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Abstract

The aim of th present work is to give a review for the the nice article entitled ”A new

stable method for singularly perturbed convection–diffusion equations”, Computer methods

in applied mechanics and engineering, 197, 1507–1524, 2008.

1 Introduction

Let Ω be an open polygonal subset (for the sake of simplicity, even the authors introduce

their results when Ω is a bounded domain with Lipschitz boundary) of IR2. We introduce

the following model of convection–diffusion problem:

Lu = −ε∆u(x) + v · ∇u(x) + ru(x) = f(x), x ∈ Ω, [1]

with Dirichlet boundary condition

u(x) = 0, x ∈ ∂Ω. [2]
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We assume for simplicity that f ∈ L2(Ω), the velocity v and reaction term r are continuous.

Since the case 0 < ε is constant not small enough is treated in the classical finite element

method, the authors are interested with the case 0 < ε � 1. As usual, we look for u ∈ H1
0 (Ω)

such that

B(u, v) = F (v), ∀v ∈ H1
0 (Ω), [3]

where B(·, ·) is the bilinear form defined by

B(u, v) = ε (∇u,∇v) + (v · ∇u, v) + (ru, v) , [4]

and F (·) is the linear form defined by

F (v) = (f, v) [5]

where (·, ·) denotes the inner product of L2(Ω).

To prove the existence and uniqueness of , we apply the known Lemma of Lax–Milgram.

Indeed.

• Continuity of F , thanks to the Cauchy Schwarz inequality, we have

|F (v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω)

≤ ‖f‖L2(Ω)‖v‖H1(Ω). [6]

• Continuity of B(·, ·)

|B(u, v))| ≤ ε‖u‖H1(Ω)‖v‖H1(Ω) + max
x∈Ω̄

|v(x)|‖u‖H1(Ω)‖v‖L2(Ω) + max
Ω̄

|r|‖u‖L2(Ω)‖v‖L2(Ω)

≤
(

ε + max
x∈Ω̄

|v(x)|+ max
x∈Ω̄

|r|
)
‖u‖H1(Ω)‖v‖H1(Ω) [7]

• H1
0–ellipticity, thanks to a Green’s formula, we have

|B(u, u))| = ε‖∇u‖2
L2(Ω) +

∫
Ω

(
r(x)− ∇v(x)

2

)
u(x)dx. [8]

To get the H1
0–ellipticity, i.e. |B(u, u))| ≥ α‖∇u‖2

L2(Ω) (recall that, thanks to Poincaré

inequality, ‖∇u‖L2(Ω) is equivalent to the norme ‖u‖H1(Ω) of H1(Ω)), it suffices to

assume that

r(x)− ∇v(x)
2

≥ 0, a.e.x ∈ Ω. [9]

Which gives with 8,
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|B(u, u))| ≥ ε‖∇u‖2
L2(Ω). [10]

Let us a finite element discretization T using triangles in such that, for the sake of

simplicity, Ωh = Ω, where h is a positive parameter tends to zeror and Ωh is the

discretized domain, that is Ωh = ∪{τ ; τ ∈ T } .

To get a finite element discretization for [3], we introduce a finite dimensional subspaces

Vp
h ⊂ H1

0 (Ω), in which the finite element approximate solutions belongs to, and Wp
h ⊂

H1
0 (Ω), in which the space of test function included in. The elements of these two

spaces are polynomials of dgree up to p. The discretization of [3] is : looking for

uh ∈ Vp
h such that

B(uh, vh) = F (vh), ∀vh ∈ Wp
h. [11]

The space Vp
h is known as the trial space, and Wp

h is known as the space of test

functions.

When Vp
h = Wh, then the method [11] called the standard Gelerkin method . Otherwise,

the method [11] is called the Petrov Galerkin method .

We set v = vh in [3], substracting the reulting equation from [11], we get the so called

Galerkin orthogonality property

B(uh − u, vh) = 0, ∀vh ∈ Wp
h. [12]

From [12], we get the error estimate. Indeed, in case of standard finite element method,

[12] implies that

B(uh − πu, vh) = B(u− πu, vh), ∀vh ∈ Wp
h, [13]

where Set vh = uh − πu in [13], we get

B(uh − πu, uh − πu) = B(u− πu, uh − πu). [14]

Thanks to [10] and [7], we get

ε‖∇uh − πu‖2
L2(Ω) ≤

(
ε + max

x∈Ω̄
|v(x)|+ max

x∈Ω̄
|r|

)
‖uh − πu‖H1(Ω)‖u− πu‖H1(Ω). [15]

This with Poincaré inequality and interpolation error, we get(
‖∇uh − πu‖2

L2(Ω)

) 1
2 ≤ Chp (ε + maxx∈Ω̄ |v(x)|+ maxx∈Ω̄ |r(x)|)

ε
|u|p+1,Ω, [16]

where C is only depending on Ω.
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