using the definition of derivation stated in the previous exercise, prove that f is derivable on each $x_{0} \neq 2$.
2. Prove that:

$$
\begin{equation*}
\frac{f(2+h)-f(2)}{h}=h+4+\frac{|h|}{h}, \forall h \neq 0 . \tag{4}
\end{equation*}
$$

3. Using the (4), prove that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}=5 . \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}=3 \tag{6}
\end{equation*}
$$

4. Deduce then from the previous question that f is not derivable on $x_{0}=2$.

Exercise 3. Compute the derivative of the following functions:

$$
\begin{array}{r}
f(x)=\left(x^{2}-5\right)\left(x^{2}-2 x+7\right) ; g(x)=(\sqrt{x}+2 x)\left(4 x^{2}-1\right) ; h(x)=\frac{x^{2}+1}{5 x-3} ; r(x)=\frac{x-\sqrt{x}}{5 x^{2}-3} ; \\
l(x)=\left(\frac{1}{x}-3\right) \frac{x^{2}+3}{2 x-3} ; m(x)=\sqrt{x}(2 x-1)\left(x^{3}-x\right) ; n(x)=\left(x^{3}+4\right)^{4}
\end{array}
$$

Exercise 4. Compute the derivative of the following functions:

$$
\begin{array}{r}
f(x)=\sin (x)-\cos (x) ; g(x)=(\cos (x))(\cot (x)) ; h(x)=x \cos (x)+x^{2}+1 ; r(x)=\tan (x)-\sin (x) ; \\
l(x)=\cos (\exp (x))+\exp (x) \cos (x) ; m(x)=\log (\cos (x)) ; n(x)=\exp (-2 x) \sin (3 x)
\end{array}
$$

Exercise 5.

Find the first derivative of the funtion $f(x)=x^{x}$
Exercise 6. Using the definition $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ of the derivative of a function f on x_{0}, compute the derivative of f on x_{0} in each of the following cases:

1. $f(x)=x, x_{0}=0$
2. $f(x)=x^{2}, x_{0}=1$
3. $f(x)=|x|, x_{0}=1$
4. $f(x)=|x|, x_{0}=0$ (Hint: use the fact that $|x|=x$, for $x \geq 0$ and $|x|=-x$, for $x \leq 0$.)

Exercise 7. Compute the $n^{\text {th }}$ derivative of the following functions

$$
\begin{equation*}
f(x)=\sin (2 x) ; f(x)=\cos (3 x+5) ; h(x)=\frac{1}{x} ; r(x)=\frac{1}{1-x} ; l(x)=\frac{1}{1-x^{2}} \tag{7}
\end{equation*}
$$

Exercise 8. Compute the first derivative of the following function

$$
\begin{equation*}
f(x)=\sqrt{1+\sqrt{1+\sqrt{x}}} \tag{8}
\end{equation*}
$$

Exercise 9. Compute the first derivative f^{\prime} of the function f defined by

$$
\begin{equation*}
f(x)=\frac{x^{2}+1}{x-1} \tag{9}
\end{equation*}
$$

Deduce then the derivative of the following functions:

$$
\begin{array}{r}
g(x)=\frac{x^{2}+2 x+2}{x} ; h(x)=\frac{x+1}{\sqrt{x}-1} ; l(x)=\frac{x^{4}+1}{x^{2}-1} ; k(x)=\frac{\sin ^{2} x+1}{\sin x-1} ; \\
u(x)=\sqrt{\frac{x^{2}+1}{x-1}} ; v(x)=\left\{\frac{x^{2}+1}{x-1}\right\}^{2}
\end{array}
$$

