Written by Bradji, Abdallah

Last update: Saturday December 1st, 2012
Provisional home page: http://www.cmi.univ-mrs.fr/~bradji

Aim of these notes

The aim of these notes is to provide some highlights on the relation between the limit of a real function defined on \mathbb{R}^{2} at some point $\left(x_{0}, y_{0}\right)$, the limit along every line through $\left(x_{0}, y_{0}\right)$, and the known limit using the polar coordinates. We will see that the criterion of the limit of a real function defined on \mathbb{R}^{2} at some point $\left(x_{0}, y_{0}\right)$ is equivalent to the known criterion on the limit using the polar coordinates but with a uniform convergence with respect to the angle θ. However, the criterion of the limit of a real function defined on \mathbb{R}^{2} at some point $\left(x_{0}, y_{0}\right)$ implies (but not equivalent) to the limit along every line through $\left(x_{0}, y_{0}\right)$.

1 Introduction

Throughout these notes, we assume that f is a function defined on some ball (for the sake of simplicity and in order to use simply polar coordinates, we choose the Euclidean norm) $\mathcal{B}\left(\left(x_{0}, y_{0}\right), r\right) \subset \mathbb{R}^{2}$ except perhaps on (x_{0}, y_{0}) (in fact the definition of the limit at a point requires the definition of the function under consideration on some neighborhood of the point). Using the translation $(x, y) \rightarrow\left(x-x_{0}, y-y_{0}\right)$, any computation concerning the limit at $\left(x_{0}, y_{0}\right)$ can be considered as limit at $(0,0)$. For this reason, we can assume without loss of generality that $\left(x_{0}, y_{0}\right)=(0,0)$. The following definition of the limit can be used when it is needed:

Definition 1 (Definition of the limit) The limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ is said to be equal to l, for some $l \in \mathbb{R}$ (the limit l can also be considered as infinity), if for all $\varepsilon>0$, there exists some $\eta>0$ (the real number $\eta>0$ can be chosen sufficiently small in a such way that $\eta<r$ and consequently the function f is defined for all (x, y) such that $\left.\sqrt{x^{2}+y^{2}} \leq \eta\right)$, such that for all (x, y) satisfying $\sqrt{x^{2}+y^{2}} \leq \eta$ we have

$$
\begin{equation*}
|f(x, y)-l|<\varepsilon \tag{1}
\end{equation*}
$$

2 Some known rules to test the limit

Let $y=y(x)$ an arbitrary curve such that $(x, y(x)) \subset \mathcal{B}(0, r)$ (recall that f is a function defined on the ball $\mathcal{B}(0, r)$). Assume that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=l$ and $\lim _{x \rightarrow 0} y(x)=0$. Therefore, thanks to the definition of the $\operatorname{limit} \lim _{x \rightarrow 0} f(x, y(x))=l$.
One of the particular and easy cases is take $y=k x$, where $k \in \mathbb{R}$ is arbitrary. If we find that $\lim _{x \rightarrow 0} f(x, k x)$ does not exist or depending on k, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
The $\lim _{x \rightarrow 0} f(x, k x)$ called the limit along the line $y=k x$.
Two important notes should be mentioned:

1. If $\lim _{x \rightarrow 0} f(x, k x)$ does not exist for some k or depending on k, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exists.
2. The fact that $\lim _{x \rightarrow 0} f(x, k x)=l$, for all k, and for some given l does not imply that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=l$ as it is shown in the following example:

$$
\begin{equation*}
f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} . \tag{2}
\end{equation*}
$$

The function f is defined everywhere in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
We remark that

$$
\begin{equation*}
f(x, k x)=\frac{x k^{2} x^{2}}{x^{2}+k^{4} x^{4}}=\frac{k^{2} x^{3}}{x^{2}\left(1+k^{4} x^{2}\right)}=\frac{k^{2} x}{1+k^{4} x^{2}} \rightarrow 0, \text { as } x \rightarrow 0 . \tag{3}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
f\left(x^{2}, x\right)=\frac{x^{2} x^{2}}{x^{4}+x^{4}}=\frac{1}{2} \nrightarrow 0, \text { as } x \rightarrow 0 . \tag{4}
\end{equation*}
$$

The two facts 3 and 4 implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist even the limit along every line $y=k x$ is 0 .

3 The use of polar coordinates to compute the limit

The following theorem is useful:

Theorem 3.1 (The use of polar coordinates to compute the limit) The following statements are equivalent:
A. $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=l$
B. $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=l$, uniformly in θ.

Remark 3.1 (What does it mean the sentence "convergence uniformly in θ ") The statement $\lim _{r \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=l$, uniformly in θ means that for all $\varepsilon>0$ there exists some $\eta>0$ only depending on ε such that for all ρ satisfying $0<\rho \leq \eta$ we have

$$
\begin{equation*}
|f(\rho \cos \theta, \rho \sin \theta)-l|<\varepsilon, \forall \theta \tag{5}
\end{equation*}
$$

The statement $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=l$, uniformly in θ, is replaced in some literature by the fact that $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=$ l does not depend on θ. However the statement $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=l$, uniformly in θ, is more precise since the constant of $\eta>0$, such that $0<\rho \leq \eta$ implies inequality (5), should be independent of θ.

Remark 3.2 (The convergence along every line and the convergence using polar coordinates) As we mentioned, that the use of the limit along lines through $(0,0)$ serves us

1. to predict the a priori limit since the computation of $f(x, k x)$ is easy
2. to decide that the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist when $\lim _{x \rightarrow 0} f(x, k x)$ does not exist for some k or it is depending on k

However, if $\lim _{x \rightarrow 0} f(x, k x)=l$, for some fixed l, does not imply that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=l$.
Whereas, the computation of $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)$ serves us to decide whether there is a convergence or not.

Proof of Theorem 3.1

1. Statement A. implies statement B. is clear when we set $(x, y)=(\rho \cos \theta, \rho \sin \theta)$ in the Definition 1 of the limit
2. Statement B. implies statement A. is clear when we set $(x, y)=(\rho \cos \theta, \rho \sin \theta)$ in (5).

The proof of Theorem 3.1 is completed.

4 Some examples

1. First example: let us consider the function f given by 2 . We have remarked, thanks to (3) and (4) implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist even the limit along every line $y=k x$ is 0 . In polar coordinates, we have

$$
\begin{equation*}
f(\rho \cos \theta, \rho \sin \theta)=\frac{(\rho \cos \theta)\left(\rho^{2} \sin ^{2} \theta\right)}{\left(\rho^{2} \cos ^{2} \theta\right)+\left(\rho^{4} \sin ^{4} \theta\right)}=\frac{\rho \cos \theta \sin ^{2} \theta}{\cos ^{2} \theta+\rho^{2} \sin ^{4} \theta} \tag{6}
\end{equation*}
$$

We remark that $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=0$ but this convergence is not uniform in in θ.
2. Second example:let us consider the function f given by

$$
\begin{equation*}
f(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}} \tag{7}
\end{equation*}
$$

The function f is defined everywhere in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
In polar coordinates, we have, using $\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\begin{equation*}
f(\rho \cos \theta, \rho \sin \theta)=\frac{\rho^{4} \cos ^{4} \theta-\rho^{4} \sin ^{4} \theta}{\rho^{2} \cos ^{2} \theta+\rho^{2} \sin ^{2} \theta}=\rho^{2}\left(\cos ^{4} \theta-\sin ^{4} \theta\right) \tag{8}
\end{equation*}
$$

Using the fact that $0 \leq \cos ^{4} \theta \leq 1$ and $0 \leq \sin ^{4} \theta \leq 1$, the previous expression yields

$$
\begin{equation*}
|f(\rho \cos \theta, \rho \sin \theta)| \leq 2 \rho^{2}, \quad \forall \theta \in \mathbb{R} \tag{9}
\end{equation*}
$$

Which implies that $\lim _{\rho \rightarrow 0} f(\rho \cos \theta, \rho \sin \theta)=0$, uniformly in θ and consequently, thanks to Theorem $3.1 \quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)=$ 0

