University of Annaba–"Ecole Preparatoire aux Sciences et Techniques" Second year undergraduation

Functions of Several Variables

Derivatives and differentiability

Exercise 1. Compute the partial derivatives of the following functions on their domaines of definition:

1.

$$f(x,y) = (x^{2} + y^{2}) \exp(-xy), \qquad (1)$$

 $\mathbf{2}.$

$$f(x,y) = \frac{xy}{x^2 + y^2}.$$
 (2)

Exercise 2. Consider the function *f* defined by

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, \ (x,y) \neq (0,0) \\ 0, \ (x,y) = (0,0). \end{cases}$$
(3)

- 1. Is f continuous on (0,0)?
- 2. Compute the partial derivatives of f. Is f of class C^1 ?

Exercise 3. Consider the function f defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$
(4)

- 1. Is f continuous?
- 2. Does the directional derivative $D_v f(0,0)$ exist for all $v = (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. We deduce then that f is not differentiable in (0,0).
- 3. Compute the partial derivatives of f in (0,0).
- 4. Use the previous question combined with the definition of differentiability to prove that f is not differentiable in (0, 0).

Exercise 4. Consider the function f defined by

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$
(5)

- 1. Show that f is continuous everywhere?
- 2. Show that the directional derivative $D_v f(0,0)$ exist for all $v = (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ but f is not differentiable in (0,0).

2010-2011

Exercise 5. Compute the second partial derivatives of the following functions and decide if the Schwartz Theorem can be applied on the their domains of definition:

1.

$$f(,y) = y \ln x,\tag{6}$$

2.

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2 + z^2}},\tag{7}$$

3.

$$f(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x^2 + y^2)\right).$$
 (8)

Exercise 6. Compute the directional derivative of $f(x, y) = xy^2$ with respect to the vector v = (1, -2) on the point M = (2, 1).

Exercise 7. Let us consider

$$f(x,y) = y^3 \ln(x).$$
 (9)

Compute the partial derivatives $\frac{\partial^4 f}{\partial x \partial y^3}$, $\frac{\partial^4 f}{\partial x^2 \partial y^2}$, $\frac{\partial^4 f}{\partial y \partial x \partial y^2}$.

Exercise 8. Let us consider

$$f(x,y) = \begin{cases} \frac{4xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$
(10)

1. Compute the partial derivatives $\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)$ for $(x_0, y_0) \neq (0, 0)$.

2. Compute the partial derivatives $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0), \frac{\partial^2 f}{\partial y \partial x}(0,0).$

Exercise 9. Compute the differential and the pertial derivatives of f when they exist in each case of the following:

1.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, \ (x,y) \neq (0,0) \\ 0, \ (x,y) = (0,0). \end{cases}$$
(11)

2.

$$f(x,y) = \begin{cases} (x^2 + y^2)^x, \ (x,y) \neq (0,0) \\ 1, \ (x,y) = (0,0). \end{cases}$$
(12)