University of Annaba–Department of Economy First year undergraduation

Algebra

Supplementary problems

Sets theory

Exercise 1. Let $\Xi = \{1, 2, 3, 4, 5, 6, 7\}$ be the universal set, and consider the following subsets of Ξ :

 $\mathcal{A} = \{1, 2, 3\}, \ \mathcal{B} = \{2, 4, 6\}, \ \mathcal{C} = \{1, 3, 5, 7\}.$

Compute the following sets:

- 1. $\mathcal{C}_{\Xi}^{\mathcal{A}}, \mathcal{C}_{\Xi}^{\mathcal{B}}, \mathcal{C}_{\Xi}^{\mathcal{C}}$.
- 2. $\mathcal{A} \cup \mathcal{B}, \mathcal{A} \cup \mathcal{C}, \mathcal{B} \cup \mathcal{C}.$
- 3. $\mathcal{A} \cap \mathcal{B}, \mathcal{A} \cap \mathcal{C}, \mathcal{B} \cap \mathcal{C}.$
- 4. $\mathcal{A} \times \mathcal{A}, \, \mathcal{A} \times \mathcal{B}, \, \mathcal{A} \times \mathcal{B} \times \mathcal{C}.$

Exercise 2.

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be three sets. Show that

- 1. $\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C}).$
- 2. $\mathcal{A} \times (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cap (\mathcal{A} \times \mathcal{C}).$
- 3. $\mathcal{A} \times (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cup (\mathcal{A} \times \mathcal{C}).$

Exercise 3. Let \mathcal{A} be a set of n elements. How many element are in each of the following sets:

- 1. $\mathcal{A} \times \mathcal{A}$.
- 2. $\{(x,y) \in \mathcal{A} \times \mathcal{A}, x \neq y\}.$
- 3. $\mathcal{A} \times \mathcal{A} \times \mathcal{A}$.
- 4. $\{(x, y, z) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A}, x \neq y, x \neq z, y \neq z\}.$

Exercise 4. Let \mathcal{X} be the universal set consisting of all people of the university of Annaba Consider the following subsets:

- 1. \mathcal{M} = the set of all males,
- 2. C = the set of all college students,

2008 - 2009

- 3. $\mathcal{I} =$ the set of all intelligent people,
- 4. $\mathcal{F} =$ the set of all females,
- 5. S = the set of all smoking people,
- 6. \mathcal{P} = the set of all Professors,
- 7. \mathcal{W} = the set of all well-dressed people.

Translate each of the following sentences into an equation or an equality using only the letters standing for sets and the symbols =, \emptyset , \mathcal{C} (complementary set), \cap , \cup . (For example, the sentence "All college students are intelligent" means that the set of college students is a subset of the set of the set of intelligent people, i.e., $\mathcal{C} \subset \mathcal{I}$. But we are not permitted to use the symbol \subset . Hence we replace $\mathcal{C} \subset \mathcal{I}$ with $\mathcal{C} \cap \mathcal{I} = \mathcal{C}$, $\mathcal{C} \cup \mathcal{I} = \mathcal{I}$, or $\mathcal{C} \cap \mathcal{C}_{\Xi}^{\mathcal{I}} = \emptyset$. Similarly, the sentence " Some college students are intelligent" means that there is at least one member of the insection $\mathcal{C} \cap \mathcal{I}$. Hence this sentence is translated into $\mathcal{C} \cap \mathcal{I} \neq \emptyset$.

- 1. All professors are smoking,
- 2. No male college student is well-dressed,
- 3. Some professors are smoking,
- 4. Some smoking professors are neither intelligent nor well-dressed,
- 5. college students and professors are smoking,
- 6. If a person is smoking, then that person is intelligent,
- 7. A person is smoking if and only if he is intelligent.

Exercise 5. Which of the following are correct and why

- 1. $\{1\} \in \{\{1\}\}$
- 2. $\{1\} \in \{1, \{1\}\}$
- 3. $\{1\} \subset \{\{1\}\}$
- 4. $\{1\} \subset \{1, \{1\}\}$

Exercise 6. Give an example of two sets \mathcal{A} and \mathcal{B} such that both $\mathcal{A} \in \mathcal{B}$ and $\mathcal{A} \subset \mathcal{B}$ are true.