University of Annaba–"M.I. Mathematiques et Informatique LMD" First year undergraduation

2011-2012

Analyse

Sequences

Exercice 1. (Definition of the limit) Use the definition of the limit to prove that

1.

$$\lim_{n \to +\infty} \frac{1 - 2n}{n + 1} = -2.$$
(1)

2.

$$\lim_{n \to +\infty} \exp\left(-n\right) = 0. \tag{2}$$

3.

 $\lim_{n \to +\infty} \sqrt{n^2 - 1} = +\infty.$ (3)

Exercice 2. (Some properties of the limit)

- 1. Prove that if $\lim_{n \to \infty} u_n = l$ and $u_n \ge 0$ for all $n \ge k$, with a given integer k, then $l \ge 0$.
- 2. Prove that $\lim_{n \to +\infty} u_n = l$ if and only if $\lim_{n \to +\infty} |u_n l| = 0$.
- 3. Prove that if $|u_n l| \le v_n$ for large n and $\lim_{n \to +\infty} v_n = 0$, then $\lim_{n \to +\infty} u_n = l$.

Exercice 3. (Computation of the limit and prove it) Compute the limit of the following sequences and prove the limit using the definition:

1.

$$2 + \frac{1}{n+1}, \ \frac{n+2}{n+1}, \ \frac{1}{n} \sin \frac{n\pi}{4}.$$
 (4)

2.

$$\frac{n}{2n+\sqrt{n+1}}, \ \frac{\sin n}{\sqrt{n}}.$$
(5)

Exercise 4. (N does not depend on ε !) Recall that $\lim_{n \to +\infty} u_n = l$ if and only if for each $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|u_n - l| < \varepsilon$ for all $n \ge N$.

State necessary and sufficient conditions on a convergent sequence u_n such that the integer N in the previous definition does not depend ε .

Exercice 5. (Monotonocity) Study the monotonocity (decreased or increased) of the following sequences:

1.

$$u_n = \exp(n); \ u_n = \frac{1}{\sqrt{n+1}}; \ u_n = \frac{1}{(n-3)!}$$
 (6)

2.

$$u_n = (-1)^n; \ u_n = \frac{n^2}{n!}; \ u_{n+1} = 2 - \frac{1}{u_n}, \ u_0 = 2.$$
 (7)

Exercice 6. (Monotonocity and convergence) Study the monotonocity and then the convergence of the following sequences:

$$u_n = \frac{1.3.5\dots(2n+1)}{2.4.6\dots(2n+2)}; \quad u_n = \frac{\sqrt{(n-1)!}}{(1+\sqrt{1})(1+\sqrt{2})\dots(1+\sqrt{n})}.$$
(8)

Exercice 7. (Convergence) Study the convergence of the following sequences:

1.

$$u_n = \frac{7^{n+1} + 6^{n+1}}{7^n + 6^n}; \ u_n = \sum_{k=0}^n \ln\left(1 + \frac{1}{n+k}\right); \ u_n = (n)^{\frac{1}{n}}.$$
(9)

2.

$$u_n = \frac{1! + 2! + \ldots + (n+1)!}{(n+1)!}; \quad u_n = \frac{1! + 2! + \ldots + (n+1)!}{(n+2)!}; \quad u_n = \frac{1! + 2! + \ldots + (n+1)!}{n!}.$$
 (10)

Exercise 8. (Convergence) Let u_n and v_n be two sequences in [0,1] such that $\lim_{n \to +\infty} u_n v_n = 1$. Study the convergence of u_n and v_n .

Exercise 9. (Series, increased and bounded above) Let u_n and v_n be two sequences such that $0 \le u_n \le v_n$ and $S_n = \sum_{k=0}^n v_n$. Show that the sequence $T_n = \sum_{k=0}^n u_n$ converges.

Exercice 10. (increased and bounded above, decreased and bounded below) Let $u_n = \frac{-1}{3+u_n}$, with $u_0 = 1$.

- 1. Compute the first four terms of u_n .
- 2. Show that u_n is a nonincreasing sequence and it is bounded below by -1.
- 3. Deduce that u_n converges and compute its limit.

Exercice 11. (Three sequences) Let u_n , v_n and w_n be three sequences such that

$$\lim_{n \to +\infty} (u_n + v_n + w_n) = 3a,\tag{11}$$

and

$$\lim_{n \to +\infty} (u_n^2 + v_n^2 + w_n^2) = 3a^2,$$
(12)

where a is a given real.

Show that

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = a.$$
 (13)

Exercice 12. (Arithmetic sequence) Compute the following sums:

1.

$$3 + 7 + 11 + \ldots + 2011. \tag{14}$$

2.

$$1 + 11 + 11 + \ldots + 11 \ldots 1, \tag{15}$$

where the number 1 is reapeted 100 times in the last term of the previous sum.

Exercice 13. (Adjacent sequences) Let $v_0 \le u_0 < 0$ and 0 < q < p. We set

$$u_{n+1} = \frac{pu_n + qv_n}{p+q},\tag{16}$$

and

$$v_{n+1} = \frac{pv_n + qu_n}{p+q}.$$
 (17)

Prove that u_n and v_n are two adjacent sequences.