University of Annaba-Department of Economy
First year undergraduation
2008-2009

Algebra
 Supplementary problems
 Sets theory

Exercise 1. Let $\Xi=\{1,2,3,4,5,6,7\}$ be the universal set, and consider the following subsets of Ξ :

$$
\mathcal{A}=\{1,2,3\}, \mathcal{B}=\{2,4,6\}, \mathcal{C}=\{1,3,5,7\}
$$

Compute the folowing sets:

1. $\mathcal{C}_{\Xi}^{\mathcal{A}}, \mathcal{C}_{\Xi}^{\mathcal{B}}, \mathcal{C}_{\Xi}^{\mathcal{C}}$.
2. $\mathcal{A} \cup \mathcal{B}, \mathcal{A} \cup \mathcal{C}, \mathcal{B} \cup \mathcal{C}$.
3. $\mathcal{A} \cap \mathcal{B}, \mathcal{A} \cap \mathcal{C}, \mathcal{B} \cap \mathcal{C}$.
4. $\mathcal{A} \times \mathcal{A}, \mathcal{A} \times \mathcal{B}, \mathcal{A} \times \mathcal{B} \times \mathcal{C}$.

Exercise 2.

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be three sets. Show that

1. $\mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})$.
2. $\mathcal{A} \times(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \times \mathcal{B}) \cap(\mathcal{A} \times \mathcal{C})$.
3. $\mathcal{A} \times(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \times \mathcal{B}) \cup(\mathcal{A} \times \mathcal{C})$.

Exercise 3. Let \mathcal{A} be a set of n elements. How many element are in each of the following sets:

1. $\mathcal{A} \times \mathcal{A}$.
2. $\{(x, y) \in \mathcal{A} \times \mathcal{A}, x \neq y\}$.
3. $\mathcal{A} \times \mathcal{A} \times \mathcal{A}$.
4. $\{(x, y, z) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A}, x \neq y, x \neq z, y \neq z\}$.

Exercise 4. Let $\mathcal{X}\rangle$ be the universal set consisting of all people of the university of Annaba Consider the following subsets:

1. $\mathcal{M}=$ the set of all males,
2. $\mathcal{C}=$ the set of all college students,
3. $\mathcal{I}=$ the set of all intelligent people,
4. $\mathcal{F}=$ the set of all females,
5. $\mathcal{S}=$ the set of all smoking people,
6. $\mathcal{P}=$ the set of all Professors,
7. $\mathcal{W}=$ the set of all well-dressed people.

Translate each of the following sentences into an equation or an equality using only the letters standing for sets and the symbols $=, \emptyset, \mathcal{C}$ (complementary set), \cap, \cup. (For example, the sentence "All college students are intelligent" means that the set of college students is a subset of the set of the set of intelligent people, i.e., $\mathcal{C} \subset \mathcal{I}$. But we are not permitted to use the symbol \subset. Hence we replace $\mathcal{C} \subset \mathcal{I}$ with $\mathcal{C} \cap \mathcal{I}=\mathcal{C}$, $\mathcal{C} \cup \mathcal{I}=\mathcal{I}$, or $\mathcal{C} \cap \mathcal{C} \mathcal{C}_{\Xi}^{\mathcal{I}}=\emptyset$. Similarily, the sentence " Some college students are intelligent" means that there is at least one member of the insection $\mathcal{C} \cap \mathcal{I}$. Hence this sentence is translated into $\mathcal{C} \cap \mathcal{I} \neq \emptyset$.

1. All professors are smoking,
2. No male college student is well-dressed,
3. Some professors are smoking,
4. Some smoking professors are neither intelligent nor well-dressed,
5. college students and professors are smoking,
6. If a person is smoking, then that person is intelligent,
7. A person is smoking if and only if he is intelligent.

Exercise 5. Which of the following are correct and why

1. $\{1\} \in\{\{1\}\}$
2. $\{1\} \in\{1,\{1\}\}$
3. $\{1\} \subset\{\{1\}\}$
4. $\{1\} \subset\{1,\{1\}\}$

Exercise 6. Give an example of two sets \mathcal{A} and \mathcal{B} such that both $\mathcal{A} \in \mathcal{B}$ and $\mathcal{A} \subset \mathcal{B}$ are true.

