University of Annaba-"M.I. Mathematiques et Informatique LMD" First year undergraduation

2011-2012

Analysis

Continuity

Last update Tuesday 17th January 2012

Exercice 1. (Study of continuity) Let f be the function defined by $f(0)=1$ and $f(x)=x \mathrm{E}\left(\frac{1}{x}\right)$ (E denotes the integer part function).
Study the contnuity of the function f. In particular study the continuity on $x=0$ and on the points $\left\{\frac{1}{m}, m \in\right.$ $\mathbb{Z} \backslash\{0\}\}$.

Exercice 2. (Study of continuity) Let f be the function defined by

$$
\begin{equation*}
\left.f(x)=\frac{x}{1+x}, x \in\right]-1,+\infty[\backslash \mathbb{Q} \tag{1}
\end{equation*}
$$

and for $x=\frac{p}{q} \in \mathbb{Q}$ with $q>0$ and the bigest divisor between p and q is one

$$
\begin{equation*}
f(x)=\frac{p}{p+q+1} . \tag{2}
\end{equation*}
$$

Prove that f is continuous on $\mathbb{R} \backslash \mathbb{Q}$.
Exercice 3. (Maximum of continuous function) Let f be a given function defined on \mathbb{R}^{+}into \mathbb{R}^{+}such that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} f(x)=0 \tag{3}
\end{equation*}
$$

Prove that for all $a \geq 0$, there exists $b \geq a$ such that

$$
\begin{equation*}
f(b)=\max _{x \in[a,+\infty[} f(x) \tag{4}
\end{equation*}
$$

Exercice 4. (Some examples) Study the continuity of the following functions:
1.

$$
\begin{equation*}
f(x)=0, x<0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=1, x \geq 0 \tag{6}
\end{equation*}
$$

2.

$$
\begin{equation*}
f(x)=\frac{1}{x}, x \neq 0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=0, x=0 \tag{8}
\end{equation*}
$$

3.

$$
\begin{equation*}
f(x)=\sin \frac{1}{x}, x \neq 0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=0, x=0 \tag{10}
\end{equation*}
$$

Exercice 5. (Other examples) Study the continuity of the following functions:
1.

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}}, x \neq 0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=1, x=0 \tag{12}
\end{equation*}
$$

2.

$$
\begin{equation*}
f(x)=\frac{x^{2}-x-2}{x-2}, x \neq 2 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=5, x=2 \tag{14}
\end{equation*}
$$

3.

$$
\begin{equation*}
f(x)=\mathrm{E}(x) . \tag{15}
\end{equation*}
$$

Exercice 6. (Constant functions) Let a be a given real number such that $a>1$ and let f be a given function such that $f(a x)=f(x)$, for all $x \in \mathbb{R}$.

1. Prove that if f is a continuous function, then f is constant.
2. What about the case when f is not continuous.

Exercice 7. (Extension by continuity) Let f given by

$$
\begin{equation*}
f(x)=\sin \frac{1}{x^{3}} \exp \left(-\frac{1}{|x|}\right), x \neq 0 \tag{16}
\end{equation*}
$$

Justify that f can be extended by continuity to \mathbb{R}.
Exercice 8. (Density and continuity) Let f be a given continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$.

1. Justify that for any real x, there exists a sequence $x_{n} \in \mathbb{Q}$ such that $\lim _{n \rightarrow+\infty} x_{n}=x$.
2. Use the previous item to justify that $f(x)=0$ for all $x \in \mathbb{R}$.

Exercice 9. (Continuity) Prove that the function $4 x^{3}-6 x^{2}+3 x-2$ vanishes between 1 and 2 .

