University of Annaba-"Ecole Preparatoire aux Sciences et Techniques" Second year undergraduation

2010-2011

Functions of Several Variables

Derivatives and differentiability

Exercise 1. Compute the partial derivatives of the following functions on their domaines of definition:
1.

$$
\begin{equation*}
f(x, y)=\left(x^{2}+y^{2}\right) \exp (-x y) \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
f(x, y)=\frac{x y}{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

Exercise 2. Consider the function f defined by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x^{3}+y^{3}}{x^{2}+y^{2}},(x, y) \neq(0,0) \tag{3}\\
0,(x, y)=(0,0)
\end{array}\right.
$$

1. Is f continuous on $(0,0)$?
2. Compute the partial derivatives of f. Is f of class \mathcal{C}^{1} ?

Exercise 3. Consider the function f defined by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x y}{\sqrt{x^{2}+y^{2}}}, \quad(x, y) \neq(0,0) \tag{4}\\
0,(x, y)=(0,0) .
\end{array}\right.
$$

1. Is f continuous?
2. Does the directional derivative $D_{v} f(0,0)$ exist for all $v=(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. We deduce then that f is not differentiable in $(0,0)$.
3. Compute the partial derivatives of f in $(0,0)$.
4. Use the previous question combined with the definition of differentiability to prove that f is not differentiable in $(0,0)$.

Exercise 4. Consider the function f defined by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x^{2} y}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0) \tag{5}\\
0,(x, y)=(0,0)
\end{array}\right.
$$

1. Show that f is continuous everywhere?
2. Show that the directional derivative $D_{v} f(0,0)$ exist for all $v=(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ but f is not differentiable in $(0,0)$.

Exercise 5. Compute the second partial derivatives of the following functions and decide if the Schwartz Theorem can be applied on the their domains of definition:
1.

$$
\begin{equation*}
f(, y)=y \ln x \tag{6}
\end{equation*}
$$

2.

$$
\begin{equation*}
f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{7}
\end{equation*}
$$

3.

$$
\begin{equation*}
f(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) \tag{8}
\end{equation*}
$$

Exercise 6. Compute the directional derivative of $f(x, y)=x y^{2}$ with respect to the vector $v=(1,-2)$ on the point $M=(2,1)$.

Exercise 7. Let us consider

$$
\begin{equation*}
f(x, y)=y^{3} \ln (x) . \tag{9}
\end{equation*}
$$

Compute the partial derivatives $\frac{\partial^{4} f}{\partial x \partial y^{3}}, \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}, \frac{\partial^{4} f}{\partial y \partial x \partial y^{2}}$.
Exercise 8. Let us consider

$$
f(x, y)=\left\{\begin{array}{l}
\frac{4 x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}},(x, y) \neq(0,0) \tag{10}\\
0,(x, y)=(0,0) .
\end{array}\right.
$$

1. Compute the partial derivatives $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$ for $\left(x_{0}, y_{0}\right) \neq(0,0)$.
2. Compute the partial derivatives $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0), \frac{\partial^{2} f}{\partial x \partial y}(0,0), \frac{\partial^{2} f}{\partial y \partial x}(0,0)$.

Exercise 9. Compute the differential and the pertial derivatives of f when they exist in each case of the following:
1.

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x y}{x^{2}+y^{2}},(x, y) \neq(0,0) \tag{11}\\
0,(x, y)=(0,0)
\end{array}\right.
$$

2.

$$
f(x, y)=\left\{\begin{array}{l}
\left(x^{2}+y^{2}\right)^{x},(x, y) \neq(0,0) \tag{12}\\
1,(x, y)=(0,0)
\end{array}\right.
$$

