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Supplementary problems

Series

Exercise 1. Determine the convergence domain of the following series:
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Exercise 2. We know that:
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1− x
= 1 + x + x2 + . . . =
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1. Use [5] to find an entier serie for 1
2+x

,

2. deduce an entier serie for x3

2+x

3. Use [5] to find an entier serie for 1
( 1−x)2

, and determine the domain of convergence.

Exercise 3. Compute in the MacLaurin series of the following functions and determine the domain of

convergence of these series:

1. f(x) = arctan x

2. f(x) = log (1 + x)

Exercise 4.

1. Determine the Taylor serie of f(x) = exp x with x0 = −2.

2. Compute in the MacLaurin series of the function f(x) = cos x and show that MacLaurin serie converges to

f(x) = cos x.

3. Deduce from the previous item the entier serie of f(x) = sin x


