Aim of this note

Assume that Ψ is a given smooth function in such way that it can developed using Fourier series. Assume that the function Ψ is π-periodic. Therefore the function Ψ is also 2π-periodic. Consequently, the coefficients of the Fourier series can be computed using two manners:

1. Using the fact that Ψ is also 2π-periodic

$$
\begin{equation*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \Psi(x) \cos (n x) d x \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \Psi(x) \sin (n x) d x \tag{1}
\end{equation*}
$$

2. Using the fact that Ψ is π-periodic

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Psi(x) \cos (2 n x) d x \quad b_{n}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Psi(x) \sin (2 n x) d x \tag{2}
\end{equation*}
$$

We will show that the computation of the coefficients of the Fourier series using the formulas 41 and 22 leads to the same results.

Proof of the stated results

Indeed, let us consider the formulas given by 11. The coefficient a_{n} given in 11 can be written as

$$
\begin{equation*}
a_{n}=\frac{1}{\pi}\left(\int_{-\pi}^{-\frac{\pi}{2}} \Psi(x) \cos (n x) d x+\int_{-\frac{\pi}{2}}^{0} \Psi(x) \cos (n x) d x+\int_{0}^{\frac{\pi}{2}} \Psi(x) \cos (n x) d x+\int_{\frac{\pi}{2}}^{\pi} \Psi(x) \cos (n x) d x\right) \tag{3}
\end{equation*}
$$

Let the new variable $t=x+\pi$ in the first integral of (3), we get, since Ψ is π-periodic

$$
\begin{equation*}
\int_{-\pi}^{-\frac{\pi}{2}} \Psi(x) \cos (n x) d x=\int_{0}^{\frac{\pi}{2}} \Psi(t) \cos (n t-\pi n) d t=(-1)^{n} \int_{0}^{\frac{\pi}{2}} \Psi(t) \cos (n t) d t \tag{4}
\end{equation*}
$$

Let the new variable $t=x-\pi$ in the fourth integral of 3, we get, since Ψ is π-periodic

$$
\begin{equation*}
\int_{\frac{\pi}{2}}^{\pi} \Psi(x) \cos (n x) d x=\int_{-\frac{\pi}{2}}^{0} \Psi(t) \cos (n t+\pi n) d t=(-1)^{n} \int_{-\frac{\pi}{2}}^{0} \Psi(t) \cos (n t) d t \tag{5}
\end{equation*}
$$

Inserting 4 and (5) in 3 yields

$$
\begin{equation*}
a_{n}=\frac{1+(-1)^{n}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Psi(t) \cos (n t) d t \tag{6}
\end{equation*}
$$

Which gives that

$$
\begin{equation*}
a_{2 n+1}=0 \quad \text { and } \quad a_{2 n}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Psi(t) \cos (2 n t) d t \tag{7}
\end{equation*}
$$

In the same manner, we justify that

$$
\begin{equation*}
b_{2 n+1}=0 \quad \text { and } \quad b_{2 n}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Psi(t) \sin (2 n t) d t \tag{8}
\end{equation*}
$$

This means that the Fourier series $S(f)(x)$ using the fact that Ψ is also 2π-periodic is

$$
\begin{align*}
S(f)(x) & =\frac{a_{0}}{2}+\sum_{n \geq 1}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \\
& =\frac{a_{0}}{2}+\sum_{n \geq 1}\left(a_{2 n} \cos (2 n x)+b_{2 n} \sin (2 n x)\right) \tag{9}
\end{align*}
$$

where a_{n} and b_{n} are given by 77 and 8 .
We remark that the expansion $\sqrt{9}$ is exactly the one of the Fourier series when we use the fact that Ψ is π-periodic, i.e. the coefficients are computed using 2 .

