A spatial approach to Poincaré duality on singular spaces: intersection space cohomology

Carte non disponible

Date(s) - 09/04/2018
15 h 30 min - 16 h 30 min

Catégories Pas de Catégories

Manifolds have a remarkable hidden symmetry: Poincaré Duality, which is visible in (co)homology. Particularly, the ranks of the (co)homology groups of complementary degree are equal. This property enables us to understand the topology of manifolds much better, for example by defining and investigating the signature. Singular spaces do not have that symmetry in general. To be able to use similar techniques as for manifolds, one has to replace ordinary (co)homology by an alternative. In this talk, we present an approach that was introduced by M. Banagl: Intersection space (co)homology. We discuss the spatial and the de Rham picture for spaces with isolated singularities and talk about the difficulties of generalizing the theory to pseudomanifolds with more complicated singularities.


Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange