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Analysis

Supplementary problems

Series
Exercise 1. Explain the following equality:
“+oo

D un=) un 1]

n>m n=m
where m € N is a given integer
Exercise 2. Let m € N is a given integer. Explain why that the convergece of the series Y, . , un is equivalent
to the convergente of Zn> m W

More precise, explain that if >~ .  u, is convergente, then the following identity holds:
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Exercise 3.

1. Let m € N be a given integer. Compute the following sum
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2. Note that - m
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prove that, using the first item of this exercise

i (Vn+1-+/n) = +oc. [5]
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3. what we could deduce?

Exercise 4. In the following exercises, determine the convergence, divergence, absolute convergence of the

given series using any test (criteria) and give reasons:
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Exercise 5.

e Criteria of comparaison

e Criteria of Alembert (Ratio)

e Criteria of Cauchy (Sqrt)

e C(riteria of Integral

Exercise 6.

Exercise 7.

Study the convergence series

Study the following series
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Study the absolute convergence of the following series
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Exercise 8. Prove that there exist constants «, (3, and v such that, for all n
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Deduce then the sum Z m
n(n n
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Exercise 9. Prove that the following identity holds, for all n
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Deduce then the sum Z arctgﬁ
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