Written by Prof. Bradji, Abdallah

Last update: Saturday November 14th, 2015
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji

Aim of this note

The aim of this note is to find the domain of convergence of the sequence of functions $f_{n}(x)=\sin n x$ defined on \mathbb{R}. We will show that this sequence of functions converges only on the set:

$$
\begin{equation*}
I=\pi \mathbb{Z}=\{k \pi, k \in \mathbb{Z}\} \tag{1}
\end{equation*}
$$

The limit function is the function which vanishes over I.
Since $f_{n}(x)=\sin n x$ vanishes over I, then the serie of functions $\sum_{n \geq 0} f_{n}(x)$ converges only on the subset I. The limit is again the the function which vanishes over I.

1 Details

Since, f_{n} vanishes over I, for each n, then the sequence of functions $f_{n}(x)=\sin n x$ converges over I given by (1).
Assume now that there exists $x \notin I$ and prove that $f_{n}(x)$ does not converges as $n \rightarrow+\infty$. We will assume the there exists a limit l such that

$$
\lim _{n+\infty} \sin n x=l
$$

The limit l should be in $[-1,1]$ since $-1 \leq \sin n x \leq 1$. This implies that

$$
\begin{equation*}
\lim _{n+\infty}(\sin (n+1) x-\sin (n-1) x)=0 \tag{2}
\end{equation*}
$$

Which is equivalent to

$$
\begin{equation*}
2 \lim _{n+\infty} \cos n x \sin x=0 \tag{3}
\end{equation*}
$$

Since $\sin x \neq 0$ over I, then

$$
\begin{equation*}
\lim _{n+\infty} \cos n x=0 \tag{4}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\lim _{n+\infty} \cos (n+1) x=0 \tag{5}
\end{equation*}
$$

This gives, using (4)

$$
\begin{equation*}
-\lim _{n+\infty} \sin n x \sin x=0 \tag{6}
\end{equation*}
$$

Which gives, $\sin \sin x \neq 0$ over I

$$
\begin{equation*}
\lim _{n+\infty} \sin n x=0 \tag{7}
\end{equation*}
$$

Gathering this limit with 4 gives

$$
\begin{equation*}
\lim _{n+\infty} \sin ^{2} n x+\cos ^{2} n x=0 \tag{8}
\end{equation*}
$$

Which is a contradiction since $\sin ^{2} n x+\cos ^{2} n x=1$.
Consider now the serie of $\sum_{n \geq 0} f_{n}(x)$. In order that this serie converges, $f_{n}(x)$ should converge to 0 . This is satisfied only when $x \in I$.

Remark 1.1 It is proved in [1] that $f_{n}(x)$ does not converge to 0 when $x \notin I$. However, the proof presented here justifies that $f_{n}(x)$ does not converge to any limit when $x \notin I$. The techniques used in this note is similar to those of [1] in the sense that the techniques here use the known properties of the functions sin and cos.

References

[1] K. Allab, Elément d'Analyse: Fonction d'une Variable Réelle. OPU, 1990

