## University of Annaba-"M.I. Mathematiques et Informatique LMD"

 First year undergraduation2011-2012

## Analysis

## Derivability

Last update Tuesday 17th January 2012

Exercice 1. (Study of derivability) Study the derivability of the following functions:
1.

$$
\begin{equation*}
f(x)=\arctan \left(1-x^{2}\right) \tag{1}
\end{equation*}
$$

2. 

$$
\begin{equation*}
f(x)=x^{2} \sin \left(\frac{1}{x}\right), x \neq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(0)=0 \tag{3}
\end{equation*}
$$

Exercice 2. (Study of derivability) Let $f$ be a given function defined on some interval $]-a, a[$ (with $a>0)$ and satisfying, for some $k \in] 0,1[$ and $L \in \mathbb{R}$

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{f(x)-f(k x)}{x}=L . \tag{4}
\end{equation*}
$$

1. Prove that $f$ has derivative at $x=0$
2. Compute $f^{\prime}(0)$.

Exercice 3. (A derivative vanishes everywhere) Consider the following function

$$
\begin{equation*}
f(x)=\arctan \frac{x+a}{1-a x}-\arctan x . \tag{5}
\end{equation*}
$$

1. Compute the domain of definition of $f$.
2. Study the derivability of $f$
3. Compute the derivative of $f$ and deduce that

$$
\begin{align*}
& \left.f(x)=-\arctan \frac{1}{a}+\frac{\pi}{2}, x \in\right]-\infty, \frac{1}{a}[,  \tag{6}\\
& \left.f(x)=-\arctan \frac{1}{a}-\frac{\pi}{2}, x \in\right] \frac{1}{a},+\infty[. \tag{7}
\end{align*}
$$

Exercice 4. (Rolle Theorem) Let $f$ be a given differentiable function on $\mathbb{R}$ such that $f$ vanishes on $n$ roots. Prove that $f^{\prime}$ has at least $n-1$ roots.

Exercice 5. (Inequalities) Prove the following inequalities
1.

$$
\begin{equation*}
\ln (1+x) \leq x, x \in]-1,+\infty[. \tag{8}
\end{equation*}
$$

2. 

$$
\begin{equation*}
\exp (x) \geq 1+x, x \in \mathbb{R} \tag{9}
\end{equation*}
$$

3. 

$$
\begin{equation*}
\sin (x) \leq x, x \in[0,+\infty[ \tag{10}
\end{equation*}
$$

4. 

$$
\begin{equation*}
\frac{x}{1+x^{2}} \leq \arctan (x) \leq x, x \in[0,+\infty[ \tag{11}
\end{equation*}
$$

Exercice 6. (Derivative) Let $f$ be the following function

$$
\begin{equation*}
f(x)=\arctan \sqrt{\frac{1-x}{1+x}} \tag{12}
\end{equation*}
$$

1. Compute the domain of definition of $f$.
2. Study the derivability of $f$
3. Justify that $f^{\prime} \equiv 0$ and deduce a convenient expansion for $f$.
4. Justify that for all $x$ in the domain of definition can be written as $x=\cos t$ where $t \in[0, \pi[$. Use this fact to confirm the expansion found in the previous item for $f$.

Exercice 7. (Continuity and derivability) Consider the following function, for $n \in \mathbb{N} \backslash\{0\}$

$$
\begin{equation*}
f(x)=x^{n} \sin \frac{1}{|x|}, x \neq 0 \tag{13}
\end{equation*}
$$

1. Justify that $f$ can be extended by continuity on 0 to all $\mathbb{R}$.
2. What are the values of $n$ such that $f$ is a function of class $\mathcal{C}^{1}$

Exercice 8. (Continuity and derivability) Consider the following function, for $n \in \mathbb{N}$

$$
\begin{equation*}
f(x)=\frac{\sin (2 n+1) x}{\sin x} \tag{14}
\end{equation*}
$$

1. Determine the domain of definition of $f$.
2. Prove that $f(-x)=f(x)$ for all $x$ in the domain of definition of $f$.
3. Is $f$ periodic ?
4. Can $f$ be extended to $\mathbb{R}$ ?

Exercice 9. (Derivative) Let $f$ be a given function two times differentiable such that for some $k>0$

$$
\begin{equation*}
f(y)-f(x)=(y-x) f^{\prime}(x)+\frac{(y-x)^{2}}{2} f^{\prime \prime}\left(\frac{x+k y}{1+k}\right), \forall x, y \in \mathbb{R} \tag{15}
\end{equation*}
$$

1. Prove that $f^{(4)} \equiv 0$.
2. Deduce that $f$ is a polynome of degree three.

Exercice 10. (Relations using Derivatives)

1. Prove that

$$
\begin{equation*}
\left.(\arccos (x)+\arcsin (x))^{\prime}=0, \forall x \in\right]-1,1[ \tag{16}
\end{equation*}
$$

2. Deduce that

$$
\begin{equation*}
\arccos (x)+\arcsin (x)=\frac{\pi}{2}, \forall x \in[-1,1] . \tag{17}
\end{equation*}
$$

Exercice 11. (Relations) Prove the following rules
1.

$$
\begin{equation*}
\cos (\arcsin (x))=\sqrt{1-x^{2}}, \forall x \in[-1,1] \tag{18}
\end{equation*}
$$

2. 

$$
\begin{equation*}
\left.\tan (\arcsin (x))=\frac{x}{\sqrt{1-x^{2}}}, \forall x \in\right]-1,1[ \tag{19}
\end{equation*}
$$

3. 

$$
\begin{equation*}
\sin (\arccos (x))=\sqrt{1-x^{2}}, \forall x \in[-1,1] \tag{20}
\end{equation*}
$$

4. 

$$
\begin{equation*}
\tan (\arccos (x))=\frac{\sqrt{1-x^{2}}}{x}, \forall x \in[-1,1] \backslash\{0\} \tag{21}
\end{equation*}
$$

5. 

$$
\begin{equation*}
\cos (\arctan (x))=\frac{x}{\sqrt{1+x^{2}}}, \forall x \in \mathbb{R} \tag{22}
\end{equation*}
$$

6. 

$$
\begin{equation*}
\sin (\arctan (x))=\frac{x}{\sqrt{1+x^{2}}}, \forall x \in \mathbb{R} \tag{23}
\end{equation*}
$$

