Analysis

Supplementary problems

Fourier series

Exercise 1. Provide the graph of the following functions:

1. Periode of f is $T=2 \pi$

$$
f(x)=\left\{\begin{array}{l}
\sin x, 0 \leq x \leq \pi \tag{1}\\
0, \pi<x<2 \pi
\end{array}\right.
$$

2. Periode of f is $T=4$

$$
f(x)=\left\{\begin{array}{l}
-2,-2 \leq x \leq 0 \tag{2}\\
1,0 \leq x<2
\end{array}\right.
$$

3. Periode of f is $T=\pi$

$$
\begin{equation*}
f(x)=\operatorname{tg}(x),-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \tag{3}
\end{equation*}
$$

Exercise 2. Let f be the following function of periode $T=10$:

$$
f(x)=\left\{\begin{array}{l}
0,-5 \leq x \leq 0 \tag{4}\\
3,0<x<5
\end{array}\right.
$$

1. Provide the graph of $f(x)$,
2. Compute the Fourier serie of deduce an entier serie of $f(x)$
3. Use Jordan's Theorem to study the convergence of the Fourier serie.
4. How to chose the values of f in $\{10 k, 5+10 k ; k \in \mathbb{Z}\}$ such that Fourier serie corresponding to the new function converges to this new function.

Exercise 3. Let $f(x)$ be a periodic function of periode $T=2 \pi$ and

$$
\begin{equation*}
f(x)=x^{2}-\pi^{2}, x \in[-\pi, \pi[\tag{5}
\end{equation*}
$$

1. For which x, f can be represented by a Fourier serie
2. Compute the Fourier serie of $f(x)$
3. Use Parseval equality to compute the sum $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$

Exercise 4. Let $f(x)$ be the function defined by

$$
\begin{equation*}
f(x)=1, x \in[0, \pi[. \tag{6}
\end{equation*}
$$

1. How to chose $f(x)$ such that Fourier serie of $f(x)$ contains only $\sin x$,
2. compute this Fourier serie.
