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Motivation :

Multi-sensor biosignals, such as EEG, MEG,... contain
information that shows up differently in various channels, and
may be difficult to extract from single channel.

In this context, one often looks for features that are localized
in some joint space-time-frequency domain.

To detect weak signals, experiments are often repeated
several times : multi-trial signals

Problem : tackle inter-trial variability... which may sometimes
be modelled as time-frequency jitter and amplitude variability...
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Time-frequency analysis :

Time-frequency transforms are inherently single channel
techniques.

Can be trivially extended to multi-channel signals, by
individually transforming each channel ; multi-channel
cooperation is enforced by post-processing.

Synthesis-based frameworks allow one to enforce
multi-channel information sharing already in the first stage.

The multi-trial situation is much more complex... need of
time-frequency registration techniques prior to trial averaging.
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Notations : Gabor atoms
Modulated and translated copies of a reference window

gkn[t] = e2iπnν0(t−kb0)/Lg[t−kb0] , k ∈ ZK , n ∈ ZN

where ν0 and b0 are divisors of L, K = L/b0 et N = L/ν0.
Given f ∈ CL, the family of coefficients

Vg f [k ,n] = 〈f ,gkn〉=
L−1

∑
t=0

f [t]g[t−kb0]e−2iπnν0(t−kb0)/L

form a short time Fourier transform (if b0 = ν0 = 1) or a Gabor
transform of f .
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Examples of Gabor atoms :
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Notations : MDCT atoms
In CL, let M ∈ Z+ be a un divisor of L.

ZL is segmented into K =L/N intervals of length N

For all k = 0, . . .K −1, let wk ∈ CL be such that
wk [t] = 0 for t < (k −1/2)N and t > (k + 3/2)N.
wk [kN + τ] = wk+1[kN− τ] for all τ = 1−N/2, . . .N/2−1
wk [kN + τ]2 +wk+1[kN + τ]2 = 1 for all τ = 1−N/2, . . .N/2−1

Denote by ukn ∈ CL the vectors defined by

ukn[t] =

√
2
N

wk [t]cos
(

π

(
n +

1
2

)
(t−kN)

)

The collection {ukn} is an orthonormal basis of CL.
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Examples of MDCT atoms :

Being a basis has a price : the time-frequency localization of
MDCT atoms is more difficult to control.
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Frames and bases
Given a time-frequency basis Ψ = {ψtf} : the transform
x ∈ CL→{〈x ,ψtf 〉} is unitary. Any x has a unique expansion

x = ∑
tf

αtf ψtf .

Given a time-frequency frame Ψ = {ψtf} (which is not a
basis). Any x has infinitely many expansions of the form

x = ∑
tf

αtf ψtf ,

finding the most relevant one requires extra information,... and
is application dependent.
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Multichannel signals :

x = {xc, c = 1, . . .Nc}

signals from different channels are often dependent
the dependence structure is often complex, and not
necessarily known in advance

Example (Propagation from two sources)
Signals, originating from two inner “sources”, propagating to
the boundary of some region where they are measured.

Quasi-static approximation : time-locked signals
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Example : EEG signals
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Multichannel time-frequency expansions
In the framework of quasi-static type approximations (no time
delay) : use the same time-frequency dictionary for all channels :
Ψ = {ψtf}.

Transform + post-processing : example
Compute time-frequency transform coefficients

α = {αc
tf} , αc

tf = 〈xc,ψtf 〉
Describe the data cube α via space-time-frequency modes,
using factor decomposition (PARAFAC, Kruskal,...)

α = ∑
k

Ck ⊗Tk ⊗Fk + res. , α
c
tf = ∑

k
Cc

k TktFkf + res.
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Synthesis models
estimate multichannel time-frequency expansions of the form

xc = ∑
t ,f

α
c
tf ψtf + noise

Elementary models : channel, time and frequency are
independent variables ; e.g. bridge regression type
approaches : for 1≤ p ≤ 2, solve

min
α

1
2 ∑

c

∥∥∥∥∥xc−∑
t ,f

α
c
tf ψtf

∥∥∥∥∥
2

+
µ

p
‖α‖p

p
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More complex models : introduce correlation structures, via
either function space models (involving sophisticated mixed
norms) or probabilistic models.

Gaussian and Gaussian mixture models
Gaussian prior model :

p(α)∼N (0,Σ)

Gaussian mixture prior model : for example
p(α)∼ ∑

K
k=1 pkN (0,Σk )

Generalizations...

In most cases, Σ and/or Σk are large matrices : difficult to
estimate... and to exploit.
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Gaussian mixture prior

min

 1
2σ2

0

∥∥∥∥∥x−∑
t ,f

α tf ψtf

∥∥∥∥∥
2

− ln(p(α))


with p a Gaussian or Gaussian mixture prior.

Gaussian prior : the (explicit) solution requires the inversion of
a large matrix involving the inverse covariance matrix Σ−1 and
the Gram matrix of the frame.

Gaussian mixture priors : MM numerical strategies require at
each iteration the inversion of matrices of the same size.

Typical size : Nc ≈ 20 channels, time-frequency blocks of
dimension MN ≈ 1000... yields matrices of size ≈ 20000×20000.
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Extra structure has to be assumed for the covariance model :
coefficient cube α with independent slices

If the time-frequency frame and the covariance structure are
compatible, corresponding estimation algorithms can be designed.
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Definition (Translation invariant TF frame)
A time-frequency frame Ψ is invariant by (circular) translations if
the columns of the corresponding matrix Ψ satisfy

ψλ [k ] = ψm,n[k ] = ψ0,n[k −m] , m = 0, . . .M−1, n = 0, . . .N−1 .

The corresponding Gram matrix Ψ∗Ψ is block circulant.

G = Ψ∗Ψ =


G0 G1 G2 . . . GN−1

GN−1 G0 G1 . . . GN−2
...

...
...

. . .
...

G1 G2 . . . GN−1 G0

 ,
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Examples
Gabor frames (time locked version)

MDCT bases

Translation invariant wavelet frames

Arbitrary subband frames can be made translation invariant

...
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Theorem (MM approach convergence)
Consider the Gaussian mixture prior model. Set

A = ∑k pkΣ
−1
k , C(α) = lnp(α),

and let ε be a positive integer.
1 The iteration αn 7−→ αn+1 defined by[

1
σ2

0
Ψ∗Ψ+2(A+ε I)

]
αn+1 =

[
1

σ2
0
Ψ∗x−∇C(αn)−2(A+ε I)αn

]
converges to a local minimum of the objective function.

2 If Ψ is translation invariant, and the coefficient cube α has
independent fixed-time slices, the matrix M below is block
circulant

M =
1

σ2
0
Ψ∗Ψ+ 2(A + ε I)
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Kronecker product : A⊗B =


a1,1B . . . a1,N ′aB
a2,1B . . . a2,N ′aB

...
. . .

...
aNa,1B . . . aNa,N ′aB

 .

Proposition (De Mazancourt)
Block-circulant matrices M can be diagonalized using the block
Fourier transform F (Kronecker product of the standard Fourier
transform and the identity), yielding M = F∗PF with P invertible
block-diagonal.

Hence, the size of the matrices to be inverted is reduced.
If further dimension reduction is needed : frequency-channel
matrices can be seeked in the form of Kronecker products :

Σ(cf ) = Σ(c)⊗Σ(f ) , Σ−1
(cf ) = Σ−1

(c)⊗Σ−1
(f ) .
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Related problem : estimation of the model parameters :

Covariance matrices Σk (or Kronecker factors),

Membership probabilities pk .

Current solution : (ad hoc) re-estimation at each iteration of the
algorithm. No convergence proof for the combined approach.

Numerical simulation : Preliminary : single sensor, Gaussian
mixture (N = 2) with known covariance matrices.
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Simulation

Frequency covariance matrices (state 2 : alpha waves)
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Simulation

Original, noisy and reconstructed signals
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So far : fixed-time coefficient vectors were assumed independent.

Multichannel harmonic hidden Markov model
A hidden state t → Xt ∈ {1,2, ...Ns} controls the distribution of
corresponding coefficients α .

Fixed time coefficients α ·t · are modeled as before as a
Gaussian random vector N (0,Σs), whose covariance
depends on the state Xs.

Conditional to the hidden states, fixed time coefficient vectors
α ·t · are statistically independent.

The dynamics of hidden states is governed by a Markov
chain : transition Xt = s to Xt+1 = s′ with fixed probabilities.
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Problems to solve
Estimate the model parameters :

Covariance matrices : Σfc or Σf ⊗Σc
Characteristics of the chain : transition probabilities
P{Xt+1 = s′|Xt = s}, initial probabilities P{X0 = s}.

Estimate the hidden states sequences

Answers
MDCT or Wilson basis : standard procedure

Computation of TF coefficients
Parameter estimation : Baum Welch algorithm (provable
convergence even for Kronecker covariance matrices)
Hidden states estimation : Viterbi algorithm (low complexity)

For Gabor frames : ad hoc procedures... not really satisfactory
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Multi-channel/multi-trial time-frequency analysis

Details : Forward and backward variables

as
t = P{Xt = s|α0:t}×Lt

with Lt the likelihood of the observations until time t ,

bs
t = P

{
y (t+1):(Nt−1)|Xt = s

}
.

are computed recursively using the forward-backward equations.

as
t+1 = fs(α t+1)

Ns

∑
s′=1

πs′sas′
t , bs

t =
Ns

∑
s′=1

πss′ fs′(α t+1)bs′
t+1 .

with π the transition matrix of the chain, and fs the pdf of fixed-time
coefficient vectors α t in state s.
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Details : Initial probabilities and transition matrix
re-estimation

ν̂s =
as

0bs
0

L

π̂s,s′ = πs,s′

1
L ∑

Nt−2
t=0 as

t bs′
t+1fs′(α t+1)

1
L ∑

Nt−2
t=0 as

t bs
t

,

with

L = LNt−1 =
Ns

∑
s=1

as
t bs

t
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Estimation of Σ
(c)
s given Σ

(f )
s : define Ms

t (c,c′) = 〈(Σ(f )
s )−1αc

t ,αc′
t 〉

and set

Σ̃
(c)
s =

1
Nf

∑
Nt−1
t=0 P{Xt = s}Ms

t

∑
Nt−1
t=0 P{Xt = s}

Normalization : set

Σ̂
(c)
s = Σ̃

(c)
s /

∥∥∥∥Σ̃
(c)
s

∥∥∥∥
F

,

Estimation of Σ
(f )
s given Σ̂

(c)
s : define Ps

t (f , f ′) = 〈(Σ(c))−1α tf ,α tf ′〉
and set

Σ̂
(f )
s =

1
Nc

∑
Nt−1
t=0 P{Xt = s}Ps

t

∑
Nt−1
t=0 P{Xt = s}
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Application to rest EEG
Rest EEG basically features Alpha waves : short duration
time-localized oscillations (frequencies around 10 Hz) which
appear in specific situations ; topographically localized in specific
sensors located in posterior regions of the head.

Alpha wave occurrence may be considered a departure from a
stationary background signal. This motivates the use of hidden
Markov models as described above.

Remark (Time-frequency resolution)
alpha waves are actually close to the Heisenberg limit. One needs
frequency resolution of approximately 4Hz, and time resolution of
approximately 250 msec....
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Alpha waves in rest EEG
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Application to rest EEG : real data

MDCT coefficients of a 30 sec. long EEG recording (rest EEG)
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Application to rest EEG

Frequency covariance matrices estimates for the two classes

Channel covariance matrices estimates for the two classes

B. Torrésani (LATP, Aix-Marseille Univ.) ESI, December 2012 36 / 45



Multi-channel/multi-trial time-frequency analysis

Hidden states estimation : simulated data
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Multiple sclerosis
Multiple sclerosis has been reported to affect the left-right
synchronization in the alpha band. This assumption can be tested
using the model.

Dataset
EEG data originating from the CODYSEP dataset, designed to
study the impact of multiple sclerosis in inter-hemispherical
transfer.

The dataset consists in 31 patients and 20 controls ; 17 channels
EEG signals were collected at a 256 Hz sampling rate.

EEG data essentially contain alpha waves bursts.
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2 minutes of recording
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4 seconds of recording
B. Torrésani (LATP, Aix-Marseille Univ.) ESI, December 2012 41 / 45



Multi-channel/multi-trial time-frequency analysis

Testing protocole :
1 For both classes (patient and control)

Select relevant left and right subsets of the set of sensors
For each subset :

Estimate corresponding model parameters
Estimate left and right hidden states sequence X (L) and X (R)

Compute the Hamming distance between left and right hidden
states sequences : dH = ‖X (L)−X (R)‖1.

2 Compare estimated Hamming distances of controls and
patients : boxplots, p-values,...

3 Compare with the results obtained using inter-coherence :
left-right cross-correlation after band pass filtering.
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Results

Left : boxplots of Hamming distances dH between hidden states
Right : boxplots of inter-coherences dC between signals

Mann-Whitney test : P-value≈ 0.0384 : confirms quantitatively the
hypothesis of two distinct distributions.
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Conclusions
When going multi-channel, one has to fight the curse of
dimensionality.

Factorized models can help in this respect

Two approaches were presented, tackling two different
problems. Next question : how to keep the best of the two ?

Multi-trial : matching pursuit type approach (Consensus
matching pursuit)
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Thanks
Joint works with E. Villaron and S. Anthoine

Pleasant collaborations and discussions with the LATP signal
processing group

NuHaG and partners for organizing this nice event

...

The audience for your attention !
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