University of Annaba-"M.I. Mathematiques et Informatique LMD"

 First year undergraduation2011-2012

Analyse

Sequences

Not finished yet; last update Thursday 3rd Nov. 2011

Exercice 1. (Definition of the limit) Use the definition of the limit to prove that
1.

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1-2 n}{n+1}=-2 \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \exp (-n)=0 \tag{2}
\end{equation*}
$$

3.

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sqrt{n^{2}-1}=+\infty \tag{3}
\end{equation*}
$$

Exercice 2. (Some properties of the limit)

1. Prove that if $\lim _{n \rightarrow+\infty} u_{n}=l$ and $u_{n} \geq 0$ for all $n \geq k$, with a given integer k, then $l \geq 0$.
2. Prove that $\lim _{n \rightarrow+\infty} u_{n}=l$ if and only if $\lim _{n \rightarrow+\infty}\left|u_{n}-l\right|=0$.
3. Prove that if $\left|u_{n}-l\right| \leq v_{n}$ for large n and $\lim _{n \rightarrow+\infty} v_{n}=0$, then $\lim _{n \rightarrow+\infty} u_{n}=l$.

Exercice 3. (Computation of the limit and prove it) Compute the limit of the following sequences and prove the limit using the definition:
1.

$$
\begin{equation*}
2+\frac{1}{n+1}, \frac{n+2}{n+1}, \frac{1}{n} \sin \frac{n \pi}{4} \tag{4}
\end{equation*}
$$

2.

$$
\begin{equation*}
\frac{n}{2 n+\sqrt{n+1}}, \frac{\sin n}{\sqrt{n}} \tag{5}
\end{equation*}
$$

Exercice 4. (N does not depend on ε !) Recall that $\lim _{n \rightarrow+\infty} u_{n}=l$ if and only if for each $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|u_{n}-l\right|<\varepsilon$ for all $n \geq N$.
State necessary and sufficient conditions on a convergent sequence u_{n} such that the integer N in the previous definition does not depend ε.

Exercice 5. (Monotonocity) Study the monotonocity (decreased or increased) of the following sequences:
1.

$$
\begin{equation*}
u_{n}=\exp (n) ; \quad u_{n}=\frac{1}{\sqrt{n+1}} ; \quad u_{n}=\frac{1}{(n-3)!} \tag{6}
\end{equation*}
$$

2.

$$
\begin{equation*}
u_{n}=(-1)^{n} ; \quad u_{n}=\frac{n^{2}}{n!} ; \quad u_{n+1}=2-\frac{1}{u_{n}}, u_{0}=2 . \tag{7}
\end{equation*}
$$

Exercice 6. (Monotonocity and convergence) Study the monotonocity and then the convergence of the following sequences:

$$
\begin{equation*}
u_{n}=\frac{1.3 .5 \ldots(2 n+1)}{2.4 .6 \ldots(2 n+2)} ; \quad u_{n}=\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})(1+\sqrt{2}) \ldots(1+\sqrt{n})} \tag{8}
\end{equation*}
$$

Exercice 7. (Convergence) Study the convergence of the following sequences:
1.

$$
\begin{equation*}
u_{n}=\frac{7^{n+1}+6^{n+1}}{7^{n}+6^{n}} ; u_{n}=\sum_{k=0}^{n} \ln \left(1+\frac{1}{n+k}\right) ; u_{n}=(n)^{\frac{1}{n}} . \tag{9}
\end{equation*}
$$

2.

$$
\begin{equation*}
u_{n}=\frac{1!+2!+\ldots+(n+1)!}{(n+1)!} ; \quad u_{n}=\frac{1!+2!+\ldots+(n+1)!}{(n+2)!} ; \quad u_{n}=\frac{1!+2!+\ldots+(n+1)!}{n!} . \tag{10}
\end{equation*}
$$

Exercice 8. (Convergence) Let u_{n} and v_{n} be two sequences in $[0,1]$ such that $\lim _{n \rightarrow+\infty} u_{n} v_{n}=1$. Study the convergence of u_{n} and v_{n}.

Exercice 9. (Series, increased and bounded above) Let u_{n} and v_{n} be two sequences such that $0 \leq u_{n} \leq v_{n}$ and $S_{n}=\sum_{k=0}^{n} v_{n}$. Show that the sequence $T_{n}=\sum_{k=0}^{n} u_{n}$ converges.
Exercice 10. (increased and bounded above, decreased and bounded below) Let $u_{n}=\frac{-1}{3+u_{n}}$, with $u_{0}=1$.

1. Compute the first four terms of u_{n}.
2. Show that u_{n} is a nonincreasing sequence and it is bounded below by -1 .
3. Deduce that u_{n} converges and compute its limit.

Exercice 11. (Three sequences) Let u_{n}, v_{n} and w_{n} be three sequences such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left(u_{n}+v_{n}+w_{n}\right)=3 a, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left(u_{n}^{2}+v_{n}^{2}+w_{n}^{2}\right)=3 a^{2} \tag{12}
\end{equation*}
$$

where a is a given real.
Show that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} v_{n}=\lim _{n \rightarrow+\infty} w_{n}=a . \tag{13}
\end{equation*}
$$

Exercice 12. (Arithmetic sequence) Compute the following sums:
1.

$$
\begin{equation*}
3+7+11+\ldots+2011 \tag{14}
\end{equation*}
$$

2.

$$
\begin{equation*}
1+11+11+\ldots+11 \ldots 1 \tag{15}
\end{equation*}
$$

where the number 1 is reapeted 100 times in the last term of the previous sum.

Exercice 13. (Adjacent sequences) Let $v_{0} \leq u_{0}<0$ and $0<q<p$. We set

$$
\begin{equation*}
u_{n+1}=\frac{p u_{n}+q v_{n}}{p+q} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n+1}=\frac{p v_{n}+q u_{n}}{p+q} . \tag{17}
\end{equation*}
$$

Prove that u_{n} and v_{n} are two adjacent sequences.

