logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site

Cohomologie p-adique de la tour de Drinfeld : la version en familles

jeudi
10
octobre
2019
14h00 - 15h00
horaire Salle des séminaires 304-306 (3ème étage)

Institut de Mathématiques de Marseille (UMR 7373)
Site Sud - Bâtiment TPR2
Campus de Luminy, Case 907
13288 MARSEILLE Cedex 9

Gabriel DOSPINESCU (UMPA, ENS Lyon)

On sait décrire, grâce à Emerton, la cohomologie complétée de la tour des courbes modulaires en termes de correspondances de Langlands locale p-adique et l-adiques en familles (paramétrées par des divers espaces de déformations de représentations galoisiennes globales). J’expliquerai un analogue local de ce résultat, concernant la tour de Drinfeld pour GL_2(Q_p), qui fait naturellement intervenir des familles paramétrées par des espaces de déformations potentiellement semi-stables. Il s’agit d’un travail en common avec Pierre Colmez et Wieslawa Niziol.

Gabriel DOSPINESCU