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Remarks on the document

Below, I quote some remarks to be taken in consideration:

1. The stability of the finite difference scheme of [227]–[231], in Section 8, is proven using an

idea for [GOD 77, Pages 268–269]. I’m feeling that such stability could be proved in a simpler

way using Lemmata 8.1 and 8.2.

2. I enjoyed very well some comments quoted by [GOD 77, Pages 239–253] about the regularity

required to get the convergence of the finite difference schemes. I quote here some of these

useful remarks in Section 10. I’m so interested with the question of the regularity assumption

on the exact solution which is required in the numerical methods. At least, for two reason

make me so interested with the wonderful question of regularity:

• recently i’m interested with the numerical approximation of hyperbolic equation in which

the exact solution is not so smooth,

• is possible to get higher order approximations with some basic regularity assumptions

on the exact solution of the equation to be resolved.

3. there is a second item not written yet in Section 10. This item consists of the second issue to

manage with the numerical approximation of non smooth data. Is not so clear yet for me . . .

4. the first example, it is the Bürgers equation, not fnished yet.

1 Introduction

Let us consider the following simple example of ordinary differential equation

u′(x) =
sin(x)

x
, x ∈ (1, 2), [1]
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with

u(1) = 1. [2]

It is well known, that the solution of the ordinary differential equation [1]–[2] is

u(x) = 1 +

Z x

1

sin(t)

t
dt, x ∈ (1, 2). [3]

Since we do not know the exact value of the integral

Z x

1

sin(t)

t
dt, one does not know exactly the

expression of u(x) defined by [3], for all x ∈ (1, 2). We think then about the following options in

order to compute approximatly u(x):

• We approximate the integral

Z x

1

sin(t)

t
dt using methods of numerical integration

• We use the known numerical methods to approximate equation [1]–[2]. The advantage of this

last option is that we do not need an expression for u, like that of [3], and then we approximate

directly equation [1]–[2]. Among the numerical methods which allow us to approximate [1]–[2],

we have:

– Finite difference methods

– Finite element methods

– Finite volume methods

2 A simple example and some questions to be asked in

finite difference methods

In order to justify the convergence of a finite difference method approximating a differential equation,

let us consider the following simple equation: find u ∈ C1(0, 1) such that :

u′(x) = 2x, x ∈ (0, 1), [4]

with

u(0) = 0. [5]

The solution of the previous equation is:

u(x) = x2, x ∈ (0, 1). [6]

Let us consider a positive parameter h which is expected to goes to zero, and consider the points

0 = x0 < x1 < . . . xN = 1 such that xi − xi−1 = h, for all i ∈ {1, . . . , N}. This yields the following

explicit expression:

xi = ih, ∀i ∈ {0, . . . , N}. [7]
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It is useful to relate h and N ; indeed Nh = 1 implies that

h =
1

N
. [8]

The aim now is to compute the value of u on xi, for all i ∈ {1, . . . , N} (Recall that for i = 0,

u(xi) = u(x0) = u(0) = 0.). To do so, we replace x in [9] by xi to get

u′(xi) = 2xi, ∀i ∈ {0, . . . , N}. [9]

Using a simple formula of Taylor’s expansion, we get, for some ξi ∈ (xi, xi+1)

u(xi+1)− u(xi)

h
= u′(xi) +

h

2
u′′(ξi), ∀i ∈ {0, . . . , N − 1}. [10]

Which gives

u′(xi) =
u(xi+1)− u(xi)

h
− h

2
u′′(ξi), ∀i ∈ {0, . . . , N − 1}. [11]

Inserting this in [9], we get

u(xi+1)− u(xi)

h
− h

2
u′′(ξi) = 2xi, ∀i ∈ {0, . . . , N − 1}. [12]

Which yields
u(xi+1)− u(xi)

h
= 2xi +

h

2
u′′(ξi), ∀i ∈ {0, . . . , N − 1}. [13]

Since we know already that u′(x) = x, for all x ∈ (0, 1), then u′′(x) = 2, for all x ∈ (0, 1). But even

we know this, we neglect the second term on the right hand side of [13] because of the fact that

we assume that h is ”small”, and we denote by ui an approximation to u(xi). Therefore expansion

[13] becomes as
ui+1 − ui

h
= 2xi, ∀i ∈ {0, . . . , N − 1}, [14]

where, since u(0) = 0, it is convenient to set, since u0 is expected to approximate u(0),

u0 = 0. [15]

This implies that

ui+1 = ui + 2xih, ∀i ∈ {0, . . . , N − 1}. [16]

This implies

ui+1 = u0 + 2h

iX
i=0

xj , ∀i ∈ {0, . . . , N − 1}. [17]

Replacing i+ 1 by i in [17], we get

ui = u0 + 2h

i−1X
i=0

xj , ∀i ∈ {1, . . . , N}. [18]

therefore the expression of ui, given in [18], could be written as

ui = 2h

i−1X
i=0

xj , ∀i ∈ {1, . . . , N}. [19]
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Therefore, thanks to xj = jh and using the fact that

i−1X
i=0

j =
(i− 1)i

2
., expression [19] becomes as

ui = u0 + 2h

i−1X
i=0

xj

= 0 + 2h

i−1X
i=0

jh

= 2h2
i−1X
i=0

j

= 2h2 (i− 1)i

2

= h2(i− 1)i

= (h(i− 1)) (ih)

= xixi−1 [20]

Let us denote by uh the vector (ui)
N
0 . The question now: is uh converges to u, as h→ 0, in the

following sense for example:
N

max
i=0
|u(xi)− ui| → 0, as h→ 0? [21]

We have, since u(xi) = x2
i , for all i ∈ {0, . . . , N}, using the expression of ui given by [19] and xi ≤ 1

|u(xi)− ui| = |x2
i − xixi−1|

= xi|xi − xi−1|

= xih

≤ h. [22]

When h→ 0 in the previous inequality, we get

|u(xi)− ui| → 0, as h→ 0. [23]

So far, we have proven the convergence of the finite difference approximate solution uh = (ui)
N
0 ,

given by [19] and [15], towards the exact solution u thanks to the explicite expression of u given by

[6]. Let us now prove this convergence without use of the expression of [6] of u.

Remark 1 (Finite difference solution through matrix) The problem ([14],[15]) could be written as:

Auh = fh, [24]

where A is a matrix of order N −1 and uh = (u1, u2, . . . , uN−1)t is the vector whose de components

are the unknowns u1, u2, . . . , uN−1)t defined by ([14],[15]), with u0 = 0, and fh = (2x1, 2x2, . . . , 2xN−1)t.

Therefore, according to ([14],[15]), the i-th component of Auh is
ui+1 − ui

h
.
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2.1 A convergence proof of the finite difference solution [19] and

[15] without make appeal to [6]

Substracting [14] from [13], we get

ei+1 − ei
h

=
h

2
u′′(ξi), ∀i ∈ {0, . . . , N − 1}, [25]

where ei = u(xi)− ui, for all i ∈ {0, ..., N}.

Mutiplying both sides of [25] by h and adding ei to the both sides of the result, we get

ei+1 = ei + αi, ∀i ∈ {0, . . . , N − 1}. [26]

Let us denote by αi to the value hh
2
u′′(ξi), for all i ∈ {0, . . . , N − 1}

As done before

ei = e0 +

i−1X
j=0

αj , ∀i ∈ {1, . . . , N}. [27]

Since e0 = u(x0)− u0 = u(0)− u0 = 0, then

ei =

i−1X
j=0

αj , ∀i ∈ {1, . . . , N}. [28]

Let us assume the following assumption on u, there exists a positive constant M such that

|u′′(x)| ≤M, ∀x ∈ [0, 1]. [29]

(This assumption could be deduced, from instance, from equation by differentiating [4], and then

u′′(x) = 2 for all x ∈ (0, 1). Such assumptions on the derivatives of the exact solution, like that

of [29], are used mainly when we need to prove the convergence or to determine the convergence

order, see next sections.)

Estimate [29] with the fact that alphai = h
h

2
u′′(ξi) implies that

|αi| ≤Mh2, ∀i ∈ {0, . . . , N − 1}, [30]

which implies that, using [28] and [8]

|ei| ≤ Mh2
i−1X
j=0

1

≤ MNh2

= Mh, ∀i ∈ {1, . . . , N} [31]

From this simple example, we deduce the basic concepts of the finite difference methods.

2.2 Basic concepts of finite difference methods

• finite difference method is a method aims to approximate differential and partial differential

equations
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• finite difference method allows us to approximate the exact solution on some points. These

points are called mesh points.

• finite difference method is based on the approximation of the derivatives which appear in

differential or partial differential equation using Taylor expansion.

3 A second example

For more understanding to how to apply the previous steps of finite difference discretization, let us

consider the following example

u′(x)− αu(x) = 0, x ∈ (0, 1), [32]

with the following ”boundary conditions”:

u(0) = 1, [33]

where α is some given real number.

The solution of [32]–[33] is

u(x) = exp(αx). [34]

Let us move now to descretize problem [32]–[33] by finite difference methods. To this end, we

consider a mesh step h, and the mesh points xi = ih, for all i ∈ {0, . . . , N}, where x0 = 0 qnd

xN = 1. Therefore Nh = 1.

Replacing x by xi in [32], we get, for u “smooth enough”

u′(xi)− αu(xi) = 0, ∀i ∈ {0, . . . , N} [35]

Let us approximate u′(xi) by
u(xi+1−u(xi)

h
, and denote by ui an approximation to u(xi). Therefore,

ui satisfies the following problem

ui+1 − ui
h

− αui = 0, ∀i ∈ {0, . . . , N − 1}, [36]

and

u0 = 1. [37]

Multiplying both sides of [36] by h, and adding ui + αui to the both sides of the result, we get

ui+1 = (1 + αh)ui, ∀i ∈ {0, . . . , N − 1}, [38]

which gives

ui = (1 + αh)i , ∀i ∈ {0, . . . , N}. [39]

Let us move now to justify the convergence of uh = (ui)
N
1 towards the solution u in the sense that

max
i∈{1,...,N}

|u(xi)− ui| → 0.

Indeed, let us assume that the expression u defined by [34] is known. In case when the expression
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of the exact solution is not known, which is the general case of the equations to be solved, we need

to perform some techniques based on the equation satisfied by the exact solution u, see below.

Indeed, using a Taylor’s expansion, we get, since xi = ih

ui = e
i

„
αh−α

2h2
2 +α2h2ε1(h)

«

= eiαhe−xihα
2( 1

2−ε1(h))

= eαxi


1− xihα2

„
1

2
− ε1(h)

«
+ xihα

2

„
1

2
− ε1(h)

«
ε2

„
−xihα2

„
1

2
− ε1(h)

««ff
= u(xi) +Ah, [40]

where

Ah = −xihα2

„
1

2
− ε1(h)

«
eαxi


1− ε2

„
−xihα2

„
1

2
− ε1(h)

««ff
. [41]

We have used the following Taylor expansions:

log(1 + x) = x− x2

2
+ x2ε(x), [42]

and

ex = 1 + x+ xε2(x), [43]

such that

ε1(x)→ 0, and ε2(x)→ 0, as x→ 0. [44]

Since ε1(h) → 0, as h → 0 then, for sufficiently small h, there exists a positivie number C1 such

that

|ε1(h)| ≤ C1. [45]

On the other hand, since xi ∈ [0, 1], then −xihα2

„
1

2
+ ε1(h)

«
→ 0, as h → 0. This last limit

combined with the fact that ε2(x) → 0 as x → 0 implies that ε2

„
−xihα2

„
1

2
+ ε1(h)

««
→ 0, as

h→ 0. Therefore, for sufficiently small h, there exists a positivie number C2 such that

|ε2
„
−xihα2

„
1

2
+ ε1(h)

««
| ≤ C2. [46]

This with [45], [46], and the fact that xi ∈ [0, 1], implies that, for a sufficiently small h,

|Ah| ≤ C3h, [47]

where

C3 = α2

„
1

2
+ C1

«
(1 + C2)eα. [48]

This with [40] implies that, for a sufficiently small h

|ui − u(xi)| ≤ C3h, ∀i ∈ {1, . . . , N} [49]
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Remark 2 (Finite difference solution through matrix) The problem [36]–[37] could be written as:

Auh = 0, [50]

where A is a matrix order N − 1 and uh = (u1, u2, . . . , uN−1)t is the vector whose de components

are the unknowns u1, u2, . . . , uN−1)t defined by [36]–[37], with u0 = 0. Therefore, according to

[36]–[37], the i-th component of Auh is
ui+1 − ui

h
− αui.

3.1 A convergence proof without make appeal to the expression

[34] of u

We proceed as in [2.1] to the prove the of the finite difference approximate solution [39] towards

the exact solution of [32]–[33] without make appeal to the expression [34] of u.

Inserting Taylor’s expansion [10] in Equation

u(xi+1)− u(xi)

h
− h

2
u′′(ξi)− αu(xi) = 0, ∀i ∈ {0, . . . , N − 1}. [51]

Adding
h

2
u′′(ξi) to the both sides of the resulting equation, we get

u(xi+1)− u(xi)

h
− αu(xi) =

h

2
u′′(ξi). ∀i ∈ {0, . . . , N − 1}. [52]

Substracting [36] from [52], we get

ei+1 − ei
h

− αei =
h

2
u′′(ξi). ∀i ∈ {0, . . . , N − 1}, [53]

where ei = u(xi)− ui, for all i ∈ {0, . . . , N}.

Multiplying both sides of [53] by h and adding (1 + hα)ei to the both sides of the result, we get

ei+1 = (1 + hα)ei + αi, ∀i ∈ {0, . . . , N − 1}, [54]

where αi is defined by hh
2
u′′(ξi).

Relation [54]

ei = (1 + hα)ie0 +

i−1X
j=0

(1 + hα)i−j−1αj , ∀i ∈ {1, . . . , N}. [55]

Since e0 = 0, then the expression [55] becomes as

ei =

i−1X
j=0

(1 + hα)i−j−1αj , ∀i ∈ {1, . . . , N}. [56]

Let us estimate ei using previous expression. Indeed, since 1 + |hα ≥ 1 and thanks to [30], using

the fact that log(1 + x) ≤ x for all x ≥ 0, we have
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|ei| ≤
i−1X
j=0

|1 + hα|i−j−1αj

≤
i−1X
j=0

|1 + hα|i−j−1|αj |

≤
i−1X
j=0

(1 + h|α|)i−j−1|αj |

≤ h(1 + h|α|)NM

= hM(1 + h|α|)
1
h

= hMe
log(1+h|α|)

h

= hMe
log(1+h|α|)

h

≤ hMe|α|. [57]

4 A third example

In the previous, we considered two examples in which the finite difference approximate solution is

defined explicitly in the sense we could compute the unknowns of the discrete problem explicitly.

In this Subsection, we consider an example in which the unkowns of the discrete problem are not

computed explicitly; more precise the finite difference approximate solution is a solution of a system.

Let us consider the following differential equation:

− u′′(x) = π2 sin(πx), x ∈ (0, 1), [58]

with, say Dirichlet boundary conditions

u(0) = u(1) = 0. [59]

To this end, we consider a mesh step h, and the mesh points xi = ih, for all i ∈ {0, . . . , N}, where

x0 = 0 qnd xN = 1. Therefore Nh = 1.

Replacing x by xi in [58], we get, for u “smooth enough”

− u′′(xi) = π2 sin(πxi), i ∈ {0, . . . , N}. [60]

We have, thanks to Taylor’s expansion, for some ξi ∈ (xi, xi+1)

u(xi+1)− u(xi)

h
= u′(xi) +

h

2
u′′(xi) +

h2

6
u(3)(xi) +

h3

24
u(4)(ξi), ∀i ∈ {0, . . . , N − 1} [61]

and, for ξ̄i ∈ (xi, xi+1)then

u(xi)− u(xi−1)

h
= u′(xi)−

h

2
u′′(xi) +

h2

6
u(3)(xi)−

h3

24
u(4)(ξ̄i), ∀i ∈ {1, . . . , N} [62]
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Substracting [62] from [61], we get

u(xi+1 − 2u(xi) + u(xi−1)

h
= hu′′(xi) +

h3

24
(u(4)(ξi) + u(4)(ξ̄i)), ∀i ∈ {1, . . . , N − 1}. [63]

Dividing previous equality by h, we get

u(xi+1)− 2u(xi) + u(xi−1)

h2
= u′′(xi) + βi, ∀i ∈ {1, . . . , N − 1}, [64]

where

βi =
h2

24
(u(4)(ξi) + u(4)(ξ̄i)). [65]

Thanks to [60], we get u′′(xi) = −π2 sin(πxi) for all i ∈ {1, . . . , N − 1}; inserting this in equality

[64] to get
u(xi+1)− 2u(xi) + u(xi−1)

h2
= −π2 sin(xi) + βi, ∀i ∈ {1, . . . , N − 1}. [66]

by neglecting the term βi

− ui+1 − 2ui + ui−1

h2
= π2 sin(πxi), ∀i ∈ {1, . . . , N − 1}, [67]

where ui is an approximation of u(xi), for all i ∈ {0, . . . , N}. Since u(0) = u(1) = 0, we chose

u0 = uN = 0. [68]

Let uh = (ui)
N
0 be defined by [67]–[68].

4.1 How to compute the finite difference approximate solution uh

defined by [67]–[68]

To compute finite difference approximate solution uh defined by [67]–[68], we two possiblities, either

• we have to resolve an algebraic system:

Auh = fh, [69]

where (Auh)i = −ui+1 − 2ui + ui−1

h2
and (fh)i = (π2 sin(πxi)). We justify now that there

exists a unique uh satisfying [69], or

• we compute exlicitly ui

We study now each possiblity

4.1.1 We resolve the system [69]

Let us justify the existence and uniqueness of the solution of [69]. To do so, one remarks that A is

a square matrix, one could deduce that A is injective yields the sujectivity of A. This means that

the uniqueness of the solution of [69] yields the existence of the solution of [69].

It suffices then to justify that there exists at most one solution uh for [69]. We assume that there

exists a vector ωh = (ωi)
N
1 such that

Aωh = 0, [70]
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and

ω0 = ωN = 0. [71]

Therefore, using the definition of the matrix A to get

ωi+1 − ωi = ωi − ωi−1, ∀i ∈ {1, . . . , N − 1} [72]

Summing [73] over i ∈ {1, . . . , j} to get, since ω0 = 0

ωj+1 − ω1 = ωj , ∀j ∈ {1, . . . , N − 1}, [73]

which gives

ωj+1 − ωj = ω1, ∀j ∈ {1, . . . , N − 1}, [74]

Summing [74] over j ∈ {1, . . . , N − 1} to get, since ωN = 0

− ω1 = (N − 1)ω1, [75]

which implies that

ω1 = 0. [76]

This with [73] implies that

ωj+1 = ωj , ∀j ∈ {1, . . . , N − 1}, [77]

which yields

ωj = 0, ∀j ∈ {2, . . . , N}. [78]

This with [71] yields

ωj = 0, ∀j ∈ {0, . . . , N}. [79]

4.1.2 We compute ui

In the previous subsection, we used the matrix form [69], to prove the existence and uniqueness of

the solution of [67]–[68]. It is also possible to compute explicitly the solution ui of [67]–[68]. The

the advantage of the use of the matrix form [69] to prove the existence and uniqueness is that it is

more general and we do not need to compute explicitly ui.

To compute ui, we multiply equality [67] by h2 to get

ui+1 − ui − (ui − ui−1) = −h2π2 sin(πxi), ∀i ∈ {1, . . . , N − 1}, [80]

Summing over i ∈ {1, j − 1}, for j ∈ {1, N − 1}, and using the fact that u0 = 0 to get

uj+1 − uj − u1 = −h2
j−1X
i=1

π2 sin(πxi), ∀j ∈ {1, . . . , N − 1}. [81]

Summing previous equality on j ∈ {1, N − 1} and using the fact uN = 0 to get

−Nu1 = −h2
N−1X
j=1

j−1X
i=1

π2 sin(πxi), ∀i ∈ {1, . . . , N − 1}. [82]
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Which implies that, since N = 1/h

u1 = h3
N−1X
j=1

j−1X
i=1

π2 sin(πxi). [83]

After having computed u1, let us compute ui for all i ∈ {2, . . . , N − 1}. Summing [81] over

j ∈ {1, . . . , k − 1} to get

uk − ku1 = −h2
k−1X
j=1

j−1X
i=1

π2 sin(πxi), ∀k ∈ {2, . . . , N − 1}, [84]

which implies, using [83]

uk = kh3
N−1X
j=1

j−1X
i=1

π2 sin(πxi)− h2
k−1X
j=1

j−1X
i=1

π2 sin(πxi), ∀k ∈ {2, . . . , N − 1}. [85]

4.1.3 The convergence order of the finite difference solution [67]–[68]

Let ei = u(xi)− ui for all i ∈ {0, . . . , N}. Subtracting [67] from [66] to get

− ei+1 − 2ei + ei−1

h2
= βi, ∀i ∈ {1, . . . , N − 1}, [86]

where

e0 = eN = 0. [87]

Using the same reasoning of the previous subsection, we get

ek = kh3
N−1X
j=1

j−1X
i=1

βi − h2
k−1X
j=1

j−1X
i=1

βi, ∀k ∈ {2, . . . , N − 1}. [88]

Let us assume that there exists a positive constant M such that

|u(4)(x)| ≤M, ∀x ∈ (0, 1), [89]

therefore the following estimate for βi holds

|βi| ≤
M

12
h2. [90]

Using this in [88] to get

|ek| ≤ kh3M

12
h2N2 + h2M

12
h2N2, ∀k ∈ {2, . . . , N − 1}. [91]

which yields since k ≤ N and Nh = 1

|ek| ≤ h2M

6
, ∀k ∈ {2, . . . , N − 1}. [92]
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Remark 3 (An approximation of order h2 to
u(xi+1)−u(xi)

h
) Estimate [92] implies that ui approxi-

mates u(xi) by order h2. Some times, we do not only need to approximate u(xi) but also we need

to approximate u′(xi). We can use the estimate [92] to prove that
ui+1−ui

h
approximate u′(xi) by

order h. Indeed,using the triangle inequality, estimate [92] to get (recall that ei = u(xi)− ui)

|ui+1 − ui
h

− u′(xi)| ≤ |ui+1 − ui
h

− u(xi+1)− u(xi)

h
|+ |u(xi+1)− u(xi)

h
− u′(xi)|

≤ |ui+1 − ui
h

− u(xi+1)− u(xi)

h
|+ h max

x∈[0,1]
|u′′(x)|

≤ 1

h
{|ei+1|+ |ei|}+ h max

x∈[0,1]
|u′′(x)|

≤ h
M

3
+ h max

x∈[0,1]
|u′′(x)|

≤ (
M

3
+ max
x∈[0,1]

|u′′(x)|)h [93]

But we can prove that
ui+1 − ui

h
approximate

u(xi+1)− u(xi)

h
by order h2 in some discrete L2–

norm. Indeed, [86] implies

− ei+1 − ei
h

+
ei − ei−1

h
= hβiei, ∀i ∈ {1, . . . , N − 1}. [94]

Multiplying both sides of [94] by ei, summing over i ∈ {1, N − 1}, reordering the sum in the left

hand side, and using [87], we get

N−1X
0

h(
ei+1 − ei

h
)2 =

X
1,N−1

hβiei. [95]

Since |
N−1X

1

hβi| ≤ h2M

6
, then [95] yields

N−1X
0

h(
ei+1 − ei

h
)2 ≤ h2M

6

N−1X
1

h|ei|. [96]

Using now the following discrete version of Poincaré inequality, for some positive constant indepen-

dent of h
N−1X

1

h|ei| ≤ C
N−1X

0

h(
ei+1 − ei

h
)2. [97]

This with [96] implies that  
N−1X

0

h(
ei+1 − ei

h
)2
! 1

2

≤ h2M

6
. [98]

5 What we need to approximate a differential equation

by finite difference method

From the previous examples, we can guess which material we need for finite difference method. The

following Subsections are dealt with this material.
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5.1 Taylor expansions

Let n ∈ IN?, and a and b be two real numbers. Let f be a sufficiently smooth function on an interval

(a, b), namely f ∈ Cn(a, b). Let x0 ∈ (a, b), for any h ∈ IR such that x0 + h ∈ (a, b), there exists a

function ε(h) such that

f(x0 + h) = f(x0) +
f ′(x0)

1!
+ h2 f

′′(x0)

2!
+ h3 f

(3)(x0)

3!
+ . . .+ hn

f (n)(x0)

n!
+ hnε(h), [99]

and

ε(h)→ 0, as h→ 0. [100]

5.2 Consideration of mesh

Assume that we have to approximate a differential equation posed on interval I. Recall that the

aim of finite difference method is to approximate the exact solution on some points belong to I.

These points called mesh points.

5.3 Computing the finite difference approximate solution

After having approximated the derivatives which appear in the diferential equation to be solved,

by using Talyor expansions, we replace the variable x by xi and then we obtain a finite difference

approximate solution, denoted by uh.This finite difference solution uh is defined either by:

• an explicite expression for the finite difference approximate solution: this means that we can

compute ui explicitly, or

• by an algebraic system to be solved

6 How to prove the convergence of a finite difference

approximate solution

6.1 Introduction: some concepts

In the previous examples,we have proven the convergence of the finite difference solution using two

methods:

• First method: we use an explicit expression for the exact solution as well as an explicit

expresion for the finite difference solution, and then we make the difference between these

two expressions.

• second method: let us assume that the finite difference solution is defined as the solution of

a problem could be written as:

Lhuh = fh [101]
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where uh is the finite difference solution, Lh is an operator and may be is non–linear (note

that Lh is a matrix in all the examples we treated before).

Since the finite difference solution uh is some vector in which its components are expected

to approximate the values of the exact solution on the mesh points, it is possible then to act

Lh on u by considering u as a vector, denoted by [u]h, in which each component of [u]h is

the value of u on the mesh point to which the corresponding component of uh is expcted to

approximate. Let us assume that, we get, usually this could be obtained thanks to Taylor’s

expansions

Lh[u]h = fh + εh [102]

To prove the convergence of uh towards u, we assume that

– the “remainder term” εh satisfies, for some norm denoted by ‖ · ‖F , the following con-

vergence holds:

‖εh‖F → 0, as h→ 0. [103]

– the operator Lh is invertible and the following continuity of L−1
h holds, for some constant

C independent of the mesh parameter h:

‖L−1
h fh‖U ≤ C‖fh‖F [104]

Substracting [101] from [102], we get

Lh([u]h − uh) = εh. [105]

Which gives

u− uh = L−1
h (εh). [106]

This implies that, with [104]

‖u− uh‖U ≤ C‖εh‖F , [107]

which yields

‖u− uh‖U → 0, as h→ 0. [108]

6.2 Some simple examples

Since the first method in the previous Subsection, that is the convergence proof through the com-

putation of the exact unknown solution and the finite difference solution, can not be applied in the

general case, we will devote this Subsection to provide with some examples in which we explain

how to apply the concepts stated in second method of the previous Subsection. We will not only

apply the concepts of Subsection 6.1 on the examples treated in Sections 2, 3, and 4, but also we

apply these concepts on other examples in which the concepts of Subsection 6.1 are not obvious to

apply on.
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• First example In this item, we apply the concepts stated in the second method of Subsection

6.1, on the example of Section 2, that is the finite difference approximation [14]–[15] of [4]–[5]:

– property [103]: let us first set [14]–[15] in the form of [101]. Indeed, Lh is a square

matrix with N lines, and

Lhuh =
“u1 − u0

h
, . . . ,

uN − uN−1

h

”t
, [109]

where u0 = 0, uh = (u1, u2, . . . , uN )t, and

fh = (2x0, . . . , 2xN−1)t . [110]

By acting the matrix Lh on the function u with replacing ui by u(xi), for all i ∈

{0, . . . , N}, we get

Lhu =

„
u(x1)− u(x0)

h
, . . . ,

u(xN )− u(xN−1)

h

«t
, [111]

Using the Taylor exapansion [13], we get

Lhu =

„
u(x1)− u(x0)

h
, . . . ,

u(xN )− u(xN−1)

h

«t
=

„
2x0 +

h

2
u′′(ξ0), . . . , 2xN−1 +

h

2
u′′(ξN−1)

«t
= (2x0, . . . , 2xN−1)t +

„
h

2
u′′(ξ0), . . . ,

h

2
u′′(ξN−1)

«t
= (2x0, . . . , 2xN−1)t +

h

2

`
u′′(ξ0), . . . , u′′(ξN−1)

´t
= fh +

h

2

`
u′′(ξ0), . . . , u′′(ξN−1)

´t
. [112]

Now the function εh given by [102] is defined by

εh =
h

2

`
u′′(ξ0), . . . , u′′(ξN−1)

´t
. [113]

By assuming assumption [29], we get since 1
2
< 1

‖εh‖∞ ≤Mh, [114]

where ‖ · ‖∞ denotes the uniform–norm

‖(s0, . . . , sN−1)‖∞ =
N−1
max
i=0

(|s0|, . . . , |sN−1|). [115]

In particular, estimate [114] implies the convergence

‖εh‖∞ → 0, as h→ 0. [116]

– property [104]: it suffices to prove that if Lhuh = fh, where uh = (u1, . . . , uN )t and

fh = (f0, f1, . . . , fN−1)t, we have the following estimate, for some positive constant

independent of the parameter h

‖uh‖∞ ≤ C‖fh‖∞. [117]

this implies
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∗ the matrix Lh is injective, since fh = 0 in [117] implies uh = 0,

∗ since Lh is a square matrix, the previous injectivity of Lh implies the surjectivity,

∗ estimate [117] yields [117].

Using the computations [14]–[19] combined with the triangle inequality and the fact

that u0 = 0, we get

|ui| ≤ h
i−1X
j=0

|fj |, ∀i ∈ {1, . . . , N}. [118]

Which implies, since i ≤ N

|ui| ≤ hN‖fh‖∞, ∀i ∈ {1, . . . , N}. [119]

Therefore, since Nh = 1

‖uh‖∞ ≤ ‖fh‖∞, [120]

which means that [117] holds for all 1 ≤ C.

• Second example In this item, we apply the concepts stated in the second method of Subsection

6.1, on the example of Section 3, that is the finite difference approximation [36]–[37] of [32]–

[33]:

– property [103]: let us first set [36]–[37] in the form of [101]. Indeed, Lh is a square

matrix with N lines, and

Lhuh =
“u1 − u0

h
− αu0, . . . ,

uN − uN−1

h
− αuN−1

”t
, [121]

where u0 = 0, uh = (u1, u2, . . . , uN )t, and fh is the vector of N components

fh = (0, . . . , 0)t . [122]

By acting the matrix Lh on the function u with replacing ui by u(xi), for all i ∈

{0, . . . , N}, we get

Lhu =

„
u(x1)− u(x0)

h
− αu(x0), . . . ,

u(xN )− u(xN−1)

h
− αu(xN−1)

«t
, [123]

Using the Taylor exapansion [52], we get

Lhu =

„
u(x1)− u(x0)

h
− αu(x0), . . . ,

u(xN )− u(xN−1)

h
− αu(xN−1)

«t
=

„
h

2
u′′(ξ0), . . . ,

h

2
u′′(ξN−1)

«t
= fh +

h

2

`
u′′(ξ0), . . . , u′′(ξN−1)

´t
. [124]

Now the function εh given by [102] is defined by

εh =
h

2

`
u′′(ξ0), . . . , u′′(ξN−1)

´t
. [125]
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With the assumption the second derivative of u is bounded uniformly by a positive

constant M , we get since 1
2
< 1

‖εh‖∞ ≤Mh, [126]

In particular, estimate [126] implies the convergence

‖εh‖∞ → 0, as h→ 0. [127]

– property [104]: it suffices to prove that if Lhuh = fh, where uh = (u1, . . . , uN )t and

fh = (0, . . . , 0)t, we have the following estimate, for some positive constant independent

of the parameter h

‖uh‖∞ ≤ C‖fh‖∞. [128]

this implies

∗ the matrix Lh is injective, since fh = 0 in [117] implies uh = 0,

∗ since Lh is a square matrix, the previous injectivity of Lh implies the surjectivity,

∗ estimate [117] yields [117].

Using the computations [53]–[57] combined with the triangle inequality and the fact

that u0 = 0, we get

|ui| ≤ eα‖fh‖∞, ∀i ∈ {1, . . . , N}. [129]

Which implies

‖uh‖∞ ≤ eα‖fh‖∞, [130]

which means that [128] holds for all eα ≤ C.

• Third example In this item, we apply the concepts stated in the second method of Subsection

6.1, on the example of Section 4, that is the finite difference approximation [67]–[68] of [58]–

[59]:

– property [103]: let us first set [67]–[68] in the form of [101]. Indeed, Lh is a square

matrix with N lines, and

Lhuh =

„
−u2 − 2u1 + u0

h2
, . . . ,−uN − 2uN−1 + uN−2

h2

«t
, [131]

where u0 = uN = 0, uh = (u1, u2, . . . , uN−1)t, and fh is the vector of N −1 components

fh =
`
π2 sin(πx1), . . . , π2 sin(πxN−1)

´t
. [132]

By acting the matrix Lh on the function u with replacing ui by u(xi), for all i ∈

{0, . . . , N}, we get

Lhu =

„
−u(x2)− 2u(x1) + u(x0)

h2
, . . . ,−u(xN )− 2u(xN−1) + u(xN−2)

h2

«t
. [133]
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Using the Taylor expansion [66], we get

Lhu =

„
−u(x2)− 2u(x1) + u(x0)

h2
, . . . ,−u(xN )− 2u(xN−1) + u(xN−2)

h2

«t
=

`
π2 sin(πx1) + β1, . . . , π

2 sin(πxN−1) + βN−1)
´t

= fh + (β1, . . . , βN−1)t . [134]

Now the function εh given by [102] is defined by

εh = (β1, . . . , βN )t , [135]

where βi, for all i ∈ {1, . . . , N}, are given by [65].

With the assumption [89], that is the fourth derivative of u is bounded uniformly by

some positive constant M , we get since 1
12
< 1

‖εh‖∞ ≤Mh2, [136]

In particular, estimate [136] implies the convergence

‖εh‖∞ → 0, as h→ 0. [137]

– property [104]: it suffices to prove that if Lhuh = fh, where uh = (u1, . . . , uN−1)t and

fh = (0, . . . , 0)t, we have the following estimate, for some positive constant independent

of the parameter h

‖uh‖∞ ≤ C‖fh‖∞. [138]

this implies

∗ the matrix Lh is injective, since fh = 0 in [117] implies uh = 0,

∗ since Lh is a square matrix, the previous injectivity of Lh implies the surjectivity,

∗ estimate [138] yields [117].

Using the computations [80]–[85] combined with the triangle inequality and the fact

that u0 = uN = 0 and k < N , we get

|uk| ≤ h3N3‖fh‖∞ + h2N2‖fh‖∞, ∀k ∈ {2, . . . , N − 1}, [139]

and

|u2| ≤ h3N2‖fh‖∞, [140]

which gives, since Nh = 1 and with the assumption h ≤ 1

|uk| ≤ 2‖fh‖∞, ∀k ∈ {2, . . . , N − 1}, [141]

Which implies

‖uh‖∞ ≤ 2‖fh‖∞, [142]

which means that [138] holds for all 2 ≤ C.
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6.3 A general framework to prove the convergence of the finite

difference solution

As we have seen, in general, we do not know both the expression of the exact solution and the finite

difference solution. This means that the first method stated in Subsection 6.1 can not be applied

in the general case. Whereas the second method of Subsection 6.1 seems to be efficient. This

Subsection is devoted to give a “framework” which states the concepts of Subsection 6.1 in some

efficient “rule” could be applied whenever we would like to prove the convergence of a given finite

difference solution. We will restate here the results of the second method of the Subsection 6.1 but

in a more precise manner. As, we have seen that convergence [108] of the finite difference solution uh

towards the exact solution u results from two facts: the first fact is the so called Consistency which

is the subject of [103], and the second fact is the so called Stability which is the subject of [104].

Therefore, the convergence of a given finite difference solution [101] results from the Consistency

[103] and the Stability [104]. We summarize then this result in the following Theorem:

Theorem 6.1 Let h be a positive parameter, and Lh be a linear operator from a normed vectorial

space (Uh; ‖ · ‖Uh) into a normed vectorial space (Fh; ‖ · ‖Fh). Assume that the following properties

hold:

• Stability: Lh is invertible and its inverse is bounded by some constant M independent of h:

‖L−1
h ‖L(Fh,Uh) ≤M, [143]

where

‖L−1
h ‖L(Fh,Uh) = sup

vh∈Fh,vh 6=0

‖L−1
h (vh)‖Uh
‖vh‖Fh

.

• Consistency: Let uh and ūh be two elements from Uh such that

‖Lh(ūh − uh)‖Fh → 0 as h→ 0. [144]

Then the following convergence holds:

‖ūh − uh‖Uh → 0 as h→ 0. [145]

Remark 4 The Stability given in Theorem 6.1 is equivalent to say, for some constant M independent

of h, and for all rh ∈ Fh, there exits a unique qh ∈ Uh such that

Lhqh = rh. [146]

and

‖qh‖Uh ≤M‖rh‖Fh . [147]
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Proof The convergence [145] results as follows, thanks to [143]

‖ūh − uh‖Uh = ‖L−1
h (Lh(ūh − uh)) ‖Uh

≤ M‖Lh(ūh − uh)‖Fh . [148]

Tending h to 0 in the previous inequality and using [144], we get [145] �

6.4 The concept of the convergence order

In the previous Subsection, we provided some sufficient conditions for the convergence of the finite

difference solution. This convergence is given in the sense of [145]. It is interesting to measure how

it is fast the convergence of the finite difference solution towards the exact solution. More precise,

let us consider the following problem:

Lu = f, [149]

and its finite difference approximation

Luh = fh, [150]

where h is the parameter mesh discretization.

Let us assume that, there exist two positive constants α and C independent of the parameter mesh

discretization h such that

‖u− uh‖ ≤ Chα, [151]

where ‖ · ‖ is a convenient norm (Some choices of the norm are given in the previous sections, and

some discussion of the reasonable choice of these norms will be given below.). As we can see that

the estimate [151] yields the convergence of uh towards u as h tends to 0.

One remarks that for h ≤ 1, hα2 ≤ hα1 for 0 < α1 < α2, one could deduce that as α increases, as

the convergence of uh towards u becomes faster. It is useful then to get α higher.

6.5 How to determine a convergence order of a given finite differ-

ence solution?

Theorem 6.1 provides us with some sufficient conditions for the converegence of the finite differ-

ence solution towards the exact solution. The following Theorem provides us with some sufficient

conditions for a convergence order of the finite difference solution.

Theorem 6.2 Let h be a positive parameter, and Lh be a linear operator from a normed vectorial

space (Uh; ‖ · ‖Uh) into a normed vectorial space (Fh; ‖ · ‖Fh). Assume that the following properties

hold:

• Stability: Lh is invertible and its inverse is bounded by some constant M independent of h:

‖L−1
h ‖L(Fh,Uh) ≤M, [152]
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where

‖L−1
h ‖L(Fh,Uh) = sup

vh∈Fh,vh 6=0

‖L−1
h (vh)‖Uh
‖vh‖Fh

. [153]

• Consistency: Let uh and ūh be two elements from Uh such that, for some two positives

constants C and α independent of h

‖Lh(ūh − uh)‖Fh ≤ Ch
α. [154]

Then the following convergence holds:

‖ūh − uh‖Uh ≤ CMhα. [155]

The Proof of this Theorem follows that one of 6.1.

The following Theorem gives the Theorem [6.2] in the non–linear case of Lh

Theorem 6.3 (Non–linear case) Let h be a positive parameter, and Lh be an operator from a

normed vectorial space (Uh; ‖ · ‖Uh) into a normed vectorial space (Fh; ‖ · ‖Fh). Assume that the

following properties hold:

• Stability: Lh is invertible and if Lhuh = fh and Lhvh = gh then the following estimate holds,

for some constant M independent of h:

‖uh − vh‖Uh ≤M‖fh − gh‖Fh . [156]

• Consistency: Let uh and ūh be two elements from Uh such that, for some two positives

constants C and α independent of h

‖Lh(ūh − uh)‖Fh ≤ Ch
α. [157]

Then the following convergence holds:

‖ūh − uh‖Uh ≤ CMhα. [158]

Remark 5 (Theorem 6.3 generalizes 6.3) Equality [156] generalizes [152] when we put vh = 0Uh and

gh = 0Fh where 0Uh and 0Fh ; then [156] gives ‖uh‖Uh ≤M‖fh‖Fh which means that ‖L−1
h (fh)‖Uh ≤

M‖fh‖Fh . This yields that ‖L−1
h ‖L(Fh,Uh) ≤ M , according to the definition [153] of the norm

‖L−1
h ‖L(Fh,Uh). Therefore, Theorem 6.3 generalizes Theorem 6.2

6.6 Some examples of the finite difference approximation

In this Subsection, we quote some examples of the finite difference approximation of ordinary

differential equations as well as of partial differential equations. We will apply, in these examples,

Theorem 6.2 in order to determine a convergence order of these finite difference approximations.
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• First example Let us consider the following problem

− u′′(x) + (1 + x2)u(x) =
√

1 + x, x ∈ (0, 1), [159]

with the Dirichlet boundary conditions

u(0) = u(1) = 0. [160]

Let h be a positive parameter which is expected to approah 0. We introduce the finite

difference discretization xi = ih, for all i ∈ {0, . . . , N} where x0 = 0 and xN = 1.

The finite difference approximation we suggest to approximate [159]–[160]:

− ui+1 − 2ui + ui−1

h2
+ (1 + x2

i )ui =
√

1 + xi, i ∈ {1, . . . , N − 1}, [161]

with

u0 = uN = 0. [162]

In order to prove the existence, uniqueness, and convergence of the finite difference solution

(ui)
N
0 of [161]–[162] towards the exact solution u of, [159]–[160], we will apply Theorem 6.2.

– Stablity : We could set [161]–[162] in the following form:

Lhuh = fh, [163]

where

uh = (u1, . . . , uN−1)t , [164]

and Lh is the square matrix of N − 1 lines defined by

Lhuh =

„
−u2 − 2u1 + u0

h2
+ (1 + x2

1)u1, . . . ,−
uN − 2uN−1 + uN−2

h2
+ (1 + x2

N−1)uN−1

«t
,

[165]

with u0 = uN = 0, and the second member fh is defined by

fh =
“√

1 + x1, . . . ,
p

1 + xN−1

”t
. [166]

To prove [152], we first prove that there exists a constant a positive constant M inde-

pendent of h such that for any given vector fh = (f1, . . . , fN−1)t and for any possible

solution uh = (u1, . . . , fN−1)t of Luh = fh, the following estimate

max (|u1|, . . . , |uN−1|) ≤M max (|f1|, . . . , |fN−1|) [167]

Indeed, estimate [167] yields:

∗ injectivity of Lh in the sense: Lhuh = 0 implies, by replacing fh = 0 in [167],

uh = 0

∗ since Lh is a square matrix, then this last injectivity implies the surjectivity in the

sense that for all fh = (f1, . . . , fN−1)t there exists a unique (this uniqueness is the

subject of the previous item) uh = (u1, . . . , fN−1)t such that Luh = fh,
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∗ estimate [167] gives estimate [152]

Let us first write Luh = fh in the following form, thanks to [165]

− 1

h2
ui+1 +

2 + h2(1 + x2
i )

h2
ui −

1

h2
ui−1 = fi, i ∈ {1, . . . , N − 1}, [168]

with u0 = uN = 0.

Assume that there exists k ∈ {1, . . . , N − 1} such that |uk| = max (|u1|, . . . , |uN−1|),

and writing [168] when i = k

− 1

h2
uk+1 +

2 + h2(1 + x2
k)

h2
uk −

1

h2
uk−1 = fk, [169]

which implies that

2 + h2(1 + x2
k)

h2
uk = fk +

1

h2
uk−1 +

1

h2
uk+1, [170]

this with the triangle inequality and |uk−1|, |uk−1| ≤ |uk| implies

2 + h2(1 + x2
k)

h2
|uk| ≤ |fk|+

1

h2
|uk|+

1

h2
|uk|. [171]

Which implies in turn that

(1 + x2
k)|uk| ≤ |fk|. [172]

This yields, since 1 + x2
k > 1

|uk| ≤ |fk|. [173]

Since |uk| = max (|u1|, . . . , |uN−1|) and |fk| ≤ max (|f1|, . . . , |fN−1|), estimate [173]

implies

max (|u1|, . . . , |uN−1|) ≤ max (|f1|, . . . , |fN−1|) . [174]

– Consistency By acting the matrix Lh on the vector [u]h = (u(x1), . . . , u(xN−1))t with

u(x0) = u(xN ) = 0, we get

Lh[u]h = (−u(x2)− 2u(x1) + u(x0)

h2
+ (1 + x2

1)u(x1), . . . ,−u(xN )− 2u(xN−1) + u(xN−2)

h2

+ (1 + x2
N−1)u(xN − 1))t. [175]

Using the Taylor expansion [66] and equation [159], we get

Lh[u]h =
“√

1 + x1 + β1, . . . ,
p

1 + xN−1 + βN−1)
”t

= fh + (β1, . . . , βN )t . [176]

Substracting [163] from [176], we get

Lh([u]h − uh) = (β1, . . . , βN−1)t . [177]

where βi, for all i ∈ {1, . . . , N}, are given by [65].

With the assumption [89], that is the fourth derivative of u is bounded uniformly by

some positive constant M , we get since 1
12
< 1

‖Lh([u]h − uh)‖ ≤Mh2, [178]
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where the norm ‖ · ‖ is the norm defined by

‖ (s1, . . . , sN−1)t ‖ = max (|s1|, . . . , |sN−1|) . [179]

Using now Theorem [6.2], we get

‖[u]h − uh‖ ≤Mh2. [180]

Remark 6 (Other Stability for [163]–[166]) For the discrete problem [163]–[166], we have

proven the Stability [167]. It is also possible to prove a Stability in other norm, it is given in

Remark 3. This norm can be viewed as in H1
0 norm, that the norm defined by

‖uh‖2H1
0

=

N−1X
i=0

h
“ui+1 − ui

h

”2

. [181]

Indeed, Lhuh = fh, with fh = (f1, . . . , fN−1)t means that

− ui+1 − 2ui + ui−1

h2
+ (1 + x2

i )ui = fi, i ∈ {1, . . . , N − 1}, [182]

which could be written as

− ui+1 − ui
h

+
ui − ui+1

h
+ (1 + x2

i )ui = hfi, i ∈ {1, . . . , N − 1}. [183]

Multiplying both sides of [183] by ui, summing over i ∈ {1, . . . , N − 1}, reording the sum,

and using the fact that u0 = uN = 0, we get

‖uh‖2H1
0

+

N−1X
i=1

(1 + x2
i )u

2
i = h

N−1X
i=1

fiui. [184]

Since (1 + x2
i )u

2
i ≥ 0, [184] implies

‖uh‖2H1
0
≤ h

N−1X
i=1

fiui. [185]

The right hand side of the previous inequality could be estimated as

h

N−1X
i=1

fiui ≤ max (|f1|, . . . , |fN−1|) max (|u1|, . . . , |uN−1|) . [186]

Let us assume that, for some k ∈ {1, . . . , N − 1}

max (|u1|, . . . , |uN−1|) = |uk| [187]

We have, thanks to the Cauchy Schwarz inequality since u0 = 0

|uk| = |
kX
1

(uj − uj−1)|

≤

 
kX
1

(uj − uj−1)2

h

! 1
2
 

kX
1

h

! 1
2

≤ ‖uh‖H1
0

(Nh)
1
2

= ‖uh‖H1
0
. [188]
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This with [185]–[187] imply

‖uh‖H1
0
≤ max (|f1|, . . . , |fN−1|) . [189]

• Second example, see [EYM 00, Section 8, Pages 749–754] Let us consider the following semi–

linear equation:

− uxx(x) = f(x, u(x)), x ∈ (0, 1) [190]

with the boundary condition

u(0) = 0. [191]

For the sake of simplicity, we assume that the function f(x, s) is continuous with respect to

both variables x and s. We assume in addition that

f ∈ L∞ ((0, 1)× IR) [192]

A weak formulation for equation [190]–[191] may be given by: find u ∈ H1
0 (0, 1) such thatZ 1

0

ux(x)ϕx(x)dx =

Z 1

0

f(x, u(x))ϕx(x)dx, ∀ϕ ∈ H1
0 (0, 1), [193]

where H1
0 (0, 1) denotes, as usual, the space v ∈ L2(0, 1) such that vx ∈ L2(0, 1) and v(1) =

v(0) = 0. The existence of at least one solution for [193] could be proven thanks, e.g., to

Schauder’s fixed point theorem or by using the convergence of the numerical schemes.

Inspiring the ideas of Section 4, we suggest the following finite difference scheme:

− ui+1 − 2ui + ui−1

h2
= f(xi, ui), ∀i ∈ {1, . . . , N − 1}, [194]

where ui is an approximation of u(xi), for all i ∈ {0, . . . , N}. Since u(0) = u(1) = 0, we chose

u0 = uN = 0. [195]

First step:

We first jutify the existence of a vector (ui)
N
i=1 satisfying [194] with u0 = uN = 0.

For this purpose, we apply the so-called Brouwer’s theorem. Let

M = ‖f‖L∞((0,1)×IR). [196]

Let V = (v1, . . . , vN−1) ∈ IRN−1, there exists a unique solution U = (u1, . . . , uN−1) ∈ IRN−1

of [194]–[195] by replacing f(xi, ui) with f(xi, vi) in the right hand side of [194]. One sets,

F(U) = V .

So F is continuous since IRN−1 is a finite dimensional space.

Multiplying both sides of [194] by ui, summing over i ∈ {1, . . . , N − 1} wet get

1

h2

 
−
N−1X
i=1

(ui+1 − ui)ui +

N−1X
i=1

(ui − ui−1)ui

!
=

N−1X
i=1

f(xi, vi)ui. [197]
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Re-ordering the sum of the second term in left hand side of the previous equality and using

the discrete ”boundary” condition [195], we get

N−1X
i=1

(ui − ui−1)ui =

NX
i=1

(ui − ui−1)ui

=

N−1X
i=0

(ui+1 − ui)ui+1. [198]

On the other hand, the first term in the left hand side of [197] could be written as, since

u0 = 0
N−1X
i=1

(ui+1 − ui)ui =

N−1X
i=0

(ui+1 − ui)ui. [199]

Combining now [197]–[199], we get

1

h2

 
N−1X
i=0

(ui+1 − ui)2
!

=

N−1X
i=1

f(xi, vi)ui, [200]

which is equivalent to
N−1X
i=0

(ui+1 − ui)2

h
=

N−1X
i=1

f(xi, vi)hui. [201]

Using now [196], the previous equality yields

N−1X
i=0

(ui+1 − ui)2

h
≤M

N−1X
i=1

h|ui|. [202]

Which implies, using the fact that
PN−1
i=1 h < 1

N−1X
i=0

(ui+1 − ui)2

h
≤M max (|u1|, . . . , |uN−1|) . [203]

Using inequality [188] and definition [181], inequality [203] implies that

‖uh‖H1
0
≤M, [204]

where uh = (u1, . . . , uN−1).

Now the application F defined above is continuous, and taking in IRN−1 the norm ‖V ‖H1
0

defined by [181], with V = (v1, . . . , vN−1) and v0 = vN = 0.

Estimate [204] yields F(BM ) ⊂ BM . Thanks to Brouwer fixed point theorem, F has a fixed

point, and this fixed point is a solution for [194]–[195].

Second step: We assume, for instance, in order to get a convergence order for the finite

difference solution [194]–[195], that f ∈ C1 ([0, 1]× IR, IR) and the following condition on the

function f holds, for some γ ∈ (0, 1) such that

(f(x, s)− f(x, t)) (s− t) ≤ γ(s− t)2, ∀(x, s) ∈ [0, 1]× IR. [205]

Using [64] and equation [190], we get

− u(xi+1)− 2u(xi) + u(xi−1)

h2
= f(xi, u(xi))− βi, ∀i ∈ {1, . . . , N − 1}, [206]
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where βi is given by [65].

Substracting [194] from [206], we get

− ei+1 − 2ei + ei−1

h2
= f(xi, u(xi))− f(xi, ui) + βi, ∀i ∈ {1, . . . , N − 1}, [207]

where ei = u(xi)− ui, for all i ∈ {0, . . . , N}.

Multiplying both sides of [207] by ei and using techniques used in [197]–[201], we get

‖eh‖2H1
0

=

N−1X
i=1

h (f(xi, u(xi))− f(xi, ui)) ei +
h2

12
M̄‖eh‖H1

0
, [208]

where eh = (e1, . . . , eN−1) and M̄ = max
x∈[0,1]

|uxx(x)|.

Using now [205], we get

(f(xi, u(xi))− f(xi, ui)) ei ≤ γe2i , ∀i ∈ {1, . . . , N − 1}, [209]

and therefore, thanks to [188] and
PN−1
i=1 h < 1

N−1X
i=1

h (f(xi, u(xi))− f(xi, ui)) ei ≤ γ‖eh‖2H1
0
, ∀i ∈ {1, . . . , N − 1}, [210]

Equation [208] becomes then, thanks to [207]–[210]

(1− γ) ‖eh‖2H1
0
≤ h2

12
M̄‖eh, ‖H1

0
. [211]

which implies that

‖eh‖H1
0
≤ M̄

1− γ h
2. [212]

Estimate [212] also yields, thanks to [188]

max (|e1|, . . . , |eN−1|) ≤
M̄

1− γ h
2. [213]

7 Some simulations in Scilab

This section is devoted to justify numerically the theoretical results given in sections 2, 3 and 4.

The following tables show:

• Error: the error is defined by max (|u(x1)− u1|, . . . , |u(xN )− uN |), in cases of the examples

of section 2 and 3, and the error is defined by max (|u(x1)− u1|, . . . , |u(xN−1)− uN−1|) in

case of the example of 4.

• Convergence order: the convergence order is computed, as usual, thanks to the following rule:

log(E(n))− log(E(n+ 1))

log(2)
, [214]

where E(n) is the error, defined in the previous item, corresponding to h = 1
2n

.

• Simulations: We will use the following simulations in Scilab:
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– Examples of Section 2 (since the simulations of example 3 is similar to those of example

given 2):

∗ N % The number of mesh points;

∗ M = N − 1 % The dimension of the unknown vector;

∗ h = 1/N % The mesh size;

∗ X = [h : h : 1] % The mesh points in which we approximate u

∗ UX = X.2 % The exact solution

∗ for i = 1 : M , U = i ∗ (i− 1) ∗ h2 % The finite difference solution

∗ for i = 1 : M , E(i) = abs(U(i)− UX(i)) % The absolute values of the components

of the vector error

∗ error = max(E) % The maximum value of the components of the vector error

– Examples of Section 4

∗ N % The number of mesh points;

∗ M = N − 1 % The dimension of the matrix;

∗ h = 1/N % The mesh size;

∗ X = [h : h : 1− h] % The mesh points in which we approximate u

∗ UX = sin(%π ∗X) % The exact solution

∗ for i = 1 : M , A(i, j) = 0; end; end; % Initialization of the matrix A

∗ for i = 1 : M , A(i, i) = 2; end; end; % Initialization of the matrix A

∗ for i = 1 : M − 1, A(i, i+ 1) = −1; end; end;

∗ for i = 1 : M − 1, A(i+ 1, i) = −1; end; end;

∗ U = h2 ∗%π2 ∗ inv(A) ∗ (sin(%π ∗X))
′

∗ for i = 1 : M , E(i) = abs(U(i)− UX(i)) % The absolute values of the components

of the vector error

∗ error = max(E) % The maximum value of the components of the vector error

To justify rule [214], let us assume that the order of the finite difference approximation is α and

then we could write, for some case, where h = 1
2n

E(n) = { 1

2n
}α, [215]

which is equivalent to

E(n) =
1

2αn
. [216]

Therefore

log(E(n)) = −αn log(2). [217]

Substituting n by n+ 1 in [217], we get

log(E(n+ 1)) = −α(n+ 1) log(2). [218]
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Substracting [217] from [218] and dividing the result by log(2), we get

α =
log(E(n))− log(E(n+ 1))

log(2)
. [219]

We will remark that as h decreases to approach zero, as the error decreases to approach zero.

7.1 Simulations for the example given in section 2

h Error Order

1/32 0.3125 -

1/64 0.015625 1.

1/128 0.0078125 1.

1/256 0.0039062 1.

1/512 0.0019531 0.9999261

1/1024 0.0009766 0.9999261

1/2048 0.0004883 0.9998818

The numerical results given in the previous table justify well theoretical results given in Section 2.

Indeed, thanks to [22], the error is bounded by

max
i∈{0,N}

|u(xi)− ui| ≤ h. [220]

We have, since xN = 1 and xN−1 = 1− h

|u(xN )− uN | = |u(1)− uN |

= |1− xNxN−1|

= |1− (1− h)|

= h. [221]

This with [220] implies that

max
i∈{0,N}

|u(xi)− ui| = h. [222]

This last result is justified by the previous table by comparing the values of h in the first column

and the values of the error in second column.
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7.2 Simulations for the example given in section 3

h Error Order

1/8 0.1524973 -

1/16 0.0803533 0.9243545

1/32 0.0412917 0.9605055

1/64 0.0209369 0.9798040

1/128 0.0105428 0.9897898

1/256 0.0052902 0.9948639

1/512 0.0026498 0.9974388

1/1024 0.0013261 0.9986939

The previous table shows that the finite difference solution [36]–[37] converges towards the exact

solution of [32]–[33] by order h.

7.3 Simulations for the example given in section 4

h Error Order

1/8 0.0129507 -

1/16 0.0032190 2.0083456

1/32 0.0008036 2.0020631

1/64 0.0002008 2.0007183

1/128 0.0000502 2.

1/256 0.0000125 2.0057593

1/512 0.0000031 2.011588

1/1024 0.0000008 1.9541963

8 Finite difference methods for higher dimension equa-

tions

So far we considered the finite difference approximation for one dimension equation. We will devote

this subsection to stationary two dimensional equations.

8.1 A first example

Let us consider the following two dimensional equation:

−∆u(x, y) = ϕ(x, y), (x, y) ∈ Ω = (0, 1)2, [223]

with Dirichlet boundary condition

u(x, y) = ψ(x, y), (x, y) ∈ ∂ Ω, [224]
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where ∆ denotes the Laplace operator:

∆u(x, y) =
∂2 u

∂ x2
(x, y) +

∂2 u

∂ y2
(x, y) [225]

The finite difference approximation for problem [223]–[224] can be performed via the following steps:

1. finite difference mesh For a given positive parameter h = 1
N

, with N ∈ IN, is expected to

tend towards zero, we consider the following set of mesh points:

Dh = {(mh, nh), (m,n) ∈ {0, . . . , N} × {0, . . . , N}}. [226]

we denote by

(xm, yn) = (mh, nh), ∀ (m,n) ∈ {0, . . . , N} × {0, . . . , N}

2. finite difference scheme: we consider the following scheme: find {um,n; (m,n) ∈ {1, . . . , N −

1} × {1, . . . , N − 1}} such that, for all (m,n) ∈ {1, . . . , N − 1} × {1, . . . , N − 1}

− um+1,n − 2um,n + um−1,n

h2
− um,n+1 − 2um,n + um,n−1

h2
= ϕ(xm, yn), [227]

where, according with the boundary condition [224], we set

um,0 = ψ(mh, 0), ∀ m ∈ {0, . . . , N}, [228]

um,N = ψ(mh, 1), ∀ m ∈ {0, . . . , N}, [229]

u0,n = ψ(0, nh), ∀ n ∈ {0, . . . , N}, [230]

uN,n = ψ(1, nh), ∀ n ∈ {0, . . . , N}. [231]

The analysis of the finite difference scheme [227]–[231] could be performed via the following steps:

1. first step: existence of {um,n; (m,n) ∈ {0, . . . , N} × {0, . . . , N}} satisfying [227]–[231],

2. first step: convergence {um,n; (m,n) ∈ {0, . . . , N} × {0, . . . , N}} towards the exact solutio

u of [223]–[224] in some sense.

Let us denote

uh = (um,n)(m,n)∈{0,...,N}×{0,...,N}} . [232]

1. Existence and uniqueness of the solution uh defined by [227]–[231]: we will such existence

and uniqueness by using two methods:

(a) first method: Let us assume that there are two solutions u1
h =

`
u1
m,n

´
(m,n)∈{0,...,N}×{0,...,N}

and u2
h =

`
u2
m,n

´
(m,n)∈{0,...,N}×{0,...,N} for [227]–[231] and consider ūh = u1

h − u2
h; the

vector ūh is satisfying, for all (m,n) ∈ {1, . . . , N − 1} × {1, . . . , N − 1}

− ūm+1,n − 2ūm,n + ūm−1,n

h2
− ūm,n+1 − 2ūm,n + ūm,n−1

h2
= 0, [233]
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with, thanks to the boundary condition [224], for all (m,n) ∈ {1, . . . , N−1}×{0, . . . , N}

ūm,0 = ūm,N = ū0,n = ūN,n = 0, ∀ m ∈ {0, . . . , N}, [234]

Multiplying both sides of [233] by h2um,n, summing over (m,n) ∈ {1, . . . , N − 1} ×

{1, . . . , N − 1}, and re–ordering the sum, we get

N−1X
n=1

N−1X
m=0

(ūm+1,n − ūm,n)2 +

N−1X
m=

N−1X
n=0

(ūm,n+1 − ūm,n)2 = 0. [235]

This implies that, for all (m,n) ∈ {0, . . . , N − 1} × {1, . . . , N − 1}

ūm+1,n = ūm,n, [236]

and, for all (m,n) ∈ {1, . . . , N − 1} × {0, . . . , N − 1}

ūm,n+1 = ūm,n. [237]

These two previous equations with [234] imply that, for all (m,n) ∈ {0, . . . , N} ×

{0, . . . , N}

ūm,n = 0. [238]

This implies that u1
h = u2

h, which means the uniqueness of the solution of [227]–[231].

We use this uniqueness to prove the existence of solution for [227]–[231]. Indeed, [227]

is a linear system of (N − 1)2 uknowns and (N − 1)2. Thus the uniqueness implies the

existence.

(b) second method:discrete maximum principle we use here the so called discrete maximum

principle whose its statement is:

Lemma 8.1 (Discrete maximum principle) Let Dh be the discretization given by [226].

Consider the discrete operator Lh defined by: for a given vector uh = (um,n)(m,n)∈{0,...,N}×{0,...,N},

we define Lh uh as the discrete function defined on Dh and takes their values as follows:

Lh uh(xm, yn)

8<: −
um+1,n−2um,n+um−1,n

h2 − um,n+1−2um,n+um,n−1
h2 , (xm, yn) ∈ Ωh

um,n, (xm, yn) ∈ Dh�Ωh,

[239]

where Ωh denotes the set of the interior mesh points, that is

Ωh = {(xm, yn) ∈ Ω} = {1, . . . , N − 1} × {1, . . . , N − 1}, [240]

and Dh�Ωh denotes the mesh points which locate on the boundary of Ω.

Assume that, for all (m,n) ∈ {1, . . . , N − 1} × {1, . . . , N − 1}

Lh uh(xm, yn) ≤ 0. [241]

Then uh reachs its maximum at least on some point u(xi, yj) such that (xi, yj) ∈ ∂Ω.
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Proof Assume the contrary. This means that the maximum of uh could be only reached

on the interior mesh points.

Consider the set of the interior mesh points where the maximum of uh is reached:

γh = {(xr, ys) ∈ Ωh : ur,s = max{um,n, (m,n) ∈ Ωh}}. [242]

and consider

i = max{m; (xm, yn) ∈ γh}. [243]

Let then j ∈ {1, . . . , N − 1} such that (xi, yj) ∈ γh.

Writing [241] when (m,n) = (i, j) and multiplying the result by −h2, we get

(ui+1,j − ui,j) + (ui−1,j − ui,j) + (ui,j+1 − ui,j) + (ui,j−1 − ui,j) ≥ 0. [244]

The left hand side of the previous expression contains four negative terms, and the first

term is non positive else ui+1,j is also maximum and then (i + 1, j) ∈ γh because uh

could reach its maximum only on interior points. ui+1,j is maximum is a contradiction

with [243]. �

The following lemma is also required for the question of existence and uniqueness of the

solution of [227]–[231].

Lemma 8.2 Let Dh be the discretization given by [226]. Consider the discrete operator

Lh defined by: for a given vector uh = (um,n)(m,n)∈{0,...,N}×{0,...,N}, we define Lh uh as

the discrete function defined on Dh and takes their values as it is defined in [239]–[240].

Assume that, for all (m,n) ∈ {1, . . . , N − 1} × {1, . . . , N − 1}

Lh uh(xm, yn) ≥ 0. [245]

Then uh reachs its minimum at least on some point u(xi, yj) such that (xi, yj) ∈ ∂Ω.

Assume now that there two solutions u1
h and u2

h for [227]–[231]. Therefore ūh = u1
h−u2

h

satisfies

(Lh ūh)(m,n) = 0, [246]

and

ū0,n = ūN,n = ūm,0 = ūm,N = 0, ∀ (m,n) ∈ {0, . . . , N} × {0, . . . , N}. [247]

Thanks to Lemma 8.1, ūh can reach its maximum at least on some (i, j) such that

(xi, yj) ∈ ∂Ω. One knows that the value of ūh on (i, j) is zero, thanks to [247], one

could deduces that ūh is negative. By the same way, namely using Lemma 8.2 and [247],

we deduce that ūh is positive. Therefore ūh = 0 and then u1
h = u2

h which proves the

uniqueness of the solution of [227]–[231].
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Now to justify the existence of the solution of [227]–[231], we use the uniqueness of

the solution of [227]–[231]. Indeed, [227]–[231] could be written as a linear system of

(N−1)2 unknowns, namely {um,n; (m,n) ∈ {1, . . . , N−1}×{1, . . . , N−1} and (N−1)2

equations. Since we have the uniqueness of the solution of [227]–[231] , then we have

the existence of a solution for [227]–[231].

2. Stability

For a given vector ϕh = (ϕm,n)(m,n)∈{1,...,N−1}×{1,...,N−1}, we consider the vector vh =

( vm,n)(xm,yn)∈Dh
as the solution of

and

Lh vh(xm, yn) = ϕm,n, , ∀(xm, yn) ∈ Ωh, [248]

with

vm,n = 0, ∀ (xm, yn) ∈ Dh�Ωh, [249]

where Lh is defined by [239].

Let us consider the positive quantity ‖ϕ‖ defined by:

‖ϕ‖ = max
(m,n)

|ϕmn|, [250]

Let us consider the following function

P(x, y) =
1

4

`
3− (x2 + y2)

´
‖ϕ‖. [251]

and its approximation Ph = (Pm,n)(xm,yn)∈Dh
given by

LhPh(xm, yn) = −∆Pxm,yn , ∀(xm, yn) ∈ Ωh, [252]

with

Pm,n = Pxm, yn, (xm, yn) ∈ Dh�Ωh. [253]

Using a Taylor expansion, we get

Lh P(xm, yn) = −∆P(xm, yn), ∀(xm, yn) ∈ Ωh. [254]

This with previous items of uniqueness leads to

P(xm, yn) = Pm,n, ∀(xm, yn) ∈ Dh. [255]

Since

−∆P(xm, yn) = ‖ϕ‖, [256]

then [252] becomes

LhPh(xm, yn) = ‖ϕ‖, ∀(xm, yn) ∈ Ωh. [257]

Substracting [257] from [248] yields that

Lh ( vh − Ph) (xm, yn) = ϕm,n − ‖ϕ‖, ∀(xm, yn) ∈ Ωh. [258]
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Since ϕm,n − ‖ϕ‖ ≤ 0, for all (xm, yn) ∈ Ωh, then thanks to Lemma 8.1, vh − Ph takes its

maximum at least on some boundary mesh point (xi, yj) ∈ ∂Ω. Therefore, using [249]

max ( vh − Ph) ≤ −1

4

`
3− (x2

i + y2
j )
´
‖ϕ‖. [259]

One remarks that

x2
i + y2

j ≤ 2, [260]

one could deduce that
1

4

`
3− (x2

i + y2
j )
´
‖ϕ‖ ≤ ‖ϕ‖ ≥ 0 [261]

which implies that

− 1

4

`
3− (x2

i + y2
j )
´
‖ϕ‖ ≤ 0. [262]

This with [259] yields that

max ( vh − Ph) ≤ 0, [263]

which means that

vm,n ≤ Pm,n, ∀(xm, yn) ∈ Dh. [264]

Combining this with [255] leads to

vm,n ≤
1

4

`
3− (x2

i + y2
j )
´
‖ϕ‖, ∀(xm, yn) ∈ Dh, [265]

which implies using the fact that x2
i + y2

j ≥ 0

vm,n ≤ ‖ϕ‖, ∀(xm, yn) ∈ Dh. [266]

Since v̄h = −vh satisfies, using [248]–[249]

Lh v̄h(xm, yn) = ϕ̄m,n, , ∀(xm, yn) ∈ Ωh, [267]

where ϕ̄m,n = −ϕm,n,

v̄m,n = 0, ∀ (xm, yn) ∈ Dh�Ωh, [268]

and

Lh Ph(xm, yn) = ‖ϕ̄‖, ∀(xm, yn) ∈ Ωh, [269]

therefore, the previous reasoning, which allowed us to get [266], allows us to obtain

v̄m,n ≤ ‖ ϕ̄‖, ∀(xm, yn) ∈ Dh. [270]

Which is equivalent to, since ‖ ϕ̄‖ = ‖ϕ‖

− vm,n ≤ ‖ϕ‖, ∀(xm, yn) ∈ Dh. [271]

This with [266] implies

| vm,n| ≤ ‖ϕ‖, ∀(xm, yn) ∈ Dh, [272]

and therefore the stability of Lh is proved.
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3. Consistency When applying Lh, defined by [239], on the exact solution of [223]–[224], and

using [64] and [65], we get, for all (xm, yn) ∈ Ωh and ūh = (u(xm, yn))(xm,yn)∈Dh

Lhūh = − ∂
2u

∂ x2
(xm, yn)− ∂2u

∂ y2
(xm, yn) + εm,n

= −∆u(xm, yn) + εm,n

= f(xm, yn) + εm,n, ∀(xm, yn) ∈ Ωh [273]

where

|εm,n| ≤
h2

24
{max
[0,1]2

| ∂
4u

∂ x4
(x, y)|+ max

[0,1]2
| ∂

4u

∂ y4
(x, y)|}, ∀(xm, yn) ∈ Ωh. [274]

4. Convergence : we use now the two previous items of stability and consistency to prove the

convergence of [227]–[231] towards the exact solution of [223]–[224]. To this end, we will use

Theorem 6.2.

Substracting [227] from [223] and using [273] to get

(Lh(ūh − uh))m,n = εm,n, ∀(xm, yn) ∈ Ωh, [275]

with

(ūh − uh)m,n = 0, ∀(xm, yn) ∈ Dh�Ωh. [276]

Applying Theorem 6.2 to get

max
(xm,yn)∈Dh

|u(xm, yn)− um,n| ≤
h2

24
{max
[0,1]2

| ∂
4u

∂ x4
(x, y)|+ max

[0,1]2
| ∂

4u

∂ y4
(x, y)|}. [277]

9 Finite difference methods for evolutive equations

So far we considered the finite difference approximation for stationary equations (do not depend on

the time). We consider in this section evolutive equations (depend on the time).

9.1 A first example

Let us consider the following example of Cauchy problems:

ut(x, t)− ux(x, t) = ϕ(x, t), x ∈ IR, t ∈ [0, T ], [278]

and

u(x, 0) = ψ(x), x ∈ IR. [279]

The numerical resolution of problem [278]–[279] can be performed via the following steps:

1. Definition of the mesh: since we have two variables x and t, we have then to define two

discretization. The first one is performed on x–direction and the second one is performed

in t–direction. The global mesh then is the product of these two discretizations. We denote

then the global discretization by V, where h and τ are two positive parameters

D = {(mh, nτ), (m,n) ∈ Z× {0, . . . , N}}, [280]
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where N ∈ IN satisfies Nτ = T .

2. Finite difference scheme Find {unm; m ∈ Z, n = 1, . . . , N} such that

un+1
m − unm

τ
− unm+1 − unm

h
= ϕ(mh, nτ), m ∈ Z, n = 0, . . . , N − 1, [281]

with

u0
m = ψ(mh), m ∈ Z. [282]

To prove the well posedness of [281]–[282] as well as the convergence order of the solution of [281]–

[282], we apply Theorem 6.2. Let us consider the operator LD

LD vD =

„
vn+1
m − vnm

τ
− vnm+1 − vnm

h

«
m∈Z, n=0,...,N−1

, [283]

with

v0
m = 0, m ∈ Z, [284]

and vD is given by

vD = (unm)m∈Z, n=0,...,N . [285]

We will then verify the stability and consistency.

• Stability Let

LD vD = ϕD, [286]

where

ϕD = (ϕnm)m∈Z, n=0,...,N−1 . [287]

Equation [286] is equivalent to

vn+1
m − vnm

τ
− vnm+1 − vnm

h
= ϕnm, ∀ (m,n) ∈ Z× {0, . . . , N − 1}. [288]

Which gives

vn+1
m =

“
1− τ

h

”
vnm +

τ

h
vnm+1 + τϕnm, ∀ (m,n) ∈ Z× {0, . . . , N − 1}. [289]

We can see that we put n = 0 in the previous equation, we can compute v1
m for all m ∈ Z

by using condition [284]. Therefore, successively on n we compute vnm for all m ∈ Z. Which

means that LD defined by [283] is invertible.

We assume the following assumption on the discretization D to get the stability of LD.

Assumption 9.1 (An assumption on the ratio of space and time discretizations) We assume

that the mesh (discretization) D, given by [280], satisfies

τ

h
≤ 1. [290]
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Using then Assumption 9.1 (which means that 1− τ
h
≤ 0) yields that

| vn+1
m | ≤

“
1− τ

h
+ 1
”

max (| vnm|, | vnm+1|) + τ |ϕnm|

≤ sup
m∈Z
| vnm|+ τ max

m∈Z
|ϕnm|, ∀ (m,n) ∈ Z× {0, . . . , N − 1}. [291]

This implies that, using [284] and the fact that Nτ = T

sup
m∈Z
| vn+1
m | ≤ sup

m∈Z
| vnm|+ τ sup

m∈Z
|ϕnm|

≤ sup
m∈Z
| vnm|+ τ M

≤ sup
m∈Z
| v0
m|+Nτ M

≤ T M, , ∀ , n ∈ {0, . . . , N − 1}. [292]

where we have denoted M = sup
n,m
|ϕnm|.

This yields that

sup
(m,n)

| vnm| ≤ T sup
n,m
|ϕnm|. [293]

• Consitency Let u be the solution of [278]–[279] and uD = (unm)m,n be the finite difference

solution of [281]–[282]. Let us denote by ūD = (u(xm, tn))m,n. Applying LD on ūD − uD

leads to, using equations [278] and [281], and Taylor expansion

(LD (̄uD − uD))m,n =
u(xm, tn+1)− u(xm, tn)

τ
− u(xm+1, tn)− u(xm, tn)

h
− ϕ(xm, tn)

= ut(xm, tn)− ux(xm, tn)− ϕ(xm, tn) + εnm

= εnm, ∀ (m,n) ∈ Z× {0, . . . , N − 1}, [294]

where, for all (m,n) ∈ Z× {0, . . . , N − 1}

|εnm| ≤
1

2

 
h sup

IR×[0,T ]

|utt(x, t)|+ τ sup
IR×[0,T ]

|uxx(x, t)|

!

≤ 1

2
max

 
sup

IR×[0,T ]

|utt(x, t)|, sup
IR×[0,T ]

|uxx(x, t)|

!
(h+ τ) . [295]

Therefore, [294] implies

LD (̄uD − uD) = εD, [296]

where εD = ( εnm)m,n.

Inequality [295] implies that, for all (m,n) ∈ Z× {0, . . . , N − 1}

|εnm| ≤
1

2
max

 
sup

IR×[0,T ]

|utt(x, t)|, sup
IR×[0,T ]

|uxx(x, t)|

!
(h+ τ) . [297]

This with [294] and [293] leads to

sup
(m,n)

|u(xm, tn)− unm| ≤
T

2
max

 
sup

IR×[0,T ]

|utt(x, t)|, sup
IR×[0,T ]

|uxx(x, t)|

!
(h+ τ) . [298]
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Remark 7 (Convergence rate and uniqueness) The convergence order of the numerical scheme

[281]–[282] given by estimate [298] implies the uniqueness of the solution of [278]–[279] in the

sense that if u1 and u2 two smooth solutions for [278]–[279], we will have lim
h→ 0,τ→ 0

u1(xm, tn) =

lim
h→ 0,τ→ 0

u2(xm, tn), for all (n,m); indeed the triangle inequality and estimate [298] yields

sup
(m,n)

|u1(xm, tn)− u2(xm, tn)| ≤ sup
(m,n)

|u1(xm, tn)− unm|+ sup
(m,n)

|unm − u2(xm, tn)|

≤ C (h+ τ) , [299]

where

C =
T

2
max

 
sup

IR×[0,T ]

| (u1)tt (x, t)|, sup
IR×[0,T ]

| (u1)xx (x, t)|

!

+
T

2
max

 
sup

IR×[0,T ]

| (u2)tt (x, t)|, sup
IR×[0,T ]

| (u2)xx (x, t)|

!
. [300]

Tending h and τ to 0 in inequality [299] leads to, provided that second derivatives of u1 and

u2 with respect to t and x are bounded

lim
h→ 0,τ→ 0

sup
(m,n)

|u1(xm, tn)− u2(xm, tn)| = 0, ∀(m,n) ∈ Z× {0, . . . , N}. [301]

what about if assumption 9.1 does not hold? In present section, we have proved that the finite

difference solution [281]–[282] converges to the solution of the evolutive equation [278]–[279]

in the sense of [298] provided that the following assumptions hold:

– assumption on u

∗ u ∈ C2(IR× [0, T ], IR),

∗ utt and uxx are bounded over IR× [0, T ].

– assumption on the mesh: the mesh (discretization) D, given by [280], satisfies Assump-

tion 9.1.

The following question deserves to be asked: what about if Assumption 9.1 does not hold?.

We assume the following assumption on h and τ :

Assumption 9.2 (Relation between x and t discretizations) We assume that there exists a

constant ξ, independent of h and τ such that:

τ

h
= ξ, [302]

where h (resp. τ) is the mesh step in the x (resp. t) discretization.

If Assumption 9.1 does not hold, i.e., τ
h
> 1, we will prove, under Assumption 9.2, that there

is no convergence.

It seems that the consistency [294]–[295] remains hold, but we will prove that the convergences
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no longer holds in general (This implies that the stability does not hold.)

Equations [281]–[282] and Assumption 9.2 imply that, with
τ

h
= ξ, ζ̄ = 1− ξ

un+1
m = ξ̄ unm + ξ unm+1 + τϕnm, ∀ (m,n) ∈ Z× {0, . . . , N − 1}. [303]

Putting n = N − 1 and m = 0 in the previous equation yields that

uN0 = ξ̄ uN−1
0 + ξ uN−1

1 + τϕN−1
0

= ξ̄
“
ξ̄ uN−2

0 + ξ uN−2
1 + τϕN−2

0

”
+ ξ

“
ξ̄ uN−2

1 + ξ uN−2
2 + τϕN−2

1

”
+ τϕN−1

0

= ξ̄2 uN−2
0 + 2ξ ξ̄uN−2

1 + ξ2 uN−2
2 + τϕN−1

0 + τ
“
ξ̄ϕN−2

0 + ξ ϕN−2
1

”
=

NX
j=0

CjNξ
j ξ̄N−j ψ (xj) + τϕN−1

0

+ τ

1X
j=0

Cj1ξ
j ξ̄1−jϕN−2

j + . . .+ τ

N−1X
j=0

CjN−1ξ
j ξ̄N−1−jϕ0

j , [304]

where CjN is given by

CjN =
N !

j!(N − j)! . [305]

We consider the case ϕ(x, t) = 0, for all (x, t) ∈ Z × [0, T ]. In addition to this, we assume

that the function ψ satisfies

ψ(x) = 1, ∀x ∈ [0, Nh]. [306]

Since Nτ = T , the previous choice for ψ could be written as

ψ(x) = 1, ∀x ∈ [0,
hT

τ
]. [307]

If Assumption 9.1 does not hold, then [290] no longer holds. This means that, using Assump-

tion 9.2, α = Th
τ

= T
ξ
< T . Definition [307] becomes as

ψ(x) = 1, ∀x ∈ [0, α], [308]

where α is a positive constant only depending on T and the constant ξ of Assumption 9.2

and satisfies 0 < α < T .

Since {jh; j = 0, . . . , N} ⊂ [0, α], one could deduce from [304] and [308] that (recall that
τ

h
= ξ, ξ̄ = 1− ξ.)

uN0 =

NX
j=0

CjNξ
j ξ̄N−j

= (ξ + ξ̄)N

= 1. [309]

Let us remark that the solution of [278]–[279] is u(x, t) = ψ(x+ t), for all (x, t) ∈ Z× [0, T ].

This implies that u(0, T ) = ψ(T ).
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The function ψ(x) is already defined on x ∈ [0, α], by [308]. We define now the function ψ(x)

for x ∈ [α,+∞]. We consider the following choice

ψ(x) = 1 + e
− 1
x2−α2 , ∀x ∈ (α,+∞]. [310]

We can prove that ψ ∈ C∞[0,+∞).

The choice [310] implies that ψ(T ) = 1+e
− 1
T−α2 ; this with uN0 computed in [309] yields that,

since u(0, T ) = ψ(T )

|u(0, T )− uN0 | = e
− 1
T−α2 . [311]

Which implies that

|u(0, T )− uN0 | 6→ 0. [312]

A direct proof of the no stability. We have proven, under Assumption 9.2, that there is no

convergence when τ
h
> 1. This implies that, since we always have the consistency [296]–[297],

that there is no stability for the operator LD, defined by [283]–[285], when Assumption 9.2

holds and τ
h
> 1.

It is useful to show this non stability directy using the definition of stability.

Assume that LD, defined by [283]–[285], is not stable. This implies that, there exists a

constant C independent of h and τ such that:

max
n∈{0,...,N}

sup
m∈Z
| vnm| ≤ C max

n∈{0,...,N−1}
sup
m∈Z
|ϕnm|, [313]

where
vn+1
m − vnm

τ
− vnm+1 − vnm

h
= ϕnm, ∀ (m,n) ∈ Z× {0, . . . , N − 1}, [314]

and

v0
m = 0, m ∈ Z. [315]

Using the computation [304] yields that, for (m,n) ∈ Z× {1, . . . , N}

vnm = τϕn−1
0 + τ

1X
j=0

Cj1ξ
j ξ̄1−jϕn−2

j + . . .+ τ

n−1X
j=0

Cjn−1ξ
j ξ̄n−1−jϕ0

j , [316]

where ξ =
τ

h
and ξ̄ = 1− ξ and ξ > 1.

Let us consider the choice

ϕnm = (−1)m, ∀ (m,n) ∈ Z× {0, . . . , N − 1}. [317]

With this choice, [316] becomes as

vnm = τ
`
1 + (1− 2ξ)1 + . . .+ (1− 2ξ)n−1´

= τ
(1− 2ξ)n − 1

(1− 2ξ)− 1

= − τ

2ξ
(( 1− 2ξ)n − 1) [318]
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The stability [313] could be written, since |ϕnm| = 1 then as

max
n∈{0,...,N}

sup
m∈Z
| vnm| ≤ C max

n∈{0,...,N−1}
sup
m∈Z
|ϕnm|

≤ C, [319]

which implies that

| vNm| ≤ C, [320]

and then

| τ
2ξ

“
( 1− 2ξ)N − 1

”
| ≤ C. [321]

On the other hand, since 1− 2ξ < −1 (and then 2ξ − 1 > 1)

lim
τ→0
| τ
2ξ

“
( 1− 2ξ)N − 1

”
| = lim

τ→0
| τ
2ξ

( 1− 2ξ)N |

= lim
τ→0

τ

2ξ
( 2ξ − 1)

T
τ

= +∞, [322]

which is contradiction with [321].

Remark 8 (No stability and no convergence) The previous result of the no stability does not

imply the convergence. In fact, stabily with consistency imply the convergence in the sense

of Theorem 6.2. The inverse of this previous statement is not true, i.e. the convergence does

not imply neither the stability nor the consistency.

9.2 Second example

Let us consider the 1D example (This example took from my reply for a referee’s report on a CRAS

note.):

ut(x, t)− uxx(x, t) = 0, x ∈ Ω = (0, 1), t ∈ (0, 1), [323]

u(0, t) = u(1, t) = 0, t ∈ (0, 1), [324]

u(x, 0) = sin π x. [325]

So, the analytical solution of [323]–[325] is

u(x, t) = exp (−π2 t) sin π x. [326]

We consider as a particular the meshes are uniform with h = 1
M

(resp. k = 1
N

) in the space (resp.

time) discretization, where M (resp. N) is integer. So, we consider the following scheme:

un+1
i − uni

k
− uni+1 − 2uni + uni−1

h2
= 0, i ∈ J 1,M − 1K, n ∈ J 0, N − 1K, [327]

un0 = unM = 0, n ∈ J 0, NK, [328]

u0
i = sin π xi, i ∈ J 0,MK. [329]
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We can check that the finite volume solution of [327]–[329] is defined by, see [?, Pages 229–230]

(there is some typos in the formula of λk given in [?, Page 230]!)

uni = λn sin π xi = λn sin
π i

M
, i ∈ J 0,MK, n ∈ J 0, NK, [330]

where

λ =
1

1 + 4r sin2 π
2M

, [331]

with

r =
k

h2
. [332]

Let us examine now the convergence order, we will use mainly Taylor’s expansions.

1. finite difference convergence order, i.e. L∞(L∞).

(a) First method: stability and consistency: The convergence in the finite difference meth-

ods can be obtained, as usual, as the product of the stability and the consistency. The

convergence order in finite difference methods can be obtained via the order of the ap-

proximation of the operator ut − uxx. Indeed, let u be the solution of [323]–[325]. We

have

u(xi, tn+1)− u(xi, tn)

k
− u(xi+1, tn)− 2u(xi, tn) + u(xi−1, tn)

h2

= ut(xi, tn)− uxx(xi, tn) + 0(k + h2) = 0(k + h2). [333]

So the convergence order in L∞(L∞) is k + h2

(b) Second method: Direct method. The subject of this method is to compute the error

u(xi, tn) − uni . We first compute an expansion for uni given by [330] and then we

coompute the difference between this expansion and the expression of u(xi, tn) defined

by replacing (x, t) in [326] by (xi, tn)

sin x = x+O(x3). [334]

which gives

sin2 x = x2 +O(x4). [335]

so

sin2 π

2
h =

π2

4
h2 +O(h4). [336]

Which gives, since h = 1
M

1 + 4r sin2 π

2M
= 1 + 4

k

h2

„
π2

4
h2 +O(h4)

«
= 1 + kπ2 +O(h2k). [337]

So

λn = exp(n log λ) = exp(− tn
k

log(1 + 4r sin2 π

2M
))

= exp(− tn
k

log(1 + kπ2 +O(h2k))). [338]
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But

log(1 + kπ2 +O(h2k)) = kπ2 +O(h2k) +O
“ `

k + h2k
´2”

= kπ2 +O(h2k) +O
`

(h2 + 1)2k2´ . [339]

Multiplying the previous expansion by − tn
k

, we get, since tn ∈ [0, 1] and 0 < h ≤ 1 (so

h2 + 1 is bounded)

− tn
k

log(1 + kπ2 +O(h2k)) = −π2tn +O(k + h2), [340]

so, since exp(x) = 1 + 0(x) and exp
`
−π2tn

´
≤ 1

exp

„
− tn
k

log(1 + kπ2 +O(h2k))

«
= exp

`
−π2tn

´
exp

`
O(k + h2)

´
= exp

`
−π2tn

´
{1 +O(k + h2)}

= exp
`
−π2tn

´
+O(k + h2). [341]

Replacing this in [338], we get

λn = exp
`
−π2tn

´
+O(k + h2). [342]

Inserting this in the expression of uni given by [330], using the fact that sin
π i

M
≤ 1,

using the expression of u given by [326], we get

uni =
`
exp

`
−π2tn

´
+O(k + h2)

´
sin π xi

= exp
`
−π2tn

´
sin π xi +O(k + h2)

= u(xi, tn) +O(k + h2), i ∈ J 0,MK, n ∈ J 0, NK, [343]

which implies that

max
(i,n)∈J 0,MK×J 0,NK

|uni − u(xi, tn)| ≤ C(k + h2). [344]

2. Convergence order in L∞(W1,∞): using the expressions [330] , [326] and [342], we get

uni+1 − uni
h

− ux(xi, tn) =
λn

h
(sin(π xi) ( cos(π h)− 1) + cos(π xi) sin(π h))

− π exp
`
−π2tn

´
cos(π xi)

=
`
exp

`
−π2tn

´
+O(k + h2)

´
rhi − π exp

`
−π2tn

´
cos(π xi)

= exp
`
−π2tn

´ “
rhi − π cos(π xi)

”
+O(k + h2)rhi [345]

where

rhi =
sin(π xi) ( cos(π h)− 1) + cos(π xi) sin(π h)

h
. [346]

Using the triangle inequality and the fact that exp
`
−π2tn

´
≤ 1, [345] implies

|u
n
i+1 − uni
h

− ux(xi, tn)| ≤ | rhi − π cos(π xi)|+O(k + h2)| rhi |. [347]
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(a) Expansion for rhi − π cos(π xi). We have, since | sin(x)|, | cos(x)| ≤ 1

| rhi − π cos(π xi)| =

˛̨̨̨
sin(π xi) ( cos(π h)− 1) + cos(π xi) sin(π h)

h
− π cos(π xi)

˛̨̨̨
≤ | cos(π h)− 1|

h
+

˛̨̨̨
sin(π h)

h
− π

˛̨̨̨
≤ O(h) +O(h2)

≤ O(h) [348]

(b) Estimate for rhi . Estimate [348] implies that rhi is bounded, i.e. for some positive

constant C independent of h and k such that

max
(i,n)∈J 0,MK×J 0,NK

| rhi | ≤ C. [349]

So [347] with [348] and [349] implies, for some positive constant C independent of h and k

such that

max
(i,n)J 0,MK×J 0,NK

|u
n
i+1 − uni
h

− ux(xi, tn)| ≤ C(k + h). [350]

3. Convergence order inW∞(L1,∞): using the expressions [330] , [326] and [342], using a similar

reasoning to that used in [338]–[342], we get

|u
n+1
i − uni

k
− ut(xi, tn)| = | − 4

h2
λn+1 sin(π xi) sin2(

π

2
h) + π2 exp

`
−π2tn

´
sin(π xi)|

= | sin(π xi)

„
− 4

h2
λn+1 sin2(

π

2
h) + π2 exp

`
−π2tn

´«
|

≤ | − 4

h2
λn+1 sin2(

π

2
h) + π2 exp

`
−π2tn

´
|. [351]

Let us first simplify the expansion − 4
h2 λ

n+1 sin2(π
2
h) on the r.h.s. of the previous inequality

and then replace it by the result

− 4

h2
λn+1 sin2(

π

2
h) = − 4

h2

`
exp

`
−π2tn+1

´
+ 0(k + h2)

´
sin2(

π

2
h)

= − 4

h2
exp

`
−π2tn+1

´
sin2(

π

2
h) + +

4

h2
0(k + h2) sin2(

π

2
h)

= − 4

h2
exp

`
−π2tn+1

´
sin2(

π

2
h) + +0(k + h2)

= − 4

h2
exp

`
−π2tn

´
exp

`
−π2h

´
sin2(

π

2
h) + 0(k + h2)

= − 4

h2
exp

`
−π2tn

´
( 1 +O(h))

„
π2

4
h2 +O(h4)

«
+ 0(k + h2)

= − 4

h2
exp

`
−π2tn

´„ π2

4
h2 +O(h4)

«
+ 0(k + h2)

= −π2 exp
`
−π2tn

´
+ 0(k + h2). [352]

Inserting this in r.h.s. of [351], we get, for some positive constant C independent of h and k

such that

max
(i,n)∈J 0,MK×J 0,NK

|u
n+1
i − uni

k
− ut(xi, tn)| ≤ C(k + h2). [353]
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Some numerical tests: The present pragraph is devoted to report some numerical tests justifying

that [344] (L∞(L∞)–estimate), [350] (L∞(W1,∞)–estimate), [353] (W1,∞(L∞)–estimate)

M N
| e|L∞(L∞)
k+h2

| e|W1,∞(L∞)
k+h2

| e|L∞(W1,∞)
k+h

25 25 1.527701 68.149626 2.6430409

50 25 1.562728 69.916978 3.3336229

100 25 1.5729726 70.429576 3.955193

150 25 1.5749271 70.527375 4.2331084

200 25 1.5756177 70.561933 4.3900979

250 25 1.5759389 70.578005 4.4909097

300 25 1.5761139 70.586761 4.5611038

350 25 1.5762196 70.59205 4.6127839

400 25 1.5762883 70.595488 4.652419

450 25 1.5763355 70.597848 4.6837797

450 50 1.6781826 81.595325 4.7417958

450 100 1.7428064 88.696505 4.4888874

450 150 1.7659023 91.369813 4.1848073

450 350 1.7918674 94.594441 3.2750937

450 400 1.7940874 94.896783 3.1193867

450 450 1.7957339 95.128787 2.985172

500 450 1.7963641 95.165563 3.1078235

500 500 1.7976785 95.352012 2.9875977

500 550 1.7987003 95.502067 2.8829679

500 600 1.799504 95.624664 2.7926277

500 650 1.8001355 95.726039 2.7486286

where h = 1/(M + 1) and k = 1/(N + 1), with M (resp. N) is the number of the spatial mesh

points (resp. temporal mesh points) without {0, 1}. So the finite volume scheme [327]–[329] leads

to sets of systems which can be sloved successively starting from the level n = 0:

AUn+1 = Un, n ∈ J 0, NK, [354]

with

U0 = ( sin(π xi))
M
1 , [355]

and A is the M × M matrix

A =

0BBBBBB@
1 + 2r −r 0 . . . 0

−r 1 + 2r −r 0 . . . 0

...
...

0 . . . 0 −r 1 + 2r

1CCCCCCA [356]
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10 Appendix: comments on the regularity of the exact

solution required in the finite difference approxima-

tion

The useful information, I think, I’m quoting in this section are given in [GOD 77, Chapter 6, Pages

239–253].

In the previous sections, and in order to get the convergence, we assume that the exact solution is

smooth. We assumed that the exact solution with its derivatives (or partial derivatives) are bounded.

These regularity assumption can be replaced using Sobolev spaces instead of the classical spaces

(Would say, the spaces of functions which with their derivatives or partial derivatives are bounded.)

In fact, the finite difference method is based on the approximation of the derivatives, which appear

in differential or partial differential equation under consideration, by differential quotients.

Some physical process, the functions (given data) are not even derivable. Indeed, in some evolutive

process, the exact solutions have jumps even the initial data are smooth. These evolutive equations

do not have regular (smooth) solutions. We need then to introduce another sense of the exact

solution in which the discontinuous data are allowed. We have at least two issues:

1. we write the equations of conservation laws in some integral forms instead of the differential

or partial differential forms. The integration of functions (even they have some points where

they are not continue) included in these conservation laws is allowed and it has sense. These

integral forms may be, for instance, weak formulations or entropic forms.

2.

10.1 Some examples

In this subsection, we quote some example explaing the use of the two previous issues.

1. first example: let us consider the following equation, for a given positive number T > 0 and

a given function ψ(x) defined on x ∈ IR

ut(x, t) + u(x, t)ux(x, t) = 0, ∀(x, t) ∈ IR× (0, T ), [357]

with

u(x, 0) = ψ(x), ∀x ∈ IR. [358]

Equation [357]–[358] is the simplest model in fluid mecanique. It is also called, in some ref-

erences, the Bürgers equation.

(a) the discontinuities points: we first assume that the exact solution u is smooth and let

us consider the lines x(t) defined via the following equation:

dx

dt
= u(x, t). [359]
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The lines x(t) called the characteristics of equation ut(x, t) + u(x, t)ux(x, t) = 0. On

these lines, u(x, t) can be written as a function in t instead of (x, t). Indeed, on these

lines u(x, t) = u(x(t), t) = u(t); and then using an integrtion of composed functions,

[359], and [357]

du

dt
(x(t), t) =

∂ u

∂ t
(x(t), t) +

∂ u

∂ x

dx

dt

=
∂ u

∂ t
+ u(x, t)

∂ u

∂ x

= 0. [360]

Which implies that, there exists a constant still denoted by u

u(x(t), t) = u. [361]

This with [359] leads to

x(t) = ut+ x0. [362]

11 Programme

• Chapter one: Finite differences methods, see [SMI 85] and [GOD 77].

• Chapter two: Finite volume methods, [EYM 00].

• Chapter three: Finite element methods, [CIA 78].

• Chapter four: Spectrale methods, [BER 92]
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