```
University of Annaba-Department of Technology
Second year undergraduation
    Analysis
    Supplementary problems
    Series
```

2009-2010

Exercise 1. Determine the convergence domain of the following series:
1.

$$
\begin{equation*}
\sum_{n \geq 1}(-3)^{n} \frac{x^{n}}{\sqrt{n+1}} \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\sum_{n \geq 1} \frac{n(x+2)^{n}}{3^{n+1}} \tag{2}
\end{equation*}
$$

3.

$$
\begin{equation*}
\sum_{n \geq 0}(-1)^{n} \frac{x^{2 n}}{2^{2 n}(n!)^{2}} \tag{3}
\end{equation*}
$$

4.

$$
\begin{equation*}
\sum_{n \geq 1} n^{n}(x+3)^{n} \tag{4}
\end{equation*}
$$

Exercise 2. We know that:

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+\ldots=\sum_{n \geq 0} x^{n} \tag{5}
\end{equation*}
$$

1. Use [5] to find an entier serie for $\frac{1}{2+x}$,
2. deduce an entier serie for $\frac{x^{3}}{2+x}$
3. Use [5] to find an entier serie for $\frac{1}{(1-x)^{2}}$, and determine the domain of convergence.

Exercise 3. Compute in the MacLaurin series of the following functions and determine the domain of convergence of these series:

1. $f(x)=\arctan x$
2. $f(x)=\log (1+x)$

Exercise 4.

1. Determine the Taylor serie of $f(x)=\exp x$ with $x_{0}=-2$.
2. Compute in the MacLaurin series of the function $f(x)=\cos x$ and show that MacLaurin serie converges to $f(x)=\cos x$.
3. Deduce from the previous item the entier serie of $f(x)=\sin x$
