University of Annaba–Department of Technology Second year undergraduation 2009–2010 Analysis Supplementary problems Series

Exercise 1. Determine the convergence domain of the following series:

- $\sum_{n \ge 1} (-3)^n \frac{x^n}{\sqrt{n+1}}.$ [1]
- $\sum_{n \ge 1} \frac{n \left(x+2\right)^n}{3^{n+1}}.$ [2]
- $\sum (-1)^n \underline{x^{2n}}$

$$\sum_{n \ge 0} (-1)^n \frac{x^{-n}}{2^{2n} (n!)^2}.$$
[3]

1.

2.

3.

$$\sum_{n \ge 1} n^n \, (x+3)^n \,. \tag{4}$$

Exercise 2. We know that:

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots = \sum_{n \ge 0} x^n.$$
 [5]

- 1. Use [5] to find an entire serie for $\frac{1}{2+x}$,
- 2. deduce an entier serie for $\frac{x^3}{2+x}$
- 3. Use [5] to find an entier serie for $\frac{1}{(1-x)^2}$, and determine the domain of convergence.

Exercise 3. Compute in the MacLaurin series of the following functions and determine the domain of convergence of these series:

- 1. $f(x) = \arctan x$
- 2. $f(x) = \log(1+x)$

Exercise 4.

- 1. Determine the Taylor serie of $f(x) = \exp x$ with $x_0 = -2$.
- 2. Compute in the MacLaurin series of the function $f(x) = \cos x$ and show that MacLaurin serie converges to $f(x) = \cos x$.
- 3. Deduce from the previous item the entier serie of $f(x) = \sin x$