logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site

Fiber preserving Killing vector fields of connection metric

mardi
08
octobre
2019
11h00 - 12h00
horaire CMI, C006

I2M - Château-Gombert
39 rue Frédéric Joliot-Curie
13453 MARSEILLE cedex 13

Arash BAZDAR (Aix-Marseille Université)

Let $(M,g)$ be a differentiable Riemannian manifold, $K$ be a compact Lie group and $P$ be a principal $K$-bundle over $M$ endowed with a connection $A$. Fixing a bi invariant inner product on the Lie algebra $Lie(K)$, the connection $A$ and the metric $g$ define a Riemannian metric $g_A$ on $P$. We give a decomposition theorem for fiber preserving Killing vector fields of $(P,g_A)$, in the case where $K$ is compact, connected and simple.

Arash BAZDAR